

Theoretisches Aufgabenblatt 10

Abgabetermin: 26.01.-28.01.2015

- 1. Describe a way to determine if a single bit is set or unset within the A register of the M6809 CPU.? What needs to be done to set a single bit of this register to 1 respective 0? Translate your solution to an assembler program testing the *n*th bit of the A register. The number n is stored in memory address \$1000
- 2. Given the following simple program in MC6809 assembly:

1 2 3 4	START	org lda sta lsra	\$1000 #\$08 \$6000
5 6 7 8 9	LOOP	lsra lsra inca jmp end	LOOP

Quelltext 1: zu untersuchender Assemblercode

How does the value of register A change over time? Modify the code that the program terminates when the initial state A = 8 is reached again.

The first line (org \$1000) simply states the memory address, where the program shall be loaded and can be ignored for this task.

3. To compute the term $d = 2 \cdot b - 10_{dec}$ two programmers present you with the following 6809 assembly programs.

Check if the programs work correctly and correct possible mistakes. Grade the implementations considering execution cycles and memory consumption.

LDA MULD	#\$2	
SUBD	#\$A	
LDA ASLB ADCA SUBD	#\$0 #\$0 10	// Sicherstellen dass in A eine 0 steht // Linksshift von b

The following table contains the assembly mnemonics together with their respective execution cycle count and the amount of memory bytes they need.

Assembly Mnemonic	Memory bytes	Cycle count
LDA	2	2
ASLB	1	2
SUBD	3	4
MUL	1	11
ADCA	2	2

- 4. Answer the following questions regarding RISC/CISC.
 - What are the differences between RISC and CISC computers?
 - What was the intention towards the RISC computers?
 - Describe respective benefits and drawbacks of both approaches?
 - Why need RISC computers more registers then CISC computers?
- 5. Explain the baseline principle of pipelining. Which architectural principle (RISC/-CISC) is better suited to implement pipelining and why?