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Abstract: Flexible system configurations and adaptability to changing environments and
environmental conditions are key concerns for autonomous systems in future applications,
either in industrial production processes, building automation, or health-care scenarios. New
technologies for instrumented and smart environments support the distribution and acquisition
of a diversity of information, but the organization, selection, validation, and interpretation
according to certain contexts are still open issues.
Therefore we propose a concept for separating environmental perception and modeling from
the application logic. We apply a general model related to the idea of “mental models” used
in cognitive science. It combines geometrical data with knowledge about sensors and actuators.
This model is used to derive all information, which is required by an application, and to generate
different environmental representations.
We show that this approach is capable of solving different problems in the fields of distributed
systems as well as instrumented environments and demonstrate its usability.
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1. INTRODUCTION

Flexibility is a key concern in future industrial production
processes and manufacturing systems. It is required for
cost-effectiveness, to stay competitive and to be able to
quickly response to market changes. As described in the
case study of Wengel et al. (2003) for the production
of personal cars, customization functionalities, equipment
and features require more and more complex and sophisti-
cated manufacturing processes, as they depart from fixed
assembly lines and enclosed robot cells.

Thus, flexibility requires reconfigurability as well as adapt-
ability. While the former copes with aspects of including
hard 1 and soft 2 reconfiguration (described by Wiendahl
et al. (2007)). Just think of assembling additional sen-
sors to a robot, so that it can serve more specific and
dedicated tasks. Therefore, hard-reconfiguration always
requires soft-reconfiguration on different layers. The latter
handles changing environmental conditions 3 and dynam-
ics in the environment, due to dynamic production lines
or even changing manufacturing processes. For example,
imagine a mobile robotic transportation platform in a
production hall that has to replan its trajectory accord-
ing to different payloads (geometry and therefor possible
sensor occlusion, mass, potential risks, etc.) and obstacles,
and furthermore it has to react properly on unforeseeable
changes (like moving humans or robots).

1 Hard reconfiguration deals with physical entities like single sensors,
actuators or machines, as well as changes of the infrastructure.
2 Soft reconfiguration deals with logical aspects like controllers,
planning and scheduling.
3 Environmental conditions like temperature, humidity, changing
light conditions, etc. can have an effect on different sensor system
and thus also affect environmental perception.

Looking further onto other areas like building automation
or domotics (cf. Miori et al., 2006), smart kitchens (cf.
Rusu et al., 2009), service- (cf. Karlsson et al., 2004) or
healthcare-robotics (cf. Graf et al., 2009), and many more,
we are facing everywhere the same problems, namely,
that different systems have to solve complex and changing
tasks in even highly complex and dynamically changing
environments.

The idea of instrumented (or smart) environments 4 (cf.
Cook and Das, 2007) tries to overcome some of these
drawbacks. Entities now become smart entities that are
capable of sharing their knowledge and functionalities
among each other. Thus, it should be possible to access
and interpret external sensory systems, whether stationary
or mobile ones. And of course, “interoperability” is for the
most purposes not a real problem. Data can be transmitted
and interpreted in terms of physical values, by applying
one of many standards (e. g., SensorML 5 , IEEE 1451 6 ,
MOSAIC 7 , etc.).

But in the end, there is a tremendous difference between
a value and a meaning. What does a change of a single
distance measurement stand for? Meaning can only be
derived by interpreting data according to the current
context. A context can be defined by everything that is
relevant to fulfill a certain task, like the task itself, other
sensor measurements, location and infrastructure, time,

4 Differing terms like “Internet of Things”, “Ambient Intelligence”,
or “Ubiquitous/Pervasive Computing”, etc. touch the same ideas.
5 Sensor Modelling Language:

http://www.opengeospatial.org/standards/sensorml
6 Smart Transducer Interface Standard:

http://www.nist.gov/el/isd/ieee/ieee1451.cfm
7 fraMewOrk for fault-tolerant Sensor dAta fusIon:

http://code.google.com/p/mosaicframework

http://www.opengeospatial.org/standards/sensorml
http://www.nist.gov/el/isd/ieee/ieee1451.cfm
http://code.google.com/p/mosaicframework
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physical conditions, etc. (cf. Dey et al., 1999). In other
words, if every entity becomes a sensing entity, that shares
its knowledge among all interested entities, this data has
to be selected, fused, validated, processed and presented
in an appropriate manner.

1.1 Proposal

Every application requires a certain view on its operational
environment, which is used for planning, predicting, and
decision making. But, as already stated, the generation
of such views is an interdisciplinary and tough challenge,
depending on various parameters. An engineer does not
want to bother with different sensor system and their
appropriate interpretation and validation. In fact, the
tasks of transporting payload in a production hall or of
transporting a patient in a healthcare-scenario are quite
the same, while only the robotic platforms, sensor systems,
environments, and constraints for the task changes.

So, why not separate perception and control in general?
In (Dietrich et al., 2012) we first presented and discussed
ideas and a possible structure for a system-architecture,
which abstracts the environmental representation from
the control-application. Therefore we propose the usage
of geometric environmental models, similar to the idea of
“mental models” (see Sec. 2). The key idea is to put all
knowledge about the environment as well as sensors and
actuators into a single model of the entire system, which is
then used to extract all required information or to generate
task specific views.

1.2 Demonstrator

To illustrate our concept, we used the Khepera-platform 8 .
A miniature mobile robotic platform, that offers similar
functionalities as larger robots. It is widely used for real
world testing of algorithms for trajectory planning, ob-
stacle avoidance, pre-processing of sensory information,
and hypotheses on behavior processing, etc. As depicted
in Fig. 1, the Khepera also offers a modular set-up that al-
lows easy hard-reconfiguration, just by combining different
elements.

We chose a simple on-desk-scenario, as depicted in Fig. 2.
For a better visualization of the experimental results we
created a YouTube-Channel that can be reached on the fol-
lowing address http://www.youtube.com/ivsmagdeburg,
or simply by clicking on figures marked with “Animation”,
if you are using Adobe Reader.

1.3 Overview

The rest of this paper is organized as follows: In Sec. 2
we give a brief overview on state of the art, followed by a
description of our concept with additional proof-of-concept
implementations in Sec. 3, and ending up with a summary
and a discussion in Sec. 4.

8 http://www.k-team.com/
9 http://www.sharpsma.com/webfm_send/1205
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Figure 1. Khepera with different sensor systems on every
module (Base-Module-IR-Sensors for close distance
measurements (1.5 cm to 4 cm), Optical Barrier al-
lowing the detection of objects inside the gripper,
and Sharp GP2D120 9 for long distance measurements
(4 cm to 30 cm))

2. RELATED WORK

As a first “system”, that is capable to cope with all stated
problems, let us take a look at how environment models
may be used by ourselves.

As stated by Meadows et al. (1974):

“Each person carries in his head a mental model,
an abstraction of all his perceptions and experiences
in the world, which he uses to guide his decisions
. . . [mental models are] intuitive generalizations from
observations of real-world events.”

Mental models are widely used by cognitive scientists to
explain (partially) how humans perceive, reason, assess,
learn, and make decisions for a variety of environments.
As revealed by Doyle and Ford (1998) for dynamic and
systems, “mental models” are defined in many ways and
their representation is still an open issue. But:

“There is one important point on which virtually all of
the definitions offered in cognitive science fields agree,
namely, the idea that the structure of mental models
“mirrors” the perceived structure of the external sys-
tem being modeled.”

Mental models can be considered as “mental simulations”
of the real situations or problems. Setting up such a model
requires un/conscious filtering and consolidation of incom-
plete information to meaningful impressions. This pro-
cess varies according to individual knowledge, goals, and
moods. According to Johnson-Laird (1986) the resulting
models show up reduced complexity according to reality,
where quantitative relations are mapped onto qualitatives,
and thus allow storing and handling elements of the world
within the working memory. Furthermore, these models
are required to integrate new information correctly.

In summary, on the one hand we build models of the
reality based on sensory inputs and knowledge and on the
other hand we need models to interpret sensory inputs and
information correctly.

http://www.youtube.com/ivsmagdeburg
http://www.k-team.com/
http://www.sharpsma.com/webfm_send/1205


A theoretical architecture that adopts the psychological
principals for artificial perception and consciousness, and
tries to make them usable for technical applications, was
presented by Caulfield and Johnsonb (2000). While the
cycle of perceiving, reasoning and acting is quite similar
to one of smart environments (cf. Cook and Das (2007)),
it differentiates between two levels of consciousness and
two separate models. The first level of consciousness de-
scribes basic and reflexive behavior that directly reacts
on sensor inputs. In contrast to this, the second level
uses two types of abstractions. These are a self model
and a world model, generated from system-knowledge and
sensory inputs. Thus, higher level planning and predicting
are cut off from all sensory inputs and use only two models,
where they get their knowledge from. But unlike the idea
of mental models, the knowledge about system behavior is
predefined, and cannot be changed in retrospect.

The relatively new idea of “dual reality” describes a similar
approach (cf. Lifton (2007)). In contrast to the ideas of
“augmented reality” or “mixed reality”, this new type
results from an interplay between the real and the virtual
world. Thus, they are not just overlays, both worlds are
complete and consistent unto themselves but influence,
reflect, and merge into each other, linked by networks of
sensors and actuators. While real world sensor information
is used to enrich the virtual world (by means of position
and properties of objects and entities as well as physical
conditions), the virtual world represents an ideal basis
for the manifestation, browsing, and querying the content
of the real world. Furthermore, think of pure virtual
objects like security areas, gates, or workspaces, taking
only knowledge from the virtual world, these objects can
appear as obstacles and therefore to be taken into account
during planning and executing actions in the real world.
The virtual world, as it was introduced by Lifton and
Paradiso (2010) or Stahl et al. (2011), is represented by
a detailed 3D model.

Even more sophisticated models were also used by Hsiao
et al. (2003) and Roy et al. (2004) to describe intersecting
workspaces of robots and humans. The knowledge about
the environment and the robot were put into a simulation
using ODE 10 . This included, next to detailed geometric
representation, also physical properties like mass, force,
and velocity. These properties were used for enhanced
predictions and it could be shown, that the usage of
such complex models is essential for cooperative tasks. To
understand and follow commands, like “Give me the blue
screwdriver on my left!”, a system requires the ability to
change its own viewpoint.

Depending on the abilities of a system and its assigned
tasks, environmental representations can vary widely.
While a robot assistant requires a high accuracy 3D repre-
sentation of its surrounding area (cf. Helms et al., 2002),
a transport robot can be satisfied with a 2D map for the
purpose of navigation and localization. Or think of an in-
dustrial manipulator whose knowledge about the environ-
ment is represented by a simple parameter vector that is
directly used to control its behavior. These basic examples
of highly specialized applications solve predefined tasks
by using fixed models. As revealed by literature review of

10Open Dynamics Engine: http://www.ode.org

Charalampidou et al. (2012), there are currently no inter-
faces to connect or share different environmental models
of different entities, although all systems with intersecting
working areas would benefit from it.

3. CONCEPT

As depicted in Fig.&Ani. 2, even a very simple scenario in a
static environment can be tough to implement. It requires
sensor interpretation, validation, and abstraction as well
as dedicated control. Modifying a system configuration
always requires additional efforts on multiple layers, for
instance adding (or removing) a device to mobile robot
changes the geometry (and may affect the kinematic),
mounting a tool to manipulator changes the tool-center-
point (and definitely affects its kinematic), or additional
sensors that change the perception (and may change the
geometry).

Base-Module

http://www.youtube.com/watch?v=lGYPAzHtGBo

Occupancy-Grid-Map

Mug 1 Mug 2

start-point

end-point

Figure & Animation 2. Parking scenario between two mugs
using only the Khepera base-module. Environmental
abstraction is provided by an occupancy-grid-map
generated with help of local distance sensors.

3.1 Coping with Hard-Reconfiguration

We apply a system specification, defining a system of
systems, as depicted in Fig. 3 all relevant entities are de-
scribed in different XML-notations. Sensors are described
in a combination of the OpenRAVE 11 sensor description ca-
pabilities and the MOSAIC XML-notation. While OpenRAVE
is used to simulation various sensor types, MOSAIC enables
to discover, access, interpret, and validate real sensor data
(see also Zug et al. (2012)) Robots and actuators are
described in URDF 12 , including a kinematic and dynamic
description of the robot, a visual representation, and a
simplified collision model. Non-functional elements of the
environment (i. e., rooms, furniture, work pieces, parcels,
etc.) are described in ODE 10 -XML, including geometry,
mass, color and texture.

This information can be merged into a single description
of the entire system, interpreted and used in various
ways. Robot descriptions can be used to calculate inverse
11Open Robotics Automation Virtual Environment:

http://openrave.org/docs/latest_stable/
12Unified Robot Description Format:

http://www.ros.org/wiki/urdf

http://www.ode.org
http://openrave.org/docs/latest_stable/
http://www.ros.org/wiki/urdf
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Figure 3. Environmental abstraction through a system
model, set-up from various XML specifications, in-
cluding sensors, actuators, non-functional entities.

kinematics for manipulators with IKFast 13 , but also for
simple vehicles, using OMPL 14 (see Şucan et al. (2012)).
To communicate all relevant data, we apply the topic-
based publish/subscribe-middleware FAMOUSO 15 . Topics
and object-IDs are also part of every XML-description.

The conversion of a system description into an OpenRAVE-
representation enables further querying. What sensors,
actuators, and objects are available, what is their 3D-
representation, where are they located, what are their
relative positions and orientations, what are the distances
between objects, etc. Thus, all relevant information can
be retrieved from the virtual model, which can be used
additionally for planning and for interpreting sensor mea-
surements. If there is no further information about the
environment, sensor distance measurements can be con-
veyed directly into the virtual model, without the need for
calculating translations or rotations (see Fig.&Ani. 4(a)).
While signal interpretation and validation is done with
MOSAIC.

(a) obstacle avoidance (b) sensor validation

(c) measurement awareness (d) sensor heterogeneity

Figure & Animation 16 4. Benefits of the model based ap-
proach: (a) sensor interpretation within and with the
help of the model, (b) validation of measurements and
models by comparing virtual and real measurements,
(c) a system can foresee the effect of its behavior
on sensor measurements, and (d) this is possible for
various different sensor systems.

13Robot Kinematics Compiler:
http://openrave.org/docs/latest_stable/openravepy/ikfast/

14Open Motion Planning Library: http://ompl.kavrakilab.org
15Family of Adaptive Middleware for autonomOUs Sentient

Objects: http://famouso.sourceforge.net
16Online at: http://www.youtube.com/watch?v=EM3g7neGPZM

But if there is more knowledge about the environment
included into the model, this information can be used for
an additional validation of sensor measurements and the
environment model. By comparing sensor readings taken
from the real world with their virtual counterparts, as
depicted in Fig.&Ani. 4(b), we can compare the real world
with its virtual counterpart. An event is triggered, if there
is a discrepancy between real and virtual measurements,
that cannot be explained by measurement noise. Further-
more, a system becomes aware of the influence of its local
behavior on sensor readings, like it occurs by self-occlusion,
as shown in Fig.&Ani. 4(c), and this is possible for various
sensor systems (see Fig.&Ani. 4(d)). Using this method
it is possible to maintain a more complex environmental
representation with even poor sensor systems, than it
could be generated by these sensors only.

3.2 Coping with Dynamic Environments

A welcome side-effect, resulting from the XML-specifi-
cations, is that these descriptions can easily be transferred
and shared among interested entities. Thus, every sys-
tem has its own local virtual model, which can now be
easily extended by including external sensors (mobile or
immobile), just by interpreting their XML-descriptions.
For that purpose, only their position and orientation must
be known, relatively to the own ones. Also other external
objects can be integrated into the own local virtual model,
like shapes of rooms, work pieces, parcels, furniture, other
robots, etc. This means that virtual environment models
can be composed dynamically, according to the application
requirements. Next to sensory data, the diversity of infor-
mation of external entities can now be interpreted directly
within the virtual world, for example the lock status of
doors, trajectories of mobile robots, joint angles of ma-
nipulators, etc. The effect of external actions or status
changes does not have to be observed with local sensors, it
can be observed within the virtual representation. Further-
more, the description of the geometry in combination with
other properties like mass, color, and textures can help to
solve the anchoring problem 17 , similar to the solution of
LeBlanc and Saffiotti (2008). Beside these opportunities,
there also arise several problems, we have to deal with.

Coping with Distributed Knowledge: An instrumented
environment like a manufacturing hall or a hospital that
contains a heterogeneity of sensors and measurements,
actuators and datasheets, rooms and working areas, tasks
and functions can be interpreted in a manner of a global
consciousness (as depicted and animated in Fig.&Ani. 5).
All of this knowledge has to be stored, organized, and
accessed somehow decentralized. Due to the large amount
of data and the distributed nature we decided to apply
Cassandra 18 a distributed database management system.
It was designed for wide spread and huge amounts of
data, while it provides tunable consistency and scalabil-
ity. Database-instances are organized in clusters and key
spaces and data is organized in simple key-value stores.

17Combining and realating perceptional (e. g., data from distributed
cameras, laser-scanners, etc.) and non-perceptual (i. e., symbolic
knowledge) information from different sources and types that refer
to the same object.
18Apache Cassandra: http://cassandra.apache.org

http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://ompl.kavrakilab.org
http://famouso.sourceforge.net
http://www.youtube.com/watch?v=EM3g7neGPZM
http://cassandra.apache.org


In contrast to other distributed database-management-
systems it offers a more sophisticated querying language,
called CQL 19 , which is close to SQL and therefore allows
to define even complex queries. On the basis of Cassandra
we developed a system, where every entity hosts its own
local database-instance and stores its own data, without
caring about data types and formats. A database-instance
can easily join or leave the cluster and access to all data
within the cluster. If required, data can also be hold within
a cluster, by running different replication mechanisms.
Thus, knowledge is not lost; if a participating entity leaves
a cluster. But knowledge can also be forgotten (equal to
short- and long-term memory), by adding a time-to-live
value to each entry.

Coping with Uncertainties: Sensors are affected by in-
ternal and external disturbances that generate measure-
ment derivations within the spatial or temporal domain.
Examples for the first one are signal noise, outliers, offsets,
etc. and for the second aspect delay or omissions. MOSAIC
maps the specific failure behavior on a set of failure modes.
Based on this uniform semantic each measurement is en-
hanced by a (parametric) description of its uncertainty
and a validity value, indicating the occurrence of such a
fault. Both values are a needed to cope with measurement
uncertainty. Different filters monitor the validity of a data-
set before it is integrated into the model. Location un-
certainties of external entities have an additional effect,
which has to be taken into account. A possible solution to
handle location uncertainties was described by Smith and
Cheeseman (1986). The effects of uncertainties are there-
fore transferred into blurring geometrical representations
as illustrated in Fig. 5.

http://www.youtube.com/watch?v=1ztyvcP6zcE

Room Geometry

Kinect – 3D measurements

Foreign Khepera

Obstacle: Mug

. . .

Figure & Animation 5. Dynamic composition of geometric
environment models from multiple sources, including
position and orientation uncertainties.

3.3 Coping with Application-Requirements

The main problems in mobile robotics:

• “where am I?”
maps to

−−−−−−−−−−−−−−−−−−→ localization,
• “where am I going?”

maps to

−−−−−−−−−−−−−−−→ mapping,
• and “how should I get there?”

maps to

−−−−−−−→ navigation
19Cassandra Query Language:

http://cassandra.apache.org/doc/cql/CQL.html

as stated by Leonard and Durrant-Whyte (1992), have to
be extended by “what do I see?” (−−→ object recognition)
for the area of service robotics. Thus, there are just a few
recurrent tasks, but many more algorithms that are used
to solve these problems and thus require a dedicated input.

As summarized by Greca and Moreira (2000), next to
mental models, there are at least two additional but dis-
tinct classes of mental representations. These are “propo-
sitional representations”, which define mental relation-
ships between objects represented by symbols that require
syntactic rules (i. e., formal logic relations or production
rules), and “mental images” that are defined as views of
the “mental model”. In fact, the 3 dimensional represen-
tations, as shown before, can be interpreted as such a
view. Until now these representations were used as the only
environmental abstraction (i. e., ideal for robot assistance
in complex environments, grasp planning, or to generate
collision-free trajectories) but they are far too complex for
many industrial applications. For navigation and localiza-
tion algorithms maps are for example the most appropriate
input and thus environmental abstraction. As depicted in
Fig.&Ani. 6 it is also possible to generate different views
(maps) on a specific scene or area by using different filters.
If for example, another robot changes the environmental
configuration, by changing its location or by grasping an
object, these changes also appear within the map.

http://www.youtube.com/watch?v=cqzMXglgEDg

Figure & Animation 6. Generating views (occupancy-grid-
map) out of the 3D-scene with the help of filters.

Next to specific 3D or 2D views, simple parameter vectors
including object IDs, distances, velocities, relative posi-
tions and orientations, etc., which can also be interpreted
as views, can be extracted directly from the model.

4. SUMMARY & DISCUSSION

In contrast to other solutions for environmental perception
and modeling, where sensor measurements are directly
used to generate some kind of environmental abstraction,
we propose an indirect method. Close to the idea of mental
models, which are widely used in cognitive science, we
apply models that include sensory, actuatory, geometrical,
and physical information. These models can be dynam-
ically composed and generated with the help of different

http://cassandra.apache.org/doc/cql/CQL.html


XML-notations that describe each entity in detail. Sensory
information are then interpreted and validated within the
model and according to the current environmental config-
uration. While environmental abstractions (views) can be
derived from the model, according to task specific require-
ments and independent from applied sensor systems.

Of course, our solution requires some additional efforts,
but these efforts are negligible, because it allows us to cope
efficiently with dynamically changing environments, hard-
reconfiguration, and different application requirements.
In further research, we want to extend these prediction
capabilities by foreseeing complex situations as a whole
and not only single measurements.
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