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Abstract—The transducer process of a sensor is interference-prone to
environmental conditions or external disturbances depending on sensor
type, measurement procedure etc. Dependable sensors are characterized
by a broad independence of those factors or/and they can both detect
situations that make a correct measurement impossible and validate the
measurement result.

In this paper we describe a statistical approach for the detection of
faulty measurements caused by external disturbances. Our fault detection
algorithm is based on a comparison of faultless reference measurements
with current sensing values. Using this enhancement, a sensor becomes a
real smart sensing device and supplies an additional validity estimation
of each measurement. The approach was implemented and validated in
a demonstration setup that integrates an infrared sensor array disturbed
by a strong extraneous light.

Index Terms—disturbed sensor measurements, fault detection, non-
parametric statistics, smart sensor

I. INTRODUCTION

Sensor systems in industrial applications have to cope with harsh

environmental conditions. Varying influences like dust, fog of oil or

steam interfere the measurement process and produce an ageing of

the sensor unit. The results are well known: faulty measurements

or crashed sensors that significantly disturb an application up to

complete system failure.

Hence, system designers endeavor to integrate fault tolerance

mechanisms for sensor applications that detect faulty components

and validate each measurement. For this purpose we enhance the

idea of smart sensors developed in [1] to fault tolerant purposes.

Our smart fault tolerant sensor combines different methods of fault

detection and merges the results to a validity estimation of the

measurement [2]. The general interface of the smart sensor offers

additional information, the quality of a measurement now. This

approach aims to detect an individual abnormal sensor behavior

that observes each sensing unit. This information supplied by a

fault tolerant smart sensor supports decision about forwarding of a

respective message in the network and can be used for the selection

and weighting of the measurement in a fusion engine. This concept

reduces the communication and calculation effort in a sensor network.

Which sensor faults can be identified in a smart sensor application?

Faulty sensor measurements occur due to external and internal

reasons. Fig. 1 shows the three elemental components of a smart

sensor – transducer, processing unit and network interface – and

assigns the following fault types:

1) External faults are all parameters dE that influence the environ-

mental conditions in such a way that the measurement process

is disturbed. An example for incorrect results caused by external

changes is an ultra sonic distance measurement during variable

pressures. Thus, over time, the acoustic velocity varies and the

sensor produces an untrustworthy distance measurement.

2) The transducer maps a physical value on an electronic signal.

The translation can be affected by electronic or mechanic faults

dT of the sensor system, for instance a broken power supply.

3) The third category, processing faults dP , based on soft or

hardware faults inside the smart sensor processing unit. This

can be a complex bug in filter software or a hardware failure.

4) The last barrier is the communication via a network. The sensor

measurements can be partially or completely lost if a crashed

node jams the wireless sensor network for instance.

All four fault types are usually modeled with an additive or

multiplicative influence to the correct measurement signal and with

an abrupt, increasing or intermittent temporal behavior. The poly-

morphism of the impact enhances the fault detection to a complex

challenge.
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Fig. 1. Influence of faults on a smart sensor measurement process

In this paper we describe our approach for a detection of varying

environmental conditions that have a negative influence on the

measurement process. Those effects are called disturbances of mea-

surement if the quality of the result decreases significantly. Complex

and reliable sensor systems attempt to obtain all relevant environment

information, for instance an ultra sonic sensor that is equipped

with temperature, humidity and pressure auxiliary sensors. Based on

whose additional measurements the influence of the disturbance can

be eliminated. In many applications such advanced sensor systems are

not available or the important environment variables are not known

yet. In this case a statistical validation of the measurements offers a

robust and inexpensive way to minimize the influence of improper

measurements. The low cost infrared sensor we used for the validation

allows distance measurements that can be disturbed by extraneous

light. The influence level to the measurement depends on the light

frequency, power, orientation related to the sensor and the reflectance

of the environment. A coherent additional measurement of all these

parameters is not realizable. However fault detection is necessary,

for illustration we compare undisturbed and disturbed measurement

series in Fig. 2. The sensor output voltage is depicted for different

distances of an object (10-80 cm). An undisturbed measurement
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produces an output of 0.25 V for objects near to 80 cm, in case of

a disturbance an obstacle 60 cm away from the sensor generates the

same result. The displacement of the disturbed measurement ranges

from 8 cm to −18 cm.

We tested different distance sensor based on laser systems (Wen-

glor YT87MGV80 [3]) or infrared light (Sharp Series) due to their

susceptibility to faults caused by extraneous light. All sensors were

affected by this disturbance but with different strength. We chose the

sensor type with the highest measurement displacement, to illustrate

the potential of our method to increase the fault tolerance aspect of

a cheap sensor.

Due to missing information about the environmental conditions

of each measurement we address the detection of external faults

using statistical non-parametric test methods in this paper. A short

state of the art in Sec. II introduces fault detection methods and

afterward Sec. III points out different statistical test methods. Sec. IV

presents our demonstration scenario, examines specific properties of

the infrared sensors and illustrates the influence of extraneous light.

In Sec. V we describe the selection and optimized parameterization of

a test method and a validation of our approach using an experimental

setup.
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Fig. 2. Characteristic line of an infrared sensor with/without disturbance of
extraneous light

II. RELATED WORK

Sensor fault detection is based on a comparison of redundant

information. This redundancy in measurement system can be obtained

by three ways:

a) Hardware Redundancy: Hardware redundancy is used for

safety critical applications in different ways [4]. Redundant, het-

erogeneous or homogeneous sensors measure the same or related

values and observe a common area. Faulty sensors are identified

by scanning all measurement deviations from mean, median etc.

The criterion for an acceptance can be defined for instance as a

simple threshold related to the measurement uncertainty or based

on statistical knowledge like x-percentile, etc. [5]. Such methods

discard a deviating minority as faulty measurements like a k-from-

n voter. This means, the maximum number of simultaneous faulty

sensors which can be detected is defined by the number of redundant

measurements. If a general disturbance manipulates the majority or

all measurements, like extraneous light in our scenario, those fault

detection methods fail.

b) Model Based Redundancy: Another approach is to “sim-

ulate” a redundancy with a mathematical model of the observed

system, for example [6]. The response to known inputs is calculated

using this process model and compared to the reaction of the real

system. If a state vector is assumed, the resulting residua can be

classified by rule based systems, neuronal networks, fuzzy sets [7].

c) Signal Analysis: Model based redundancy uses the knowl-

edge of the observed system to derive a validity of the measurement.

Signal analysis monitors the parameters of the measurement process

and models the transducer behavior. This is more robust in case of an

uncertain behavior of the controlled system. Signal noise, frequency

response, velocity of amplitude change, etc. are known as parameter

of a measurement for an undisturbed system, a large overview of

different methods for fault detection as well as diagnosis is given in

[8] or [9]. In contrast to the most methods like parametric ARMA

[10], spectrum/wavelett analysis [11], etc., our method does not re-

quire a specific model. For our individual signal analysis we compare

single time series of measurements with faultless references samples

(sensor’s fingerprint) what can be done by statistical methods.

III. PARAMETRIC/NON-PARAMETRIC TEST METHODS

Statistical tests can be divided into parametric and non-parametric

methods [12]. Parametric test make specific assumptions with regard

to one or more population parameters that characterize the underlying

distribution(s) the test is employed for. In general parametric tests

provide a more powerful analysis than analogue non-parametric tests

but this advantage can be negated if one or more of its assumptions

are violated.

Since we are not interested in dealing with different probability

distributions but rather in comparing independent samples of an

unknown distribution, non-parametric tests are always a good choice.

One sample from an undisturbed measurement is used as a reference

sample. We compare online a window of the last n measured samples

with this reference. The test methods based on the assumption of a

null hypothesis, for instance the equality of the distribution of the

two samples. The output of the test is a p-value that indicates the

probability of a valid null hypothesis. The tests we selected for further

investigations in fault detection are:

1) Ansari-Bradley Test: tests the null hypothesis that the scale

parameter of the distributions from which two samples were

drawn are equal

2) Fligner’s Test: tests the null hypothesis that all input samples

are from populations with equal variances [13]

3) Kolmogorov-Smirnov two-sided Test: test for the null hypoth-

esis that two independent samples are drawn from the same

continuous distribution.

4) Mann-Whitney U Test: tests the null hypothesis for the equality

of medians in two samples

An important advantage of the mentioned tests we used is that they

allow to compare samples of different sizes. In the following sections

we describe the selection and optimization process of a statistical test

based on a careful analysis of the sensor system.

IV. SENSOR SYSTEM AND EXPERIMENTAL SETUP

A. Setup

Infrared distance sensors of the Sharp GP series are commonly

used in robotic and mechatronic applications for environment de-

tection due to the small measurement beams and low energy con-

sumption. Sensors of the GP series determine the distance of an
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Fig. 3. Measurement Setup containing a robot manipulator, an extraneous light source, and the distance sensor system

object up to 500 cm by triangulation and output an analogue voltage

level or a digital switching output. The relation between distance and

voltage is ambiguous (for distances smaller than 10 cm) and non-

linear. Disadvantages of the sensor systems are the interference of

the measurement by extraneous light and a dependency on a very

stable power supply.

Fig. 4. GP2D120 Infrared sensor, left-hand light emitter, right-hand light
detector

The used GP2D120 sensors [14] depicted in Fig. 4 possess a

refresh rate of approx. 40 ms and monitors distances from 10 cm
to 80 cm with a resulting sensor output from 2.7 to 0.1 V. For our

validation we combined three GP2D120 sensors which are assembled

on a solid structure and connected to a Data Acquisition System.

It consisted of a PCMCIA measurement card DAQ 6032 and a

connection board BNC 2110 [15] produced by National Instruments.

The system included a 16-bit analogue-digital converter. The fault

detection was implemented in a Python script. For a reproducible

obstacle movement a robot manipulator moved as shown in Fig. 3 a

white board into the sensor beam. The measurement was disturbed by

fluorescent tube which position was constant for all measurements.

B. Sensor Reference Measurements

Based on this experimental setup we analyzed the distribution of

the measurements for constant distances. Fig. 5 shows the influence

of the obstacle distance on the distribution of 10000 measurements

by different colors. The contained smaller diagram points out the

distribution for a distance of 15 cm and presents it in a histogram

manner. Obviously the noise level, represented by the width of the

distribution, increases with higher distances. The distribution shape

varies from asymmetrical to a symmetrical distribution.
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Fig. 5. Distribution of a GP2D120 sensor outputs for different object
distances

The disturbances due to extraneous light are depicted in Fig. 2.

The blue, solid reference line corresponds to the median of all

distributions in Fig. 5. For simplification, this characteristic lines

based on the median x.50, the upper x.75 and lower quartile x.25 in

each point were approximated by exponential polynomial functions

{f.25(v), f.50(v), f.75(v)}, while v means the voltage value. The

divergence of approximation and reference measurements was smaller

than 1.8 mm.



C. Determining the Probability Distribution

Related to our assumption, that the measurement noise cannot

be characterized by a common probability distribution function, we

checked a huge amount of data samples against different probability

distributions. Modern computation makes it quite simple to do this.

For the sake of generality we checked our measurement samples with

the one-sample Kolmogorov-Smirnov test against all 81 continuous

distributions contained in the Python SciPy.stats package [16]. Be-

sides Gaussian, Exponential, Log-Normal or the Weibull distribution

it also contains not very common ones such as the Nakagami or

Rayleigh distribution which are used in communication theory. For

a sufficient statement about the distributions of our measurements

we checked more than 40 samples with at least 10000 values and

afterwards averaged the results. The top five of those averaged results

are presented with D and p-values in Tab. I. The D value denotes for

the Kolmogorov-Smirnov test the largest absolute difference between

the cumulative observed distribution and the cumulative distribution

expected on the basis of the hypothesized distribution. As we can

easily see, even if we take a significance criterion with α = .01 into

account, we have to reject all of the tested distributions.

TABLE I
AVERAGED RESULTS OF THE TOP FIVE TESTED PROBABILITY

DISTRIBUTIONS

Range Distribution p-value D

1. Fisk .008225 .030894
2. Frechet Right Sided .007979 .100676
3. Johnson SB .007874 .450270
4. Generalized gamma .005787 .637735
5. Minimum Weibull .005725 .102094

For future work it is noticeable, that the measurement noise cannot

be modeled by a normal distribution. Smoothing or the very common

prediction algorithms for fault tolerance purposes based on a Kalman-

Filter are not applicable here.

In this case the best and even more general approach is to

utilize non-parametric tests to be able to compare the equality of

a measurement sample with a reference sample.

V. SELECTION AND OPTIMISATION OF A NON-PARAMETRIC TEST

Like mentioned in Sec. III, non-parametric tests have a lot of

advantages and like for the most statistical tests a null hypothesis is

expected, which has to be rejected if the calculated p-value is under

some given bound. In our application the p-value can be reinterpreted

as an indicator of disturbance, a high p-value means no or less

disturbance in contrast to a lower value.

The properties an ideal test should own are enumerated below:

1) Reliability: small amount of false positives and false negatives

2) Low computational costs: a small reference sample and small

sliding window

3) Short response time: short delay between the occurrence of a

fault and its detection

4) Sharp distinction: huge distance between the p-value of dis-

turbed and undisturbed measurements

In the following section we give an explanation on how we created

a standardized reference sample on the basis of our measurements.

Afterwards we examine the behavior of different non-parametric tests

for varying sizes of the sliding window and the reference sample.

Those values will be determined in the following evaluation step as

well as the classification quality and speed.

A. Determining a common Reference Sample

To be independent from any probability distribution, we worked

only with samples. The difficulty now was to determine the appro-

priate reference sample for all sensor measurements. As shown in

Fig. 5, with increasing distance the voltage values decrease and the

variance grows.

Because of small variations of the signal noise in our sensor

setup, we generated a separate reference sample for every sensor.

This may be traced to the fact that each sensor is characterized by

individual noise behavior and limited precision of the measurement

setup especially the analogue-digital converter.

As illustrated in Fig. 5 we took u = 29 undisturbed measure-

ment samples with different distances. Related to standardizing of a

Gaussian distribution [12] we shifted each sample by subtracting the

median x.50 and divided it by the interquartile range (lower quartile

x.25, upper quartile x.75). In some literature the measurement range

is used as a scale parameter instead of the interquartile range [17].

But in some of our measurements there were extreme outliers so that

in this case it was better to use the more stable interquartile range:

Zi =
Xi − x.50i

x.75i − x.25i
, i = 1 . . . u

All u standardised samples were joined per sensor to a common

sample Z. For a calculation of an optimized reference sample Zref

all elements of the common sample Z were sorted and divided into

m groups with equal length (like a histogram generation). Afterwards

the medians of every group were used as the standardized reference

sample. By means of obtained equations from the polynomial ap-

proximation for the median and quartiles for different voltage values

(see Sec. IV-B) we were able to move and spread our new reference

sample according to every measured voltage (v). By this way we

overcome the discrete distributions for u distance/voltage values.

Xv = ZRef · (f.75(v)− f.25(v)) + f.50(v)

The idea of this approach was to get somehow closer to one-sample

tests, because our cleaned reference sample should highly correspond

to the unknown reference probability distribution and should therefore

produce better results.

B. Sliding Window Size

In a first examination of the four previously mentioned non-

parametric tests we had to make a decision about the size of the

sliding window (number of the last n measured values). Hence,

for every test a varying sliding window (5 ≤ n ≤ 1000) of

measurements was compared offline with different sizes of reference

samples (5 ≤ m ≤ 1000). Every non-parametric test was performed

500 times with every size configuration, once with clean and once

with disturbed measurements, and for different distances between

sensors and obstacle, all p-values were recorded.

Fig. 6 shows an example of the average p-values of disturbed

and undisturbed measurements calculated with the Ansari-Bradley

test and the Kolmogorov-Smirnov test for measurements with a

distance of 60 cm between sensor and obstacle. The axis of ordinates

defines the granularity of the reference sample whereas the abscissa

determines the size of the sliding window. Bright areas mark a

probability of an acceptance of the null hypothesis, while dark regions

mean a rejection of the assumption.

It is easy to see that these tests show a different reliability

in classification for different size configurations. According to the

graphical analysis we decided to use a threshold value of .33 for the
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Fig. 6. The Heatmaps show the averaged p-values at different size
configurations (bright areas: close to 1., dark areas: p-values lower than .33)
for the Ansari-Bradley test: (a) and (b); Kolmogorov-Smirnov test: (c) and
(d)

classification that means a p-value lower than this threshold indicates

a disturbance and a higher one indicates an undisturbed measurement.

In general it is more common to use a threshold like .05 or even

lower to reject the null hypothesis, but with the decision to use .33
as threshold we could even decrease the size of the sliding window

to 75 values for all tests. For all tests this value was sufficient

enough to classify disturbed from undisturbed measurements with

an appropriate reference sample size. A bigger window and a lower

threshold may increase the quality of classification but would also

decrease the speed. For a sliding window size of 75 values in our

system setup, disturbed measurements should be identified within a

maximum of 3 s (one measurement per 40 ms).

C. Determining Reference Sample Size using Quality Criteria

During this evaluation step we tried to determine the optimum ref-

erence sample size for every test and also tried to compare the quality

of classification between disturbed and undisturbed measurements.

Therefore we used three common measures for the performance of

classification [18]. In the following tp denotes the amount of true

positives, fn the amount of false negatives and fp means for the

false positives.

1) Precision can be seen as a measure of exactness or fidelity,

Precision =
tp

tp+ fn

2) whereas Recall is a measure of completeness

Recall =
tp

tp+ fp

3) both measures can be combined with a harmonic mean, which

is called the F-Score

F-Score = 2 · Precision ·Recall
Precision + Recall

For the classification task we randomly generated a test sequence

out of disturbed and undisturbed measurements, those samples were

combined alternatingly, whereas the length of every subsequence

amounts to 75 measurement values (big enough to completely fill

the sliding window). In total the test sequence consisted of 5000
randomly selected samples. Every non-parametric test was applied

to this generated sequence with an increasing reference sample size,

whereby a calculated p-value lower than or equal to .33 indicated a

disturbed measurement and a higher p-value indicated no disturbance.

The number of correct and incorrect classifications was recorded, so

that the measures described above could be computed. Regarding the

measured F-Scores for every test and the reference sample size in

Fig. 7 it is obvious that the Fligner’s test with a reference sample

size of 90 measurement values showed the best classification quality

which unfortunately decreases with a growing reference sample size.

In contrast to this the F-Scores of the Ansari-Bradley test and the

Mann-Whitney U test remained constant after a certain value, in

case of the Ansari-Bradley test after 140 and in case of the Mann-

Whitney U test after 180 reference values. The Kolmogorov-Smirnov

test initially produced the slowest but also a continuous increase of

the F-Score. After a reference sample size of 1600 this trend changed

so that no F-Score higher than 0.579 was produced. An overview of
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the best results (highest F-Score) of every test is given in Tab. II

including the reference sample size (Ref.) the averaged speed which

is necessary for a test to identify disturbance (Speed1 stands for the

averaged amount of values and Speed2 for the averaged time).

As we can see in Tab. II, the Fligner’s test was the “overall” winner

in our setup. This test did not only reach the highest F-Score, Recall
and Precision but also required the smallest amount of reference

values, only 90. In addition, this test reacted faster to disturbance

than the others, with an average response time of 1.8 s.

D. Response Behavior

A better view on different response behavior is given in Fig. 8

where the Fligner’s test and the Mann-Whitney U test can be



TABLE II
EVALUATION RESULTS FOR THE NON-PARAMETRIC TESTS

Test Ref. Recall Precision F-Score Speed1 Speed2

Ansari-Bradley 140 .726 .636 .678 58 2.32 s
Fligner’s 90 .752 .707 .729 45 1.80 s
Kolmo.-Smirnov 1600 .607 .554 .579 70 2.80 s
Mann-Whitney U 180 .529 .458 .491 n.d. n.d.

compared. For this purpose, we run different calculations according

to the previous evaluation, but with test sequences consisting of

longer successions of disturbed and undisturbed measurement values,

actually 125 values (or 5.0 s). The size of the sliding window was

75 and the sizes of the reference sample for every test were the same

as the one determined (see Tab. II).
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Fig. 8. Response (upper, lower quartile and median of p-values) of the
best and worst non-parametric test for different distances between sensor and
obstacle (see Fig. 2), with starting disturbance at 5 s. The red line marks the
behavior of an ideal test, while the dashed line marks the limit p-value of
.33.

Fig. 8(a) and 8(b) show the typical response (with upper, lower

quartile and median p-value) of the Fligner’s test for disturbed and

undisturbed measurements at a distance of 10 cm and of the Mann-

Whitney U test at 60 cm (compare with Fig. 2). It shows that

the Fligner’s test was able to clearly distinguish between disturbed

and undisturbed measurements, even if there was no real faulty

measurement at 10 cm. In contrast to this, the Mann-Whitney U

test showed only a slight difference between the calculated p-values

for disturbed and undisturbed measurement values, unfortunately this

difference seems to be too small for classification, despite of the huge

measurement fault at 60 cm. In contrast the Fligner’s test was able

to detect faulty measurement at 60 cm with a high confidence.

VI. RESULTS

In this paper we presented a general concept of fault detection for

external disturbances. We used an exemplary scenario with extraneous

light disturbance for a prototypical implementation and identification

of an appropriate statistical test. According to the enumeration in

Sec. V the Fligner’s test showed the best response behavior and

detection quality according to an optimized parameter set. The gener-

ality of this approach can be adapted to other sources of interference

too. Moreover, due to usage of non-parametric statistical tests the

presented method is not bound to a specific probability distribution,

the only thing that is required is a sample from an undisturbed

measurement. Another benefit of the method we presented is that

it is possible to detect disturbed measurements even under a slow

and continuous increase of external disturbances.

Currently we are working on the extension of the presented fault

detection method in the following directions:

• A more detailed classification scheme that differs between

typical noise behavior related to smoke, fire, fog, temperature,

drops on the lens, etc. and offers an extend perception of the

environment. In this way a simple distance sensor becomes a

multi-modal sensor.

• Our implementation has problems to cope fast movements of

the obstacle. The integration of a mathematical model and a

tracking algorithm should help to handle fast moving objects.

• For a “real” smart sensor we want to implement our methods to

an 8-bit micro-controller system.

• For a detection of processing and communication faults we have

to design a concept that integrates multi-sensor measurements.

For this purpose, model based detection methods should be used

in connection with classification and decision units.
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