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Abstract—Acquisition and processing of sensor data has to cope with
measurement uncertainties and complex failure modes. Additionally,
multiple sensor types and modalities may be used to improve reliability of
environment perception. Our work aims at providing an architecture for
fault-tolerant sensors and offering a uniform interface to the application.
In the paper, we present our fault-tolerant virtual sensor concept that is
based on combining model-based estimation and redundant sensor data.
To illustrate and evaluate our concept we simulate a mobile robot in
an instrumented environment which integrates several smart position
sensors. By using a mathematical model to evaluate sensor data we
achieve a more reliable position estimation. The paper presents results
of the fusion process and discusses methods for generalization.

Index Terms—Abstract sensors, fault-tolerance, data fusion, intelligent
sensors

I. INTRODUCTION

Autonomous robots rely to a large extent on a robust and reliable
perception of the conditions in their physical environment. Sensors
perform this perception of the real world. Two fundamentally differ-
ent worlds meet at the sensor interface: the real world, characterized
by continuous time and continuous valued phenomenon, and on the
other side of the sensor interface, the discrete world of a computer,
a quantized model of time and a discrete approximation of real-
world data. Additionally, the sensor itself may exhibit a sophisticated
behaviour when converting the energy of the physical process to the
representation, which can be handled in a digital computer. Kopetz
at al. [1] speak about (real-time) entities in the real world and the
respective (real-time) images represented in a computer.

Usually, once available in binary form, the rt-images are treated
like normal time-value entities of the computer. Schemes that deal
with fault-tolerance in a sensor-based system often start at that point
and use replicated digital data derived from multiple sensors for some
form of comparison and voting scheme. These approaches rely on a
couple of important assumptions:

Firstly, they assume that replication is possible at all. In many cases
like ultrasound distance meters, laser-scanners or other active sensing
system this is not easily feasible beside the fact that it is costly.

Secondly, it is assumed that the replicated sensors deliver data
within a more or less small range and that faulty sensors can be
detected in the form of outliers that substantially exceed the prede-
fined margins. Unfortunately, sensors sometimes have an inherently
noisy output and complex failure modes [2]. Hence, distinguishing
between a good or faulty behaviour is not as easy when considering
just a single sensor value.

Thirdly, it is assumed that all sensor values are available at the same
time. However, due to the specific sampling characteristics of a raw
sensor, this assumption may not be valid and sensor values may not
be accessible at arbitrary points in time [3]. Therefore, they have to be
represented in form of some state variables that always constitute the
last valid measurement. This state-variable can be accessed whenever
the system needs to do so, but of course the temporal validity have to
be concerned. In a way, this represents a temporal decoupling between
the conversion process and the internal computations. Those three

points - mathematical replication, temporal decoupling fault detection
and handling - have to be considered by smart sensor model.

In our paper, we strive for exploiting an analytical model of the
environment for validating sensor readings. We propose to build a
hierarchy of sensor abstractions that compare the information coming
from some raw sensor with the expected value derived from virtual
sensors based on continuous analytical models. In this way we try
to bridge the gap between the discrete and the continuous world and
also have some means to detect sensor failures and distinguish them
from noise and temporarily incorrect readings. The contribution of the
paper is a generic model of such a fault-tolerant sensor architecture
and an evaluation of the benefits.

II. RELATED WORK

During the last decade a large body of research has been estab-
lished in the area of distributed preprocessing of raw sensor data.
This work strives to hide the complex and individually very diverse
behaviour of different sensors and sensor types. Hence, a broad
spectrum of mechanisms has been devised for preprocessing sensor
data. The different developments aim to one or more of the following
main purposes:

a) Fault tolerance: Many authors like [3], [4] aim at fault
tolerant distributed measurement systems that react to different sensor
or communication faults in a flexible way. Fault tolerance can be
reached by sensor and/or mathematical redundancy. Concepts and
algorithms depend on the knowledge about the faults and fault
probability.

b) Reducing measurement uncertainty: The modules provide a
adaptable fusion or filter algorithm to reduce measurement uncertain-
ties, e.g. [5]. Most of the presented work like [6] assumes a unique
measurement and sensor type.

c) Programming abstraction: A common interface and pro-
gramming abstraction makes the concept applicable in a large number
of application scenarios [5], [7]. Some implementations offer a
specific configuration language for rapid developments [8] or try
to support a high level database query interface [9] based on the
combination of different sensor types.

d) Context information: Some authors discuss the need of
enriching sensor data with context attributes during the first filter
and monitor step. Such additional information could be a sensor ID,
timestamps, an uncertainty function of the output, validity states of
the sensor, sensor position etc. [10]

e) Assignment optimisation: In conjunction with energy effi-
ciency in Wireless Sensor Networks (WSN), [11] tries to optimize
the assignment of filter and fusion tasks to individual nodes.

In the following paragraphs we compare the basic terms and
concepts.

1) Abstract Sensors: Marzullo [3] defines an abstract sensor as
one that consumes the output of a physical transformation process
(concrete sensor) and calculates a validity interval. He assumes a
continuous uniform distributed sensor measurement. A fusion unit
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Fig. 1. Marzullos Fault Tolerant Sensor Fusion

receives the results of n abstract sensors and utilizes the redundant
validity intervals to distinguish between faulty abstract sensors and
correct working abstract sensors. Prasad et. al. [12] and other authors
implement the role of abstract sensors in the same way, but vary
the error detection scheme. Fig. 1 illustrates the general fusion
scheme. The abstract sensor is defined by two properties: Firstly,
the knowledge about the sensor’s physical behaviour is encapsulated
in the abstract sensor and secondly it provides an enriched and
application related output interface.

2) Virtual Sensors / Soft-Sensors / Property Estimators: Intro-
ducing this classification is based on the fact that quite often the
respective physical environment cannot be measured by concrete
sensor [7] directly. Therefore, a virtual sensor combines different
physical values - pressure and volume for example - to calculate
the application relevant unit, e.g. a temperature. In extreme temper-
ature scenarios a concrete temperature sensor may not be available.
Another reason could be the precision or the duration of the direct
physical measurement in relation to the virtual state acquisition of
the application running in the digital computer. Virtual or soft-
sensors, as introduced in [13], are used in industrial applications
in the context of Model Predictive Control (MPC) [14] since 20
years. Bose et al. [9] enhance the traditional definition of virtual
sensors and define a number of subclasses for different hierarchical
ordered purposes. The first level singleton virtual sensor accepts only
individual measurements and assigns sensor position, sensor ID etc.
A basic virtual sensor combines multiple singleton sensors of the
same type and provides a better reliability. A derived virtual sensor
integrates different basic sensors and provides abstract queries.

3) Logical Sensors: Henderson et al. propose a hierarchically
applicable fusion/filter units and call them Logical Sensors [15], [16].
They developed a complete tool-chain for logical sensors description,
configuration and code generation. An important goal was the support
of a user by a Logical Sensor Specification Language aiming at error
detection, diagnosis and recovery. Henderson emphasizes the adapt-
ability of Logical Sensors. The suggested sensor selection mechanism
is capable to compensate missing individual sensor measurements by
redundant readings.

III. FAULT TOLERANT FUSION STRUCTURE

Our approach integrates the abstract sensor model of Marzullo in
a flexible virtual sensor model for dynamic fusion scenarios. Unlike
the abstract sensor idea of Marzullo that obtains real measurements
of concrete sensors (see Fig. 1) we propose additionally to exploit
the global results of the fusion engine in individual abstract sensors.
The global virtual results are the outcome of calculating a fusion
result based on all available abstract sensor outputs. Inside an abstract
sensor the global virtual result is transformed in an appropriable
structure.

The general structure of our fault-tolerant sensor framework is
depicted in Fig. 2. Considering the application scenario in Fig. 4,

a couple of diverse concrete sensors are used to obtain the primary
actual position data. The raw data is then merged in the abstract
sensor with the expected position data derived from the mathematical
model and the outputs of the previous global position estimation
of the fusion engine. This procedure is detailed in the subsequent
section.

Concrete and abstract sensors as well as the fusion engine are
integrated in a virtual sensor. Recursively, this virtual this virtual
sensor could be combined with others to a new virtual sensor of a
higher abstraction. Fig. 2 illustrates the interaction of the different
modules.

A. Concrete sensor

Concrete sensors are transducers representing the interface of a
digital system to the environment. A concrete sensor captures and
transforms physical values to a digital representation. This conversion
process is subject to many uncertainties due to the sensor’s physical
characteristics that cannot be captured by simple redundancy schemes
in the digital part of the system.
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Fig. 2. Extended Fault Tolerant Sensor Fusion Framework

B. Abstract sensors

Abstract sensors consume the measurements of a single concrete
sensor (or sensor array of a unique type). They produce an estimate
of the current state by applying a form of analytic redundancy.
Additionally, the abstract sensor consumes the previous results of
the fusion engine and scaling it to the new point in time according to
a system and environment model. Thus abstract sensors provide an
improved perception of the current environment. An abstract sensor
also constitutes a uniform interface for further dissemination of the
preprocessed sensor data e.g. in a subsequent fusion node of the
current virtual sensor.

The structure of an abstract sensor is depicted in Fig. 3. As
shown in Fig. 2 the abstract sensor obtains real measurements and
the virtual results of the global fusion. For error detection the
measurements are compared against an expected input interval that is
either defined by the sensor’s specifications or by an application using
some knowledge about the environment. For example, measurements
of longer distances made by infrared sensors are not considered
due to their very low reliability. This information is contained in
the attributes associated to the sensor data. In a second step the
noise spectrum of the measurements is checked by stochastic tests.
A sensor fault leading e.g. to an approximately constant sensor
output can be detected by testing the deviation from an expected
probability distribution. The main elements of the abstract sensor
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Fig. 3. Abstract sensor structure

are the state estimation and the smoothing algorithm. To ensure
a high probability of correct error detection and to smooth the
measurements, a mathematical model of the observed process is used,
which is defined in the process data sheet. We use this analytic,
mathematically founded redundancy to increase the robustness of
the abstract sensor. A broad field of methods and algorithms for
this purpose were developed. Depending on the application, the
developer has to choose an appropriate model of the observed system.
For measurements that are disturbed by Gaussian noise only, a
Kalman filter can be integrated. More general assumptions about
the process and sensor uncertainties and noise may result in using a
Bayesian filter unit. For less demanding requirements or systems with
substantial performance and memory constraints, simple exponential
smoothing or weighted average functions may be sufficient.

Each abstract sensor calculates and transmits its estimation at the
fusion point in time. This knowledge is specified in the electronic
description of the appropriate virtual sensor and used for the config-
uration of an assigned abstract sensor. When this point is reached, the
new state estimation is calculated and an interval check validates the
result. The abstract sensor puts the sensor data into an appropriate
format and adds attributes like timestamp and confidence. An error
manager continuously monitors the system and may trigger a mode
change on detecting an irregular situation.

C. Virtual sensor

Virtual sensors combine a number of abstract sensors and a fusion
engine. The fusion engine integrate the “measurements” of all abstract
sensors fed by multiple concrete sensors of potentially different type.
Due to the synchronisation of all local estimations a large number
of fusion algorithms can be adopted. A virtual sensor is defined
by an electronic data sheet similar to [17], [18] which contains
the appropriate abstract sensor configurations, fusion period and the
fusion algorithm.

Virtual sensors can be executed on one of the sensor nodes
or on independent hardware. In an environment where the sensor
infrastructure may change dynamically, virtual sensors have to adapt
to a varying number and diverse properties of the included abstract
sensors. A selection algorithm excludes abstract sensors if they
exhibit a high degree of uncertainty.

IV. SIMULATION SCENARIO

Let us assume, that a mobile robot drives along a line up to 140
cm and comes back afterwards as sketched in Fig. 4. The velocity
of the robot is defined by a sine wave with a maximum speed of 40
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Fig. 4. Mobile Robot Localisation Scenario

cm/s and additional noise modelled by a Gaussian distribution. This
process is observed by 3 different position sensors: an Ultrasound
sensor, a Laser scanner and a Camera system. Fig. 4 illustrates the
setup and the defined operating ranges of each sensor system by
dashed lines or triangles.

All three sensors produce a periodic output of the robot position.
The position data is superimposed by a sensor specific constant
Gaussian noise. Table I summarizes these parameters. As expected,
the measurements of the ultrasound system are more likely subject
to measurement uncertainties than the camera output. The assumed
amount of noise and its distribution as well as additional disturbance
factors are based on a previous experience and evaluation with the
respective sensor types.

TABLE I
SENSOR SPECIFICATION

Name Period Range Deviation σ
US sensor 0.05s 0 - 110cm 10.0cm

Laser 0.05s 0 - 140cm 2.0cm
Camera 0.10s 70 - 140cm 0.5cm

The output of such simulated sensors are depicted in Fig. 5 to 7.
Each sensor captures the “real” robot movement (dashed (blue) line)
according to the range (marked by the darker (red) shaded area) by
a noisy measurement (solid (green) line).

The behaviour of the laser sensor, depicted in Fig. 6, is disturbed
by two additional factors. Due to the physical measurement principles
additional outliers are possible, whose probability and amplitude are
controlled by two uniform distributions. The peaks superimposed to
the measurement illustrate this fact. Beside the measurement range



of each system, that defines a static limit of each sensor, sensor
failures like complete crashes are possible. The laser scanner failed
4.2 seconds after the measurements start and from this moment it
transfers “0” to its abstract sensor.

The fusion process operates with a period of 0.1 seconds. As
described in section III all abstract sensors check their observation
state at this point in time and calculate a position, referring to a
certain point in time, a deviation estimation and a validity value.
Fig. 7 clearly shows the effect of a delay caused by the sensor period.
The processing time of the camera delays the measurement. This fact
has to be considered and encapsulated in the abstract sensor. Hence,
an appropriate synchronisation that allows a precise identification of
the measurement time is necessary for any assignment of estimation
and measurement. In this first implementation we are not concerned
with problems of clock synchronization and assume a global time
for all participants. Future work will cope with a realistic uncertainty
margin of global timestamps.
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Fig. 5. Ultra sonic measurements with a limited observation range
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Fig. 6. Laser Measurements with outliers and sensor crash at 4.2 s
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Fig. 7. Camera based localisation of the robot

A. System Model

As described for example in [19] a noise acceleration model is used
in each abstract sensor for smoothing and estimation. The manoeuvre
model of the robot movement is defined for two state variables -
position and velocity x(t) = [p ṗ]T - in a discrete time system

x (tk+1) =

[
1 ∆T
0 1

]
x (tk) + v (tk) (1)

where ∆T is the sampling interval of the sensor or the temporal
distance from the last sensor measurement to the current estimation.
Variable v (tk) represents a zero-mean white Gaussian process noise
with the covariance

cov {v (tk)} =

[
∆T 3/3 ∆T 2/2
∆T 2/2 ∆T

]
q (2)

The Kalman filter produces good results for q = 2 in relation to the
simulated movement.

Of course, the model does not fit to the non-linear sine wave based
“real” robot motion. For the concrete scenario we had to find a more
sophisticated model. We do not aim at perfectly adapted mathematical
description of the process. We want to show, that a quite general
model can be used in an abstract sensor with good results.

The observation model for the sensors is defined by

y (tk) =
[

1 0
]
x (tk) + w (tk) (3)

where w is a zero-mean white Gaussian process with the covariance

cov {w (tk)} = Ri (4)

The initial state of the system is assumed to x(t) = [0 0]T for all
system variations.

B. Fusion engine algorithm

The fusion engine in the virtual sensors combines all abstract sen-
sor results by a simple weighted average algorithm. The weights are
derived from the uncertainty of a measurement which is determined
in the covariance Qn of the estimation of the nth abstract sensor.
The algorithm proposed in [20] allows a successive combination of a
variable number of abstract sensor estimation vectors xn to x̂n with
a common covariance Q̂n .

x̂n = x̂n−1 + Q̂n−1

[
Q̂n−1 + Qn

]−1

(xn − x̂n−1) (5)
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Fig. 8. Abstract Ultra-Sonic sensor results without virtual measurements

The current covariance Q̂n is calculated successively too.

Q̂n = Q̂n−1 − Q̂n−1

[
Q̂n−1 + Qn

]−1

Q̂n−1 (6)

Precondition of this algorithm is a Gaussian distribution for all
measurements. The equation depends on the actual configuration and
has to be adapted at each fusion step. For example, if sensor 1 and
3 are working correctly we need two iterations of the central fusion.

C. Implementation

The scenario was implemented in Matlab/Simulink. A continu-
ously simulated block provides the “true” robot movement. The
position and velocity output is transformed according to the sensor
specification by the 3 simulated sensors in a discrete simulation.
Fig. 5 to 7 show the measurements up to 10 seconds. The dedicated
abstract sensors smooth the disturbed measurements and calculate an
estimation of the position at each fusion step. The results of each
independent abstract sensor are transmitted to the fusion engine that
merges the estimations according to their uncertainty. The feedback
loop transmits the knowledge of the current global estimation to all
abstract sensors.

Sensor types, errors and specific behaviours are defined and con-
trolled by Matlab scripts, this structure allows flexible and automated
test cases.

D. Results

The Simulink Model mentioned above was validated in two ways:
with and without considering of the current global fusion result by the
abstract sensors. The benefit of incorporating the global estimation
can be seen by comparing of Fig. 8 and Fig. 9. The dashed blue line
represents the real movement of the mobile system. The blue crosses
mark the estimation based on a valid measurement (see Fig. 5). The
first 2.5 seconds of the scenario are characterized by a transient
oscillation of the system, afterwards the filter works steady.

When the robot reaches the limit of the observable area the algo-
rithm cannot use real measurements for correcting the estimations.
If the robot returns and enters the observation area again, the filter
has to recognize that the model based calculation was wrong. It
needs some time (until second 7 in the diagram) for stabilizing
the state estimation. To overcome this problem, we include the
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Fig. 9. Abstract Ultra-Sonic Sensor Results with virtual measurements

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Error [cm]

E
rr

or
Pr

ob
ab

ili
ty

Central Fusion with a Kalman Filter
Track Fusion without virtual sensor results

Track Fusion with virtual sensor results

Fig. 10. Cumulative Error Probability

global estimation, that supply each abstract sensor with the recent

commonly perceived position and velocity estimation x̂(t) =
[
p̂ ˙̂p
]T

of the fusion engine. Because the individual abstract sensor knows
now the current estimation at each fusion point it can process the
restarted measurements without any strong oscillation. Fig. 9 shows
this situation in the interval between the seconds six and seven.
The behaviour of the abstract sensor close to the point where the
observation resumes has a strong impact on the difference between
real position of the robot and the estimated one. Fig. 10 shows
the cumulative error probability for both variants and an optimal
estimation. For example, the probability of an error smaller than 5 cm
is around 90 percent for the system using the global estimation. An
implementation without this knowledge shows a lower probability
to produce an error smaller than 5cm (around 75 percent). The
example clearly shows an increased position error without virtual
measurements. To highlight the benefit of our approach, we compare
to a centralised fusion scan-to-track approach. All measurements are
processed in the central fusion node. This fusion mode represented



by a dashed line in Fig. 10 possesses an optimal result and the lowest
probability to obtain larger estimation errors. But the centralised
approach requires a global knowledge of all details about the sensor
configurations - observation areas, variances etc. and all sensor
measurements have to be received. Hence, the complete centralised
fusion wastes a lot of communication bandwidth. The abstract sensor
including virtual measurements produces estimations near to the
optimal error level but without the communication overhead.

The track-to-track fusion implementation with and without global
knowledge (dotted red and dashed magenta line) encapsulates the
sensor information and avoids those transmission. Only the current
standard deviation has to be attached to each measurement. Especially
for a high number of fast sensors the communication effort decreases
in relation to a centralised fusion approach. The advantage of the
integration of the global estimation as mentioned above is illustrated
by a faster convergence to one and is closer to the optimal result
(dashed line). The maximum error for the system with virtual
measurements is 10.1 cm and for the implementation without this
feature we get an error of 19.2 cm. All approaches seem to produce
a similar number of estimations close to the real state. Around 12
percent of all estimations posses an error of 0.5 cm.

V. CONCLUSION AND FUTURE WORK

We have shown that our approach using an abstract sensor system
with embedded in a virtual sensor is capable of improving the sensor
characteristics in the presence of noise and failures. We argued that
the feedback of virtual measurements to the abstract sensor improve
global result. Due to the distributed organisation, this approach is able
to handle failed sensors, limited operation areas, noisy measurements
and different sensor periods in a flexible way. Furthermore, the results
are very close to a purely centralised fusion that produces optimal
results at much higher costs. We believe that adding an analytic model
in the proposed architecture will considerably improve the reliability
of smart sensors and also will be a viable approach for resource
constraint embedded systems in future.

Currently we are working on the extension of the presented scheme
in the following directions:

• Including communication delays: At the moment we do not
consider communication delays in our system. However, due
to the distributed nature of our sensor infrastructure, we will
need to include these delays as a systematic error.

• Introducing Electronic Data sheets: The “data sheets” of sensors
integrated in our scenario so far are simple Matlab structures. A
more general solution are presented in [17] and [21]. Based on
the XML scheme described models of the abstract sensor should
be generated automatically.

• Exploiting real hardware: The current implementation is a sim-
ulation only. The Matlab/Simulink environment offers a code
generation tool-chain for embedded devices. We work on the
transfer of abstract sensor concept to real hardware in a next
step. This will also proof that the concept is viable in resource
constraint sensor nodes.

• Adding a selection process: The fusion algorithm does not assess
the importance of the available sensor data. Very uncertain
estimations of an abstract sensor will be excluded by a selection
scheme from subsequent fusion steps.
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