
Using COSMIC – A real world case study combining virtual and
real sensors

Michael Schulze and Sebastian Zug
Otto-von-Guericke University
Faculty of Computer Science

Department of Distributed Systems (IVS)
Universitätsplatz 2
D-39106 Magdeburg

{mschulze, zug}@ivs.cs.uni-magdeburg.de

Abstract

The cooperation of distributed nodes in sensor
networks forms a dynamic structure of informa-
tion providers and information consumers termed as
sources and sinks. Often, the used nodes differ by
the available performance, network capabilities, oper-
ating system, applications etc. although, all of them
have to be integrated in an appropriate network struc-
ture. Hence, a middleware is necessary to provide a
common communication interface for the network in
the whole system to cover the heterogeneity. To en-
able the integration on different platforms and into
different systems the COSMIC middleware itself is
designed flexibly and adaptively.

In this paper we present a cross platform case
study, which shows the information exchange via
COSMIC between micro-controllers and PCs on dif-
ferent network types by C or C++ applications and
Matlab/Simulink. The case study illustrates, apart
from other features, the possibility for an experimen-
tal setup combining virtual and real sensors/actuators
in the sense of hardware in the loop scenarios.

1 Introduction

Complex mechatronic systems like cars, mobile
platforms etc. join a large number of embedded sen-
sor/actuator modules which individually or combined
make information available, support calculations and
data exchange or influence their environment actively.
These systems are currently limited in their imple-
mentations and behaviour by a predefined structure
of functionalities, interfaces and information sources.
Additional interaction with other dynamically ap-
pearing components of an intelligent environment are
neither intended nor possible. However, only if an
application can use all available possibilities of its

environment, its tasks will be optimally completed.
Hence, for a distributed approach of data aggregation,
analysis and the resulting interactions a middleware
is necessary.

The role of the middleware in an embedded net-
work is manifold: Firstly, as argued above, it has to
hide the different addressing and routing mechanisms
of the various physical sub-networks. All applications
should use a common communication interface. Sec-
ondly, as the underlying networks often have different
quality properties, it must provide means to handle
this. Additionally, the middleware should support
dynamic network configuration issues like adding or
omitting components without reconfiguring all sub-
nets completely. Therefore the chair of Embedded
Systems and Operating Systems developed an event-
based Publish/Subscribe middleware termed COS-
MIC (COoperating SMart devICes).

In this paper, we describe a case study based on
an experimental setup using COSMIC to illustrate
the potential of a common communication interface
for the development of embedded systems. The paper
is structured as follows: In section 2 we briefly intro-
duce the concept of COSMIC. Section 3 describes the
experimental platform, the application structure and
analysis options and challenges. The conclusion and
future remarks are summarised in section 4.

2 COSMIC

The COSMIC middleware described in [3, 4] of-
fers an event-based communication model accord-
ing to the publisher/subscriber concept. COSMIC
is especially designed to allow cooperation between
smart sensors and actuators on different hardware
platforms ranging from 8-bit micro-controller up to
32-bit PC/Workstations and interacting over a broad
variety of communication media like Controller Area
Network (CAN) [8],ZigBee [9], TCP/IP to name a



few.
In COSMIC an event is a programming abstrac-

tion and the carrier of the exchanged information. A
COSMIC event consists of three different parts:

• a subject, represented by a unique identifier
(UID) that describes the content,

• the content or payload itself for instance the
value of a distance measurement and

• additional attributes (e.g. sensor position, con-
text, quality) which are optional.

Events may arise in two different ways . Firstly, an
event is spontaneously generated by the hardware be-
cause of a detection on a sensor interface. This means
the physical environment is the stimulus of an event.
Secondly, an event is periodically initiated by a clock
to sense a change of a variable or of a state within
the system.

Beside events COSMIC uses event channels as ab-
straction for event transfers. An event channel has
the same subject as the corresponding event. The
event is published by pushing it to the according event
channel. In case of subscription, the occurrence of an
event is notified to the application by the event chan-
nel. The programming abstraction event channel is
introduced mainly to map the UID of an event to
specific network addresses and therefore it hides the
heterogeneity of the different network architectures
by providing a global addressing scheme. Further-
more the event channel is used for network resource
allocation - for instance a part of the bandwidth. De-
pending on temporal constraints or the importance
of the event, the event is classified into three different
quality levels which are hard real-time (HRT), soft
real-time (SRT) and none real-time (NRT).

In COSMIC all events are handled by the event
channel handler (ECH) which is part of the event
layer (EL). The EL- marked by a filled circle in figure
1- is the interface to application level. Consequently,
the publisher uses the EL to send events to event
channels and on the other hand the EL provides the
subscriber with notification and supports it by read-
ing of events from event channels.

COSMIC

AVR Linux
PC

Windows
PC

TCP/IPCAN ZigBee

Hardware

SensorsSensorsSensor

GatewayNetworks Gateway

AVR

Sensor

ECH

Figure 1. Current network structure

A possible implementation of the network struc-
ture with various hardware platforms as well as com-

munication media is shown in figure 1. To allow
information exchange between publisher and sub-
scriber over network boundaries, the networks are
connected by gateways. Currently, implementations
of COSMIC for Atmel AVR micro-controllers, Mo-
torola HC08, Siemens C167, Linux and Windows were
realized which support the communication via CAN
and TCP/IP.

The COSMIC middleware is implemented as a
family [6] to achieve flexibility, adaptability and de-
pendability. The implementation for the AVR micro-
controller is an example of such a member of that
family. The common functionality of the family is
an intrinsic part of each member regardless of the
platform where COSMIC is instantiated. Then the
platform-specific functionality is only part of the rele-
vant family member. Moreover, the design as a family
allows a fine-grain selection of the required function-
ality necessary to spare the constrained resources on
the embedded system. For example to deal with the
limited memory (e.g. few kilobytes in sensor nodes),
the software should only provide the functions actu-
ally needed by the application. In order to reach this
goal, the functionality of the middleware is a collec-
tion of configurable components and functions. De-
sign decisions about the required properties are de-
ferred as long as possible and often determined by
application needs.

Apart from the functional properties, the encap-
sulation of non-functional requirements - like de-
pendability issues and real-time properties - need a
separate treatment. These requirements - termed
crosscutting concerns - are often fundamental sys-
tem policies and refer to issues as robustness, fault-
tolerance and real-time. Since crosscutting, quality
features may apply to multiple functions and it is im-
possible to implement them as independent encap-
sulated entities. However, this would restrict the
above-mentioned freedom of selection and adapta-
tion. Aspect-oriented programming (AOP) seems to
be a suitable possibility to deal with crosscutting
concerns [5]. AOP allows separating the functional
middleware components and non-functional compo-
nents called aspects. Aspects are woven into the mid-
dleware during build time. Thus there is no extra
runtime overhead to dynamically introduce these as-
pects.

3 Case Study: Interoperable network

3.1 Hardware description
As test environment for our software we use a de-

velopment platform consisting of 4 nodes connected
via a Controller Area Network (CAN). Each con-
troller can be equipped with additional interfaces
(sensor connection, ZigBee board, serial communica-
tion adapter) and is programmed separately or jointly

2



using CAN very comfortably. One of the nodes in-
cludes a LED array for visualization. For simulation
of failures, each controller can be switched off individ-
ually. Therefore, tests for a dynamically changeable
network structure are possible. As depicted in fig-
ure 2, two sensors are integrated, i.e. a temperature
and a distance sensor as representation of real sensor
data. PCs can be integrated in the CAN network as
well as being connected with each other via TCP/IP.

The micro-controllers run our PURE operating
system and the PC works under Linux (in near fu-
ture under Xenomai - areal-time Linux extension [1])
or Windows. The communication is handled by COS-
MIC.

Figure 2. Development platform

As actuators, several mobile robots can be inte-
grated in the network.

3.2 Software structure
The test environment demonstrates the flexibility

of the distributed approach in two scenarios

1. ”Real” sensors produce information which is con-
sumed by other participants for data logging, vi-
sualization and data fusion.

2. Virtual sensors - like a PC - publish logged or
calculated data instead of measured values.

The subscriber cannot differentiate between these two
channel sources. Hence, the seamless interchangeabil-
ity provides modern development methods like Hard-
ware and Software in the Loop.

For the first case, our distance sensor periodically
captures a voltage value as representation of the dis-
tance between sensor and an obstacle . This informa-
tion is published on the CAN, and node 3 in figure 3
reflects the events by an LED array. The Linux PC
works in two ways. Firstly, it acts as a gateway for the
connection of CAN and TCP/IP. Secondly, a small C
application runs, which is subscribed for the distance
channel. It calculates a distance in [cm] by the volt-
age value and logs all values at the same time. The
use of Xenomai will offer real-time functionalities in
this context. In Matlab/Simulink a median filter and
a graphical user interface is used for a comfortable vi-
sualization of the sensor data. Further developments
for data analysis, fusion and visualization will exploit

the manifold number of toolboxes for Rapid Prototyp-
ing. In order to provide real-time applications such
implemented models can be transferred and used by
code generation tools for different platforms.

In the second scenario, sensor node 2 is switched
off. Logged or calculated data are propagated by a
Linux application or from Matlab/Simulink. Node 3
depicts the value as in the first scenario. This means
if a mobile robot logs all information about its en-
vironment once, the replayed data can be used for
instance in reproducible examinations of navigation
or control algorithms .

Gateway
Linux PC

Matlab Application
Windows PC

CAN-Bus TCP/IP

Experimental Platform

1

2

3

4

Distance 
Sensor

Temperature
Sensor

LED array

Figure 3. Scenario software scheme

4 Conclusion and Future Remarks

The simple demonstration setup illustrates the
practical possibilities of a distributed system with a
transparent communication via middleware.

1. A transparent and defined uniform interface sup-
ports application developers considerably. The
design and implementation of distributed embed-
ded systems can be accelerated by concentration
on the application.

2. The dynamic adaptability of the system on run-
time reacts to the appearance and disappearance
of components caused by communication prob-
lems.

3. Exchangeable data sources and sinks simplify ex-
periments combining real components and vir-
tual modules. Hence, the test scenarios can
use predefined reproducible information gener-
ated by a simulation first and validate the results
by real measurement data.

4. The monitoring of the data transfer by estab-
lished engineering programs supports Rapid Pro-
totyping development for data aggregation, fu-
sion and interpretation.

Point 1 in this enumeration is based on manifold
versions of COSMIC. Hence, a family of COSMIC

3



and appropriate operating systems are necessary for
different hardware environments.

The current COSMIC implementation offers non-
real-time communication only. For further extensions
a time synchronisation will be included to offer real-
time event channels. Therefore first drafts of the syn-
chronisation algorithm presented in [2] reach average
time deviations of 6µs. This synchronisation is fun-
damental for more complex dynamic data fusion al-
gorithms.

For an adaptability of the network mentioned
in point 2 and 3 two aspects have to be consid-
ered. Firstly, each channel should provide infor-
mation about its events like sensor type, measuring
ranges, noise performance etc. Therefore [7] inte-
grates functionalities for electronic data sheets and
establishes appropriate service discovery functions in
COSMIC. Secondly, intelligence for the information
selection has to be designed for data sinks.

Point 4 is aimed at an advanced integration of
Matlab/Simulink toolboxes for a flexible and dynamic
data fusion.

As a more interactive test platform, we will use
”Q” - a quad drive robot 4 - for further steps. Q repre-
sents the distributed approach very consequently. It
consists of four independently steerable driving units,
each monitored by a micro-controller and a number of
infrared sensors. Additional gyroscopes and compass
modules can be integrated. The network is connected
by a CAN.

Figure 4. Mobile robot Q

The sophisticated mechanical drive system of Q offers
movements with many degrees of freedom (e.g. mov-
ing and rotating simultaneously). Only with exten-
sive communication, distributed controlling and flexi-
ble interaction of all modules tasks - ”Driving through
a door without collision” - can be completed. Using
this in experimental setups, virtual sensors (smart
bumpers, ultrasonic etc.) can simulate obstacles or
disturbances for testing control algorithms. So the
real environment with a robot system can be super-
imposed by virtual elements. After testing, the sub-

scribers of the virtual environment are switched off
and the robot works correctly without any changes
in software. Complex moving patterns, path plan-
ning and so on can therefore be tested without the
danger of physical damage or increased mechanical
stress.

References

[1] Xenomai: Real-time framework for linux.
[2] M. Gergeleit and H. Streich. Implementing a dis-

tributed high-resolution real-time clock using the can-
bus. In Proceedings of the 1st International CAN-
Conference. Mainz, Germany, 1994.

[3] J. Kaiser and C. Brudna. A publisher/subscriber ar-
chitecture supporting interoperability of the can-bus
and the internet. In 2002 IEEE International Work-
shop on Factory Communication Systems, Väesteras,
Schweden, August 28–30 2002.

[4] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira.
COSMIC: A middleware for event-based interaction
on CAN. In 9th IEEE International Conference
on Emerging Technologies and Factory Automation
(ETFA 2003), Lisbon, Portugal, September 2003.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Aksit and S. Matsuoka,
editors, Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP ’97), vol-
ume 1241 of Lecture Notes in Computer Science, pages
220–242. Springer-Verlag, June 1997.

[6] D. L. Parnas. On the design and development of pro-
gram families. IEEE Transactions on Software Engi-
neering, SE-2(1):1–9, March 1976.

[7] H. Piontek and J. Kaiser. Self-describing devices in
cosmic. 2004.

[8] Robert Bosch GmbH. CAN Specification Version 2.0.
1991.

[9] ZigBee Alliance. ZigBee Specification - IEEE
802.15.4. 2003.

4


