
Methods for configuration and composition of adaptable
system software

Extended Abstract

Michael Schulze
Otto-von-Guericke-Universit -at Magdeburg

Faculty of Computer Science
Department of Distributed Systems (IVS)

Universit -atsplatz 2
D-39106 Magdeburg, Germany

mschulze@cs.uni-magdeburg.de

Our known daily environment is subjected by important
changes. The environment is more and more equipped with
electronical devices becoming smarter. However, they are
mostly not interlinked and therewith the next logical de-
velopment step is from single smart artefacts to networked
devices, whereas the sum enables more than the part. There-
fore, new possibilities arise like smart homes, habitat moni-
toring, emergency warning systems to list a few only. How-
ever, the smart environment, consisting of sensors and ac-
tuators, has to be aware of the context defined by the sur-
rounding physical world and the challenge is to enable pre-
dictable operation under a constantly changing environment
and open and dynamic cooperation.
Related to the task of the individually devices, different
hardware is used ranging from 8 Bit microcontroller to 32
Bit control systems. The heterogeneity concerns not only
the CPU but a broad variety of communication media have
to be provided also. Obviously, development of application-
oriented, easy usable and adaptable systems software (e.g.
Operating System Kernel, Middleware) is a challenge even
though several systems providing at least an operating sys-
tem. Other systems like some embedded microcontrollers
which are not equipped with an operating system have to
be provided with an at least very thin hardware abstraction
layer how our PURE (Portable Universal Runtime Execu-
tive [1]) operating system family it is.
To overcome the differences in communication abstractions
on operating systems (Linux/Windows on PC and PURE
on microcontroller) our publish/subscribe based middleware
COSMIC [3] is used. COSMIC provides a unique communi-
cation interface and hides the local peculiarities of the oper-
ating system and therewith the location of the application
can be chosen freely. A migration of applications between
platforms is enabled.
In general, building system software for such heterogeneous
system networks as it is envisaged requires a flexible and
adaptive approach to meet the largely different requirements
resulting from the diversity of hardware platforms, perfor-
mance requirements, energy constraints and memory size.
Additionally, the resources (e.g CPU time, RAM/Flash us-
age) needed by the fundamental software should be minimal.
Clearly, the amount of resources is tightly related to the
functional and quality properties of such software. Thus, the
only promising way to achieve minimal resource consump-

tion is to restrict the functionality to just those components
that are absolutely needed by the application. Some steps
in this direction were already made and other are ongoing.
My research interests has three major objectives:

• Firstly, identifing and structuring of the necessary func-
tional and non-functional requirements,

• secondly developing a family of suitable programming
abstractions and

• thirdly providing an adequate framework by which the
system software can be tailored and configured accord-
ing to the specific application needs.

Determining functional and non-functional requirements for
a broad variety of applications isn’t easy and often the re-
quirements are intermixed or they are not explicit. As an
example, real-time behaviour is a requirement and is appar-
ently non-functional. However, real-time has also a func-
tional part and can be realised in different kinds. On the
other side, functional requirements of applications can be
e.g. analog-digital-converter device, multi threading or com-
munication facilities.
The abilities of our system software are structured in fea-
ture models [4, 2]. The models are used also to configure the
system software by selecting some features. Thereby, appli-
cation requirements are mapped to features, and elected fea-
tures called feature set describing the tailored system soft-
ware consisting of operating system and middleware.
We assume it is necessary to design the system software
OS-Kernel as well as Middleware as a family [6] to achieve
flexibility, adaptability and dependability. For example to
deal with the limited memory (e.g. few kilobytes in sensor
nodes) the software should provide only the functions actu-
ally needed by the application. In order to reach this goal,
the functionality of the software has to be presented as a
collection of configurable components and functions. Design
decisions about the needed properties have to be deferred as
long as possible and determined by application needs.
Using a family approach enables a fine-grained selection and
adaptation of functional requirements. Selection refers to
the common requirements that apply to a certain class of
system components, e.g. the existence of process scheduling,
synchronization and/or real-time communication. Adapta-
tion relates to the specific needs within such a class, for



example non-blocking synchronization primitives or a real-
time scheduling policy. Apart from the functional proper-
ties, the encapsulation of non-functional requirements, like
dependability issues and real-time properties need a sepa-
rate treatment. These requirements, termed crosscutting
concerns, are often fundamental system policies and refer
to issues as robustness, fault-tolerance and real-time. Since
crosscutting quality features may apply to multiple classes
it is impossible to implement them as independent encapsu-
lated entities because this would restrict the above-mentioned
freedom of selection and adaptation. Aspect-oriented pro-
gramming (AOP) seems to be a suitable possibility to deal
with crosscutting concerns [5]. AOP allows separating of
the functional system components and non-functional sys-
tem components called aspects. Aspects are woven into the
system software during build time. Thus there is no extra
runtime overhead to dynamically introduce these aspects.
Clearly, there is the added effort to execute the respective
mechanisms but that has to be executed too, if the cross-
cutting code is intermixed with the component code. There
are many examples in the context of system software about
the benefits of aspects and a component model to configure
such software like synchronization and profiling.
Our testbed of the developed software is a quadratic robot
platform, called Q, on one side and on the other side a sensor
network which will be installed in the near future. On the
corners of Q are mounted microcontrollers contolling two
motors one for direction and one for driving and two infrared
distance sensors for obstacle detection. The microcontrollers
are networked via CAN (Controller Area Network) and a
laptop that is also part of the CAN acting as gateway. The
microcontrollers run our PURE operating system and the
PC works under Linux (in near future under Xenomai a
real-time Linux). The communication is publish/subsribe
and is handled by COSMIC.
The major aim of our working group is to develop suit-
able programming abstractions which provide the needed
requirements and allow code reuse on application level. En-
abling the migration of applications from development sys-
tem to deployment system should be reached as long term
objective.

Keywords
Configuration and Composition, System Software, COSMIC
Middleware, Family-based Design, Feature Models, AOP

1. REFERENCES
[1] D. Beuche, A. Guerrouat, H. Papajewski,

W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk.
On the Development of Object-Oriented Operating
Systems for Deeply Embedded Systems—The PURE
Project. In Proceedings of the 2nd ECOOP Workshop
on Object-Orientation and Operating Systems
(ECOOP-OOOSWS’99), pages 27–31, Lisboa,
Portugal, June 14–18 1999.

[2] D. Beuche, H. Papajewski, and
W. Schröder-Preikschat. Variability Management with
Feature Models. In Proceedings of the Software
Variability Management Workshop, pages 72–83,
University of Groningen, The Netherlands, Feb. 2003.
Technical Report IWI 2003-7-01, Research Institute of
Mathematics and Computing Science.

[3] A. Casimiro, J. Kaiser, and P. Verissimo. An
architectural framework and a middleware for
cooperating smart components. In ACM Computing
Frontiers conference (CF’04), ISCIA, Italy, April 14–16
2004.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, November
1990.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Aksit and
S. Matsuoka, editors, Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP
’97), volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer-Verlag, June 1997.

[6] D. L. Parnas. On the design and development of
program families. IEEE Transactions on Software
Engineering, SE-2(1):1–9, March 1976.


