
J. Kaiser
AOSI
IVS-EOS WS 2011

Distributed
File Systems

J. Kaiser
AOSI
IVS-EOS WS 2011

- Distributing file access across multiple nodes
-  single homogeneous large file system

NFS: Network File System
AFS: Andrew File System

Distributed File Systems

J. Kaiser
AOSI
IVS-EOS WS 2011

- Distributing data over multiple disks
-  higher disk access bandwidth
-  higher reliability

RAID: Reliable Array of Inexpensive Disks

Distributed Disk Systems

J. Kaiser
AOSI
IVS-EOS WS 2011

Distributed File Systems

Models of Remote Access

Client Server Client Server

remote acess model upload/download model

file remains on
server file is moved to client and

returned after read/write

remote execution
of file operations

local execution
of file operations

original file

updated file

J. Kaiser
AOSI
IVS-EOS WS 2011

Distributed File Systems

Local Interface to Distributed File System

Naming and Mounting

Synchronization and Caching

policy mechanism

Issues ?

J. Kaiser
AOSI
IVS-EOS WS 2011

Requirements for Distributed File Systems

Transparencies (access, location, mobilty, performance, scalability)
Concurrent File Update
Replication of Files
Openess (Heterogeneity of OS and Hardware)
Fault-Tolerance
Consistency
Security
Efficiency

J. Kaiser
AOSI
IVS-EOS WS 2011

B. Walker, G. Propek, R. English, C. Kline, and G. Thiel (UCLA)
The LOCUS Distributed Operating System
Proceedings of the Ninth ACM Symposium on Operating Systems
Principles, October 10-13, 1983, pages. 49-70

R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh
The Design and Implementation of the SUN Network File System
Proceedings Usenix Conference, Portland, Oregon 1985

J. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S. Rosenthal, F.D. Smith
Andrew: A distributed personal computing environment
Comm. of the ACM, Vol.29, No. 3, 1986

first
commercial
system

Early milestones in distributed file systems

AFS inspired the development of the "Distributed Computing Environment (DCE)"

D.R. Brownsbridge, L.F. Marshall, B. Randell: "The Newcastle Connection or
UNIXes of the World Unite!", Software-Practice and Experience, Vol.12, 1147-
1162, 1982

J. Kaiser
AOSI
IVS-EOS WS 2011

First Approaches: The Newcastle Connection

J. Kaiser
AOSI
IVS-EOS WS 2011

First Approaches: The Newcastle Connection

Principles:
- Extending the hierachical Unix Naming Scheme by a "Super Root",
- Using RPC to perform remote file access

unix 1 unix 2

/.

EE CS ME

unix 1 unix 2

OvGM

D

/.

F UK

J. Kaiser
AOSI
IVS-EOS WS 2011

Network File Systems

Newcastle connection provides a single name space for files.

Problems with the Newcastle Connection:
No Location transparency
No Replication or Chaching
No Mobility Transparency

J. Kaiser
AOSI
IVS-EOS WS 2011

Network File Service Architecture

•  location transparency

•  migration transparency

•  robustness against client and server faults

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS Client-Server Architectures

system calls

virtual file system

local FS
interface NFS client

RPC client
stub

system calls

virtual file system

local FS
interface NFS server

RPC server
stub

client server

J. Kaiser
AOSI
IVS-EOS WS 2011

Recall (BS I): Modern Unix-Kernel (Vahalia 1996)

support
services

exec
switch

virtual
memory
mgmt.

block
devices

streams

vnode/
vfs-interface

scheduler
framework

a.out
coff

elf

NFS

FFS

RFS

s5fs

timesharing
processes

system
processes

tty-drivers network drivers

tape
drivers

disk
drivers

SVR4

J. Kaiser
AOSI
IVS-EOS WS 2011

Differences to the Unix File System API

Stateless File Server:
no state information about open file
no information about the number and state of clients

 every request must be self-contained.

Benefit: A client or a server crash does not

 require extensive recovery activities.

- no open or close
- operations are idempotent except "create"

J. Kaiser
AOSI
IVS-EOS WS 2011

Flat File Service Operations

Read (FileId, i,n) → Data If l≤ i ≤ Length(File): Reads a sequence of up to n items
- throws BadPosition from a file starting at item i and returns it in Data

Write (FileId, i,n) → Data If l≤ i ≤ Length(File)+1: Writes a sequence of Data to a
- throws BadPosition file starting at item i, extending the file if necessary

Create() → FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes a file from the file store.

GetAttributes(FileId)→ Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes for the file (except owner, type and ACL).

Used by the client module not used by programs at user level file access!

J. Kaiser
AOSI
IVS-EOS WS 2011

Directory Service Operations

Lookup (Dir, Name) → FileId Locates the text name in the directory and returns the respective
- throws NotFound UFID. If Name is not found, an exception is raised.

AddName (Dir, Name, File) If Name is not in the directory, adds (Name, File) to the directory
- throws NameDuplicate and updates the file's attribute record. Throws and exception if

 Name is already in the directory.

UnName (Dir, Name) If Name is in the directory it is removed.
- throws NotFound If Name is not in the directory an exception is raised.

GetNames (Dir, Pattern) → NameSeq Return all the text names in the directory that match the regular

 expresssion Pattern.

J. Kaiser
AOSI
IVS-EOS WS 2011

Network File System Architecture

Client Computer Server Computer

flat file service

directory service

client module
(NFS client)

app.
progr.

app.
progr.

network
conv. file sys.interface

DS interface

flat FS interface

Client-Server architecture using SUN RPC
Flat FS uses Unique File IDs (UFIDs) instead of hierarchical path names
DS associates file text names with Unique File IDs (UFID)

DS retrieves
UFID

2.

client accesses files
via their UFID

4.

3.

DS provides
UFID

client requests UFID
presenting the text name

1.

J. Kaiser
AOSI
IVS-EOS WS 2011

SUN NFS Architecture
Client Computer Server Computer

app.
progr.

app.
progr.

network

virtual file sys. VFS

Unix
 FS

other
 FS

NFS
client

local remote

Unix sys calls

NFS protocol (RPC)

virtual file sys. VFS

Unix
 FS

NFS
server

FS-Id i-node # i-node gen.#
File
Handle

J. Kaiser
AOSI
IVS-EOS WS 2011

FS-Id i-node # i-node gen.# File Handle

NFSv2: 32 Byte
NFSv3: 64 Byte
NFSv4: 128 Byte

File
server

unique in
the system

local
i-node

will be
re-used

sequence
number

ensures
uniqueness

NFS File Handle

The File Handle enables file access to any file in the distributed file system without
looking it up in the name server.

How to obtain a file handle in a remote file system subtree?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

NFS server operations (simplified)

lookup(dirfh, name) -> fh, attr	

 Returns file handle and attributes for the file name in the directory 	

dirfh.	

 	

create(dirfh, name, attr) ->	

 	

 	

newfh, attr	

 Creates a new file name in directory dirfh with attributes attr and	

returns the new file handle and attributes.	

remove(dirfh, name) status	

 Removes file name from directory dirfh.	

getattr(fh) -> attr	

 Returns file attributes of file fh. (Similar to the UNIX stat system 	

call.)	

setattr(fh, attr) -> attr	

 Sets the attributes (mode, user id, group id, size, access time and	

modify time of a file). Setting the size to 0 truncates the file.	

read(fh, offset, count) -> attr, data	

 Returns up to count bytes of data from a file starting at offset.	

Also returns the latest attributes of the file.	

write(fh, offset, count, data) -> attr	

 Writes count bytes of data to a file starting at offset. Returns the	

attributes of the file after the write has taken place.	

rename(dirfh, name, todirfh, toname)	

-> status	

Changes the name of file name in directory dirfh to toname in	

directory to todirfh	

.	

link(newdirfh, newname, dirfh, name)	

 	

-> status	

Creates an entry newname in the directory newdirfh which refers to	

file name in the directory dirfh.	

Continues on next slide ...

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

NFS server operations (simplified)

symlink(newdirfh, newname, string)	

	

-> status	

 Creates an entry newname in the directory newdirfh of type	

symbolic link with the value string. The server does not interpret	

the string but makes a symbolic link file to hold it.	

readlink(fh) -> string	

 Returns the string that is associated with the symbolic link file	

identified by fh.	

mkdir(dirfh, name, attr) -> ���
	

newfh, attr	

Creates a new directory name with attributes attr and returns the	

new file handle and attributes.	

rmdir(dirfh, name) -> status	

 Removes the empty directory name from the parent directory dirfh.	

Fails if the directory is not empty.	

readdir(dirfh, cookie, count) -> ���
	

entries	

Returns up to count bytes of directory entries from the directory	

dirfh. Each entry contains a file name, a file handle, and an opaque	

pointer to the next directory entry, called a cookie. The cookie is	

used in subsequent readdir calls to start reading from the following	

entry. If the value of cookie is 0, reads from the first entry in the	

directory.	

statfs(fh) -> fsstats	

 Returns file system information (such as block size, number of	

free blocks and so on) for the file system containing a file fh.	

J. Kaiser
AOSI
IVS-EOS WS 2011

Naming in Network File Systems

Naming distinguishes between:

- User-Level Names e.g. UNIX path names (structured ns)
- Unique File Identifiers (UFID) System-wide unambiguous number (flat ns)

-  Hierarchical naming system is established using (flat) file
 system UIDs (UFID), and a directory service.

- UFIDs support location transparency.

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS mount service

Mount Service Process: executed on every server
Data Structures:

 Server: etc/exports
 contains names of local FS which may be mounted ext.
 For every file system a list of names of (client) hosts is
 associated which are allowed to mount the FS.

mount request remote mount service
(RPC) < host name, checks whether allowed

 dir name remote,
 path name local>

 returns <IP addr., port #, file handle> VFS

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS mount service

server A server B client

vmunix usr

/

students staff admin
...

university

/

people

...

otto mechthild ernst

nfs

/

users

...

fritz anna ulla

mount
externally

mount
externally

mount point

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS mount service

Hard-Mounted: requesting application-level service blocks until the request
 is serviced. Server crashes and subsequent recovery is
 transparent for the application process.

Soft-Mounted: if the request cannot be serviced, the NFS client module

 signals an error condition to the application.

Soft-Mounting needs a meaningful reaction of the application process. In most
cases the transparency of the hard-mounting is preferred.

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS Server Caching

Standard Unix FS mechanisms
 - buffer cache
 - read ahead
 - delayed write
 - sync (periods of 30 sec)

Additionally: Two options for write (NFS version 3)

 1.) Data from clients is written to the buffer cache AND the disk
 (write through). ⇒ Data is persistent when RPC returns.
 2.) Data will be held in the cache only. Explicit commit-operation makes
 data persistent. Default mode for Standard NFS clients. Commit
 is issued when closing a file.

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS Client Caching

server

clients

Mechanism only approximates
1-Copy-Consistency !

all reads in an interval of
Δt after chaching only go
to the cache. Reads occuring
after that time check the
validity of the copy with the
server. If still valid they may
use it another Δt.

WRITE:
cached locally until a snyc of
the client or if file is closed.

READ:

disk block

(8kb)

+ <tm-server
>

"lease" concept
tc : timestamp last checked
tm : time stamp last modified
Δt : validity interval: 3-30 sec for files

 30-60 sec for dir

(t - tc < Δt) v (tm-client = tm-server)

Validity condition for cache entry at time t:

r/w

r/w

r/w

J. Kaiser
AOSI
IVS-EOS WS 2011

Dealing with shared Files

Unix Semantics: Every operation is instantaneously visible to all processes.

Session Semantics: No changes are visible to other processes until the file is closed.

Immutable files: No updates possible. On update a new file is created.

Transactions: All changes are atomic

J. Kaiser
AOSI
IVS-EOS WS 2011

Locking Files

Operation Description
Lock Create a lock for a range of bytes
Lockt Test whether a conflicting lock has been created
LockU Remove a lock from a range of bytes
Renew Renew the lease on a specified block

J. Kaiser
AOSI
IVS-EOS WS 2011

"Share reservations“ (NFS 4)

requested Current file denial state
access none read write both
read succeed fail succeed fail
write succeed succeed fail fail
both succeed fail fail fail

current Requested file denial state
access stat none read write both
read succeed fail succeed fail
write succeed succeed fail fail
both succeed fail fail fail

weak form of type-specific access request

a client want to change the
access status dynamically
when other clients already
have access under a certain
denial state.

a client tries to open a file
that has a certain denial
status under the a certain
access status

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS Properties

Access Transparency ++
Location Transparency ++
Migration Transparency +-
Scalability +
File Replication +- only read replication
Heterogeneity ++ available for many platforms
Fault-Tolerance + stateless, restricted fault model
Consistency +- "almost" one copy
Security - needs additions (e.g. Cerberos)
Efficiency ++

J. Kaiser
AOSI
IVS-EOS WS 2011

http://www.ietf.org/rfc/rfc3530.txt

Network File System (NFS) version 4 Protocol

J. Kaiser
AOSI
IVS-EOS WS 2011

• NFSv4 introduces state. NFSv4 is a stateful protocol unlike
 NFSv2 or NFSv3.

• NFSv4 introduces file delegation. An NFSv4 server can enable
 an NFSv4 client to access and modify a file in its cache without
 sending any network requests to the server.

• NFSv4 uses compound remote procedure calls(RPCs) to reduce
 network traffic. An NFSv4 client can combine several traditional NFS
 operations (LOOKUP, OPEN, and READ) into a single compound RPC request
 to carry out a complex operation in one network round trip.

• NFSv4 specifies a number of sophisticated security mechanisms
 including Kerberos5 and Access Control Lists.

• NFSv4 can seamlessly coexist with NFSv3 and NFSv2 clients and servers.

New features of NFSv4

J. Kaiser
AOSI
IVS-EOS WS 2011

Compound RPCs in NFS

NFS V3 NFS V4

lookup

client server client server

lookup

read

read

lookup
open
read

lookup

open

read

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS V4 Compound (mount) Request

mount request
header info

J. Kaiser
AOSI
IVS-EOS WS 2011

(mount) Reply

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS V4 setclientid Request

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS V4 setclientid Reply

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS V4 Open Request

J. Kaiser
AOSI
IVS-EOS WS 2011

NFS V4 Open Reply

J. Kaiser
AOSI
IVS-EOS WS 2011

Operation v3 v4 Beschreibung

Create Ja Nein Erstellen einer regulären Datei

Create Nein Ja Erstellen einer irregulären Datei

Link Ja Ja Erstellen einer direkten Verknüpfung zu einer Datei

Symlink Ja Nein Erstellen einer symbolischen Verknüpfung zu einer Datei

Mkdir Ja Nein Erstellen eines Unterverzeichnisses in einem gegebenen Verzeichnis

Mknod Ja Nein Erstellen einer Spezialdatei

Rename Ja Ja Ändern einer Dateibezeichnung

Remove Ja Ja Entfernen einer Datei aus einem Dateisystem

Rmdir Ja Nein Entfernen eines leeren Unterverzeichnisses aus einem Verzeichnis

Open Nein Ja Öffnen einer Datei

Close Nein Ja Schließen einer Datei

Lookup Ja Ja Suchen einer Datei anhand ihrer Bezeichnung

Readdir Ja Ja Lesen der Einträge eines Verzeichnisses

Readlink Ja Ja Auslesen der in einer symbolischen Verknüpfung gespeicherten Pfadangabe

Getattr Ja Ja Auslesen der Attributwerte einer Datei

Setattr Ja Ja Setzen eines oder mehrerer Attributwerte für eine Datei

Read Ja Ja Auslesen der in einer Datei enthaltenen Daten

Write Ja Ja Schreiben von Daten in eine Datei

Tanenbaum, Steen: Verteilte Systeme, Pearson >Studium 2008

J. Kaiser
AOSI
IVS-EOS WS 2011

AFS Andrew File System

Scalability as primary design goal.

As much as possible local accesses to files.

Any accessed file transferred to the client.

Files stored persistently on local disc cache.

Large files are transfered in large chunks (64 kB).

Active notification mechanisms to approximate one-copy consistency.

J. Kaiser
AOSI
IVS-EOS WS 2011

AFS Andrew File System

•  How to find the server that holds the copy of the file?

•  How does AFS obtain control if a client issues an open or close in the
shared file space?

•  Which memory space will be reserved for the cached files?

•  How to ensure that the cached files constitute the most recent version
of the file if more than one client has a copy?

Questions:

J. Kaiser
AOSI
IVS-EOS WS 2011

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

AFS Architecture

Files are organized in migratable "Volumes" (smaller entities compared to file systems in NFS).
Flat File Service, hierarchical view is established by the Venus Processes
Every File has a unique 96-Bit ID (fid). Path names are translated in FIDs by Venus processes.

local persistent
"file caches",
survive crashes
of local system.

Unix kernel traps FS
accesses and redirects
requests to remote files
to a Venus Process.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ���
© Addison-Wesley Publishers 2000 	

venus and vice

J. Kaiser
AOSI
IVS-EOS WS 2011 Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ���

© Addison-Wesley Publishers 2000 	

File name space seen by clients of AFS

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic
links

J. Kaiser
AOSI
IVS-EOS WS 2011 Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ���

© Addison-Wesley Publishers 2000 	

System call interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

J. Kaiser
AOSI
IVS-EOS WS 2011

AFS: file system calls
User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Addison-Wesley Publishers 2000 	

J. Kaiser
AOSI
IVS-EOS WS 2011 Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ���

© Addison-Wesley Publishers 2000 	

The main components of the Vice service interface

Fetch(fid) -> attr, data Returns the attributes (status) and, optionally, the contents of file
identified by the fid and records a callback promise on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a specified
file.

Create() -> fid Creates a new file and records a callback promise on it.
Remove(fid) Deletes the specified file.
SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the

lock may be shared or exclusive. Locks that are not removed
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.
RemoveCallback(fid) Informs server that a Venus process has flushed a file from its

cache.
BreakCallback(fid) This call is made by a Vice server to a Venus process. It cancels

the callback promise on the relevant file.

J. Kaiser
AOSI
IVS-EOS WS 2011

AFS consistency relies on a notification concept. The consistency mechanism is
based on "Callback Promises“ (similar to write invalidate in chaches).

Callbacks are RPCs issued by the VICE server to the respective remote Venus
processes with a Callback Promise Token as parameter. It guarantees that the
VENUS process is notified if a client changed a file.
A Callback Promise Token may have the values:

 - valid
 - cancelled

The Server is responsible to invoke the respective remote Venus process when
a file was modified with the value "cancelled".

A subsequent local "read" or "open" on the client must request a new file copy.

AFS: Basic Consistency Mechanism

J. Kaiser
AOSI
IVS-EOS WS 2011

Replicated position database for volumes
- each server holds a full local copy of the position database

Write-protected replicas
- read-only volumes like /usr/bin or /man are replicared on multiple servers

Transfer of large chuncks of data (64kb)

Caching of parts of the file
-  since version 3 only needed parts of files (64k) are transfered, consistency semantics is
 maintained.

Performance: Standard Benchmark with 18 server nodes
- Server load AFS: 40%
- Server load NFS: 100%

AFS properties

one reason is notification mechanism in AFS compared to time-out in
NFS for consistency maintenance

