
J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Remote Procedure Calls
Layers, Problems and

Variation

AOSI

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Principles of distributed computations
Function shipping initiates computations in a remote processing entity.
Example: Remote Procedure call.

comm.
network

call
proc.

call
proc. P P

P
P

memory

process
Distributed
Processes

Problem: computation bottlenecks, more complex programming model, references.

P

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

transport layer (TCP, UDP), IP

Basic request-reply protocol
marshalling and data representation

RPC and RMI

middleware
layers

applications, services
Programming model+
language
integration

basic support

protocol
layer

device
layer Ethernet,Token-Bus, . . .

The layers of IPC

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

transport layer (TCP, UDP)

UDP: unconnected sockets, single messages
 à datagramm coomunication

TCP: conn. sockets, two-way message streams
 between process pairs.
 à stream communication

Abstractions of the Transport Layer

receive send

OS-abstraction: socket
Protocols: TCP, UDP

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

sockets and ports

process process

How to route a message to a process?
- IP-Adress addresses a computer.
- Port: is associated with a process

Internet-addr.: 144.44.25.222 Internet-addr.: 144.44.25.223

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

socket() creates a new socket of a certain socket type, identified by an integer number, and allocates
system resources to it.

bind() is typically used on the server side, and associates a socket with a socket address structure,
i.e. a specified local port number and IP address.

listen() is used on the server side, and causes a bound TCP socket to enter listening state.
connect() is used on the client side, and assigns a free local port number to a socket. In case of a TCP

socket, it causes an attempt to establish a new TCP connection.
accept() is used on the server side. It accepts a received incoming attempt to create a new TCP

connection from the remote client, and creates a new socket associated with the socket
address pair of this connection.

send() and recv(), or write() and read(), or recvfrom() and sendto(), are used for sending and
receiving data to/from a remote socket.

close() causes the system to release resources allocated to a socket. In case of TCP, the connection
is terminated.

gethostbyname() and gethostbyaddr() are used to resolve host names and addresses.
select() is used to prune a provided list of sockets for those that are ready to read, ready to write or

have errors
poll() is used to check on the state of a socket. The socket can be tested to see if it can be written

to, read from or has errors.

Examples of functions or methods typically provided by the API library]:

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Example: datagram sockets in Unix

s = socket(AF_INET, SOCK_DGRAM, 0)
.
.
bind (s, sender_address)
.
.
.
sento(s, message,L, receiver_address)

s = socket(AF_INET, SOCK_DGRAM, 0)
.
.
bind (s, receiver_address)
.
.
.
amount = recvfrom(s, buffer, from)

socket: system call to create a socket data structure and obtain the resp. descriptor
 AF_INET: communication domain as Internet domain
 SOCK-DGRAM: type of communication: datagram communication
 0: optional specification of the protocol. If “0“ is specified, the protocol is automatically

 selected. Default: UDP for datagram comm., TCP for stream comm.

bind: system call to associate the socket “s“ with a (local) socket address <IP address, port number>.

sento: system call to send a bit stream at memory location "message" of length L via socket “s“ to the specified server

socket "receiver_address".

recfrom: system call to: receive a message from socket “s“ and put it at memory location “buffer“.

 “from“ specifies the pointer to the data structure which contains the sending socket‘s address.
 recvfrom takes the first element from a queue and blocks if the queue is empty.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

import java.net.*;
import java.io.*;
public class UDPClient{
 public static void main(String args[]){

 // args give message contents and destination hostname
 DatagramSocket aSocket = null;
 try {
 aSocket = new DatagramSocket();
 byte [] m = args[0].getBytes();
 InetAddress aHost = InetAddress.getByName(args[1]);
 int serverPort = 6789;
 DatagramPacket request = new DatagramPacket(m, args[0].length(), aHost, serverPort);
 aSocket.send(request);
 byte[] buffer = new byte[1000];
 DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
 aSocket.receive(reply);
 System.out.println("Reply: " + new String(reply.getData()));
 }catch (SocketException e){System.out.println("Socket: " + e.getMessage());
 }catch (IOException e){System.out.println("IO: " + e.getMessage());
 }finally {if(aSocket != null) aSocket.close();}
 }

}

UDP client sends &receives msg
G. Coulouris, J. Dollimore, T. Kindberg: Verteite

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

import java.net.*;
import java.io.*;
public class UDPServer{
 public static void main(String args[]){
 DatagramSocket aSocket = null;

 try{
 aSocket = new DatagramSocket(6789); // create socket at agreed port
 byte[] buffer = new byte[1000];

 while(true){
 DatagramPacket request = new DatagramPacket(buffer, buffer.length);
 aSocket.receive(request);
 DatagramPacket reply = new DatagramPacket(request.getData(),

 request.getLength(), request.getAddress(), request.getPort());
 aSocket.send(reply);
 }

 }catch (SocketException e){System.out.println("Socket: " + e.getMessage());
 }catch (IOException e) {System.out.println("IO: " + e.getMessage());
 }finally {if(aSocket != null) aSocket.close();}

 }
}

UDP server receives requ. and sends reply

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Example: stream sockets in Unix

s = socket(AF_INET, SOCK_STREAM, 0)
.
.
connect (s, server_address)
.
.
.
write(s, message, msg_length)

s = socket(AF_INET, SOCK_STREAM, 0)
.
bind(s, server_address);
listen(s,5);
.
sNew = accept(s, client_address);
.
n = read(sNew, buffer, amount)

SOCK_STREAM: type of communication: stream communication

listen: server waits for a connection request of a client. "5" specifies the max. number of requested connections

 waiting for acceptance.

acccept: system call to accept a new connection and create a new dedicated socket for this connection.

connect: requests a connection with the specified server via the previously specified socket.

read/write: after the connection is established, write and read calls on the sockets can be used to send and receive

 byte streams.
 write forwards the byte stream to the underlying protocol and returns the number of bytes sent successfully.
 read receives a byte stream in the respective buffer and returns the number of received bytes.

Differences to the datagram communication interface:

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

import java.net.*;
import java.io.*;
public class TCPClient {
 public static void main (String args[]) {
 // arguments supply message and hostname
 Socket s = null;

 try{
 int serverPort = 7896;
 s = new Socket(args[1], serverPort);
 DataInputStream in = new DataInputStream(s.getInputStream());
 DataOutputStream out =new DataOutputStream(s.getOutputStream());
 out.writeUTF(args[0]); // UTF is a string encoding see Sn. 4.4
 String data = in.readUTF(); // read a line of data from the stream
 System.out.println("Received: "+ data) ;
 }catch (UnknownHostException e){System.out.println("Socket:"+e.getMessage());
 }catch (EOFException e){System.out.println("EOF:"+e.getMessage());
 }catch (IOException e){System.out.println("readline:"+e.getMessage());
 }finally {if(s!=null) try {s.close();}catch (IOException e){System.out.println("close:"+e.getMessage());}}

 }
}

TCP client side

client establishes connection, sends request and receives reply

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

import java.net.*;
import java.io.*;
public class TCPServer {

 public static void main (String args[]) {
 try{
 int serverPort = 7896; // the server port
 ServerSocket listenSocket = new ServerSocket(serverPort);
 while(true) {
 Socket clientSocket = listenSocket.accept();
 Connection c = new Connection(clientSocket);
 }
 } catch(IOException e) {System.out.println("Listen socket:"+e.getMessage());}
 }

}

TCP server side

server establishes connection for each client

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

class Connection extends Thread {
 DataInputStream in;
 DataOutputStream out;
 Socket clientSocket;
 public Connection (Socket aClientSocket) {
 try {
 clientSocket = aClientSocket;
 in = new DataInputStream(clientSocket.getInputStream());
 out =new DataOutputStream(clientSocket.getOutputStream());
 this.start();
 } catch(IOException e)
 {System.out.println("Connection:"+e.getMessage());}
 }
 public void run(){
 try { // an echo server

 String data = in.readUTF(); // read a line of data from the stream
 out.writeUTF(data);
 } catch (EOFException e){System.out.println("EOF:"+e.getMessage());
 } catch(IOException e) {System.out.println("readline:"+e.getMessage());
 } finally{ try {clientSocket.close(); }catch (IOException e){/*close failed*/}}
 }

}

server indicates request of a client

TCP server side

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services

Programming Model+
Language
Integration

Basic Support

Protocol
Layer

Device
Layer

Ethernet,Token-Bus, . . .

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Request-Reply Communication

doOperation getRequest
selectObject
executeMethod

request message
.
.

wait
.

continue

Client Server

R (request)

send reply reply message

RR (request-reply)

acknowledge message receive & ack.
discard history

RRA (request-reply-ack)

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)	

sends a request message to the remote object and returns the reply. 	

The arguments specify the remote object, the method to be invoked 	

and the arguments of that method.	

	

public byte[] getRequest ();	

acquires a client request via the server port.	

	

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); 	

sends the reply message reply to the client at its Internet address and port.	

Request-Reply Communication

Operations:

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ���
© Addison-Wesley Publishers 2000 	

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

message
structure

remote
object
reference

Request-Reply Communication

messageType	

requestId	

objectReference	

methodId	

arguments	

int (0=Request, 1= Reply)	

int (process specific sequence number)	

RemoteObjectRef	

int or Method	

array of bytes	

Internet address	

 port number	

 time	

 object number	

 interface of 	

remote object	

32 bits	

 32 bits	

 32 bits	

 32 bits	

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Discussion: Fault Model of Request-Reply Communication

If the request-reply primitives are implemented on UDP sockets the
designer has to cope with the following problems:

 Omissions may occur,
 Send order and delivery order may be different.

Detection of lost (request or reply) messages

Mechanism: Timeout in the client

 Request was processed in the server - (reply is late or lost).
 Request was not processed - (request was lost).

Removal of duplicated request messages in the server:
 New request arrives before the old request has been processed (no reply yet).
 New request arrives after the reply was sent.

 Semantics of "doOperation":
 Idempotent operation: server simply (re-) executes operation.
 Non-idempotent operation: server needs to maintain request history.

Removal of duplicated reply messages in the client.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Fault model and failure Semantics

S arbitrary
internal
faults

F

S has the failure semantics F

Problem:
For an application programmer
it would be extremely hard to
deal with arbitrary faults.

Approach:
System masks faults or maps
fault to a class which can be
handeled by a programmer
easily.

observable
 faults

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Fault model and failure Semantics

Fault Class affects: description

fail stop process A process crashes and remains inactive.

 All all participants safely detect this state.

crash process A process crashes and remains inactive.

 Other processes amy not detect this state.

omission channel A message in the output message buffer of

 one process never reaches the input message
 buffer of the other process.

-send om. process A process completes the send but the respective
 message is never written in its send output buffer.

-receive om. process A message is written in the input message buffer
 of a process but never processed.

byzantine process or An arbitrary behaviour of process or channel.

 channel

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Fault model and failure Semantics

fail stop crash omission timing
(performance)

value byzantine

temporal domain only temporal + value domain

masking
mapping

resend, time-out, duplicate msg. recognition and removal,
check sum, replication, majority voting.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Fault model and failure Semantics

Reliable 1-to-1 Communication:

Validity: every message which is sent (queued in the out-buffer of a

 correct process) will eventually be received (queued in the
 in-buffer of an correct process)

Integrity: the message received is identical with the message sent and

 no message is delivered more than once.

Validity and integrity are properties of a channel!

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Fault model and failure Semantics

UDP provides Channels with Omission Faults and doesn't guarantee any order.
TCP provides a Reliable FiFo-Ordered Point-to-Point Connection (Channel)

Mechanisms Effect

sequence numbers assigned to packets FiFo between sender and receiver.

 Allows to detect duplicates.

acknowledge of packets Allows to detect missing packets on the

 sender side and initiates retransmission

Checksum for data segments Allows detection of value failures.

Flow Control Receiver sends expected "window size"

 characterizing the amount of data for
 future transmissions together with ack.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

node 1 node 2 node 3

client
stub/
proxy

server
stub/
skeleton

Remote Procedure Call

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

RPC Semantics

client server
request

msg
X

timeout request
msg

reply
msg

client server
request

msg

timeout

request
msg

reply
msg

X

reply
msg
??

additional mechanisms needed to
deal with failures.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

client server
request

msg

timeout

request
msg

reply
msg

X

reply
msg
??

RPC Semantics

add 5

add 5

return
new value =
old value+10
 ??

add 5 to old value;
return new value;

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

RPC Semantics

client server
request

msg

timeout request
msg

reply
msg

slow server

?

add 5

add 5

add 5 to account;
return new value;

return value =
old value+5

return value =
old value+10

which to select?

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

client server
request

msg

timeout request
msg

reply
msg

server
ignores
request

sequence numbers
to identify request
messages.

RPC Semantics

Options:

idempotent operations

save call history

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Can we achieve exactly once semantics ?

Approximates the semantics of a local procedure call.

A procedure is executed exactly once.

RMI Invocation Semantics

Goal: Transparency of local and remote procedure call

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Wait until the server comes up again. The server sends
replies until the client has received it at least once.

RMI Invocation Semantics

Alternatives?

The client generates an error after a time out. No later
replies are accepted. At most once.

Examples: Java RMI and CORBA

Example: SUN RPC

May be semantics. Used by CORBA for remote method
invocation that doesn‘t deliver results back to the client.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Failures in an RPC

1. Client unable to locate the server

2. Request message lost

3. Server crashes after receiving the request

4 Reply message is lost

5. Client crashes after sending request

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Example
Client sends request to the server to print a text

Server acknowledgement policies:
- Server sends an ack when request is received.
- Additionally, the server sends a completion message:

 either - when text has been sent to printer
 or - when text has been printed successfully

Server crashes, recovers and sends a message that it is up again.

Client reaction policies:
C1: client always re-issues request
C2: client never re-issues request
C3: client only re-issues if it received an ack for the print request
C4: client only re-issues if no ack

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

M: Completion message
P: Print
C: Crash

Possible
Combinations:

M → P → C
M → C (→ P)
P → M → C
P → C (→ M)
C (→ P → M)
C (→ M → P)

 Server policy
 M → P P → M
 MPC MC(P) C PMC PC(M) C
C1 DUP ✔ ✔ DUP DUP ✔
C2 ✔ - - ✔ ✔ -
C3 DUP ✔ - DUP ✔ -
C4 ✔ - ✔ ✔ DUP ✔

 ✔: text printed once
 -: text never printed

Example

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Bottom Line !

1.) Client can never know whether server crashed
before printing

2.) Possibility of independent client and server

crashes radically changes the nature of RPC
and clearly distinguishes single processor
systems from distributed systems.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Orphans !

Client crashes before server reply

Policies:

-  extermination

-  reincarnation

-  expiration

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

repeat " "filter " "execution "invocation "Comments"
request " "duplicates "of remote "semantics"

" " " "procedure"
"
= 0 " "no " "#exec=1" "exactly-once ""
"
= 0 " "no/n.a. " "#excec≤1 "may be " ""
"
≥ 0 " "yes " "#exec≥1" at-least-once"

""
= 0 " "no " #exec≤1 at-most-once ""

RMI Invocation Semantics

very difficult to"
achieve, because of delays"
and faults."

simple, but application"
has to care about the cases"
which did not succeed"

simple, but application"
has to prevent multiple"
exec.+ duplicates"

remote operation may not"
be executed at all. Late
results must be deleted."

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services

Programming Model+
Language
Integration

Basic OS
Support

Protocol
Layer

Device
Layer

Ethernet,Token-Bus, . . .

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Route invocation to the target object.

Convert parameters into a compatible format.
Data Description
Marshalling ->External Data representation

invocation invocation
remote

invocation remote
local

local

local
invocation

invocation
A B

C

D

E
F

Problems to solve

Enforce a well-defined invocation sematics wrt. faults.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Remote {Method Invocation(RMI),Procedure Call (RPC)}

client

client
stub/
Proxy

comm.
module server

stub/
skeleton dispatcher

handle
request-
reply

request

reply

call

return

server

obj. A
obj. B

call

ret.

req.
msg

reply
msg

req.
msg

reply
msg

select
method

provides:
 transp.
 local/remote
 invocation
 format
 compatibility

provides:
 transp.
 local/remote
 invocation
 format
 compatibility

remote
references
module

remote
references
module

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Remote {Method Invocation(RMI),Procedure Call (RPC)}

comm.
module

request

reply

req.
msg

messageType	

requestId	

objectReference	

methodId	

arguments	

Internet address	

 port number	

 time	

 object number	

 interface of 	

remote object	

32 bits	

 32 bits	

 32 bits	

 32 bits	

remote ref – local ref
 (proxy)

local ref -- remote ref
(proxy)

external
reference module

(in the ORB kernel)

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Remote {Method Invocation(RMI),Procedure Call (RPC)}

client

client
stub/
Proxy

server
stub/
skeleton dispatcher

call

return

server

obj. A
obj. B

call

ret.

req.
msg

reply
msg

req.
msg

reply
msg

select
method

provides:
 transp.
 local/remote
 invocation
 format
 compatibility

provides:
 transp.
 local/remote
 invocation
 format
 compatibility

remote
references
module

remote
references
module

req
reply

(in Corba:
Object Adapter)

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

client	

 	

server

proxy	

implementation	

 repository	

 object	

adapter	

ORB	

ORB 	

skeleton	

client	

 program	

interface	

 repository	

Request	

Reply	

 core	

core	

 for A	

 Servant	

 A	

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ���
© Addison-Wesley Publishers 2000 	

Components in the CORBA RMI

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services
Programming Model+
Language
Integration

Basic OS
Support

Protocol
Layer

Device
Layer Ethernet,Token-Bus, . . .

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

External Data Representation

sequence of bytes

message serializiation

de-serialization

objects in (main) memory

Support for RPC and RMI requires for every data type which may be passed
as a parameter or a result:
1. it has to be converted into a "flat" structure (of elementary data types).
2. the elementary data types must be converted to a commonly agreed format.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

External Data Representation

Problems: multiple heterogeneous Hardware and OS Architecture

 little/big endian data representation
 different character encoding (ASCII, Unicode, EBCDIC)

 multiple programming laguages

 different representation and length of data types.

Solutions: Middleware defines common format for data representation and
 Specific middleware versions for hardware/OS-platform conversion.

 not practical for multiple programming languages

 Definition of common data format and bindings to the specific
 language.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

(Middleware-) defined by the respective platform which may run on
Platform Specific heterogeneous hardware and OS.
homogeneous
agree on the same example: XDR, CDR (byte-oriented)
formats and
representations

External Data Representation

Platform Independent independent data representation and description
heterogeneous
agree on a common example: XML (character-oriented)
way to describe the
formats and
representations

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

External Data Representation

T	

y	

p	

e	

 Re	

pr	

e	

s	

e	

n	

ta	

t	

i	

o	

n	

s	

e	

q	

ue	

n	

ce	

 l	

e	

n	

g	

th	

 	

(

u	

n	

si	

g	

n	

ed	

 	

l	

o	

n	

g	

) 	

fo	

ll	

ow	

ed 	

b	

y	

 	

el	

e	

m	

e	

nt	

s	

 	

i	

n 	

o	

r	

d	

e	

r	

s	

t	

ri	

n	

g	

 l	

e	

n	

g	

th	

 	

(

u	

n	

si	

g	

n	

ed	

 	

l	

o	

n	

g	

) 	

fo	

ll	

ow	

ed 	

b	

y	

 	

ch	

a	

ra	

c	

te	

rs 	

i	

n o	

r	

d	

e	

r	

 	

(

ca	

n	

 al	

so	

ca	

n	

 	

h	

av	

e 	

w	

i	

de	

 	

ch	

a	

ra	

c	

te	

rs)	

a	

r	

ra	

y	

 a	

rr	

ay 	

e	

le	

m	

e	

n	

t	

s i	

n	

 	

o	

r	

de	

r (

n	

o l	

en	

g	

t	

h s	

p	

e	

ci	

f	

ie	

d b	

eca	

us	

e 	

i	

t 	

is 	

f	

i	

x	

e	

d	

)	

s	

t	

ru	

ct	

 i	

n t	

he 	

or	

de	

r o	

f	

 	

de	

c	

la	

r	

at	

i	

o	

n o	

f 	

t	

he	

 	

co	

mp	

o	

n	

e	

n	

t	

s	

e	

n	

u	

m	

e	

r	

a	

t	

e	

d	

 u	

n	

s	

i	

g	

n	

e	

d	

 	

l	

o	

n	

g 	

(

t	

h	

e 	

v	

a	

l	

ue	

s a	

re	

 s	

pe	

c	

i	

f	

ie	

d 	

b	

y t	

he	

 	

o	

r	

de	

r d	

ec	

l	

ar	

e	

d	

)	

u	

ni	

o	

n	

 t	

y	

p	

e 	

ta	

g f	

o	

l	

l	

o	

we	

d b	

y 	

t	

h	

e s	

el	

e	

cte	

d m	

e	

mb	

er	

Corba CDR for Constructed Types

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5
"Smit"
"h___"
 6
"Lond"
"on__"
1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string
‘Smith’

length of string
‘London’

unsigned long

External Data Representation (Corba CDR)

CORBA CDR message

struct Person{
 string name;
 string place;
 long year;
};

CORBA IDL
description of the
data structure

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Person 8-byte version # h0 3 int year
java.lang.

String
name:

java.lang.
String
place:

1934 5 Smith 6 London h1

•  class name
•  version number
•  number, type and name of instance variables
•  values of instance variables
•  handles (serialized reference to an object)

public class Person implements Serializable {
 private String name;
 private String place;
 private String year;
 public Person(String aName, String aPlace, String aYear) {
 name= aName;
 place=aPlace;
 year= aYear;
 }

// followed by the methods to access the instance variables
}

External Data Representation (Java)

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

eXternal Data Representation example SUN

const MAX = 1000;	

typedef int FileIdentifier;	

typedef int FilePointer;	

typedef int Length;	

struct Data {	

	

int length;	

	

char buffer[MAX];	

};	

struct writeargs {	

	

FileIdentifier f;	

	

FilePointer position;	

	

Data data;	

};	

struct readargs {	

	

FileIdentifier f;	

	

FilePointer position;	

	

Length length;	

};	

	

program FILEREADWRITE {	

 version VERSION {	

	

void WRITE(writeargs)=1; 	

	

	

Data READ(readargs)=2; 	

	

 }=2;	

} = 9999;	

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

<xs:element name="Event">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="Subject" type="xs:string" />
 <xs:element name="SubjectUID" type="CODESID" />
 <xs:element name="Description" type="xs:string" minOccurs="0" />
 <xs:element ref="DataStructure" />
 <xs:element ref="MayTrigger" minOccurs="0" />
 <xs:element ref="WillTrigger" minOccurs="0" />

 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:simpleType name="CODESID">"
 <xs:restriction base="xs:string">"
 <xs:pattern value="0x[0-9A-Fa-f]{16}"/>"
 </xs:restriction>"
</xs:simpleType>"

External Data Representation (P-independent)

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services

Programming Model+
Language
Integration

Basic OS
Support

Protocol
Layer

Device
Layer

Ethernet,Token-Bus, . . .

