
J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Distributed Shared
Data Storage

AOSI

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Distributed Shared Memory (DSM)

Consistency Models:
 - From strong to weak
 - Protocols

Structure:
 - Orientation, Granularity

Distributed File Systems (DFS)
- General problems of distribution
- Examples:NFS, AFS

Distributed Shared Data Storage

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

No explicit communication by messages is needed.

Programs which run on a single computer will run on a distributed system.

Multiple computational resources increase the perfomance.

Goal: Keep the well known interface of a single computer system

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Principles of distributed computations
Function shipping initiates computations in a remote processing entity.
Example: Remote Procedure call.

comm.
network

call
proc.

call
proc. P P

P
P

memory

process
Distributed
Processes

Problem: computation bottlenecks, more complex programming model, references.

P

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Principles of distributed computations
Data shipping moves the data to allow local computations.
Example: DSM

comm.
network

read

write

read

write

read

write

read

write
P P

P
P

memory

process
Distributed
Shared
Memory

Problem: Performance-Consistency Trade-off
in the presence of concurrency and communcation delays

read

write
P

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Properties of a DSM

Byte-oriented DSM:

 closest to main memory model
 - read and write variables

 distributed demand paging
 - locking of pages (exclusive /shared)
 - problem: false sharing

 needs sophisticated consistency models
 - related to mutual exclusion in central storage systems

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Properties of a DSM

Object-oriented DSM:

 Operation on DSM have higher semantics than read/write

 Access to state variables only via the Object interface

 Semantics is exploited to define consistency rules
 - Examples: Stacks, Double-ended Queues

 Problem of false sharing is reduced

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

 persist- replic. consist. example
 ence cach.

main memory no no 1 RAM
distributed shared memory no yes yes Munin, Ivy, Midway,
file system yes no 1 Unix-FS, NTFS
distributed file system yes yes yes NFS, Andrew, Coda
remote objects no no 1 CORBA
persistent object memory yes no 1 CORBA Pers.Obj.Service
persistent distr. object mem. yes yes yes PerDiS, Khanzana, Clouds,

 Profemo, SpeedOS

Properties of Storage Systems

Storage abstractions: array of bytes, volatile RAM
 persistent file
 object (volatile or persistent)

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

physical
memory

physical
memory

physical
memory

process
accessing
DSM

DSM appears
in the address
space of a process

The abstraction of DSM

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

router/
firewall

to the Internet

LAN

LAN

LAN

?

From a Shared Memory Multiprocessor

to a DSM

can we expect the
same transparency?

what are the trade-offs
between ease of use
and efficiency?

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

process 1

br:= b;
ar:= a
if (ar ≥ br) then
 print ("OK");

process 2

a = a + 1;
b = b + 1;

valid value combinations:
 ar=0, br=0
 ar=1, br=0
 ar=1, br=1

due to message delay
it could happen that : ar=0, br=1

Accessing shared variables in DSM

Is this considered consistent?

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Interleaving Accesses to shared variables in a DSM

at t0 : a=0, b=0

process 1

br:= b;
ar:= a

if (ar ≥ br) then
 print ("OK");

process 2

a = a + 1;
b = b + 1;

r

P1

P2

r(b)
(br=0)

r(a)
(a=0)

w(a)
(a=1)

w(b)
(b=1)

t

t

r(a)
(a=1)

r(b)
(br=1)

r(b)
(b=0)

r

r

r

r
w

w

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Consistency Models

The characterization of a Consistency Model is the answer of the question:

What result can you expect from a read operation on a DSM with respect to (previous)
write operation?

The most actual value which results from the last write operation on the time line. very
strong

very
weak

atomic
sequential
release
entry
....
problem-oriented shared memory (type-specific structure & consistency)

co
ns

is
te

nc
y

m
od

el
s

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Consistency Models

P1
P2
P3
P4

wv1

rv2

wv2 wv3 wv4 wv5

rv3

rv3

rv4

rv4

Strong consistency models:
All write operations are totally ordered and read operations always
return the last value written into memory.

Atomic consistency: Write operations in real-time order. All readers see the write

 operations in the order they were issued on the time-line.

Sequential consistency: Write operations in sequential order i.e. all readers
 see the write operations (on all memory objects) in the same order.

rv5

P. Veríssimo, L. Rodrigues: Distributed Systems for System Architects, Kluwer 2001

rv4

Atomically
consistent

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

P1
P2
P3
P4

wv1

rv1

wv2

rv3

rv3
rv2

rv1

rv1

rv2

P1
P2
P3
P4

rv2

rv3

rv4

rv4 rv5

rv4

Atomically
consistent

Sequentially
consistent

Consistency Models

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Consistency Models

Atomic Consistency is not possible in a (asynchronous) distributed system.

Sequential Consistency can be expressed as follows:

 There is a virtual interleaving for read- and write-operations of all processes
 on a single virtual memory image. Sequentially consistency is given if:
 1.) The program sequence of every individual processor is maintained
 in the interleaving (read and write of the same process appear in the
 order, in which they have been specified).
 2.) Every process reads the value which was most recently written in the
 interleaving of operations.
 3.) The memory operations for the entire DSM have to be considered - not
 only the operations on a single memory location.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

process 1

br:= b;
ar:= a
if (ar ≥ br) then
 print ("OK");

process 2

a = a + 1;
b = b + 1;

valid value combinations:
 ar=0, br=0
 ar=1, br=0
 ar=1, br=1

The case that ar=0, br=1 is excluded
under the sequential consistency model.

Interleaving Accesses to shared variables in a DSM

r

r

r

r
w

w

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Interleaving Accesses to shared variables in a DSM

P1

P2

at t0 : a=0, b=0

r(b)
(br=0)

r (a)
(a=0)

w(a)
(a=1)

r (b)
(b=0)

w (b)
(b=1)

t

t

process 1

br:= b;
ar:= a
if (ar ≥ br) then
 print ("OK");

process 2

a = a + 1;
b = b + 1;

r (a)
(a=1)

r

r

r

w

w
r

r(b)
(br=1)

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Interleaving Accesses to shared variables in a DSM

P1

P2

at t0 : a=0, b=0

r(b)
(br=0)

r(a)
(a=0)

w(a)
(a=1)

w(b)
(b=1)

t

t

process 1

br:= b;
ar:= a

if (ar ≥ br) then
 print ("OK");

process 2

a = a + 1;
b = b + 1;

r(a)
(a=1)

r

r(b)
(br=1)

r(b)
(b=0)

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

P1
P2
P3
P4

wv1

rv1

wv2 wv3

rv3

rv3
rv2

rv1

rv1

rv2

P1
P2
P3
P4

wv1

rv1

wv2
wv3

rv3

rv1

rv1

rv2

rv2

P1
P2
P3
P4

wv1

rv1

wv2

rv3

rv1

rv2

rv2 wv3

rv3

sequentially
consistent

not
sequentially
consistent

Consistency Models

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

w2(x)1 w2(x)2

r1(x)1 r1(x)2

r2(x)1

w2(x)1 w2(x)2

r1(x)1

r2(x)2

r1(x)2

P1

P2

P1

P2

Under the sequential
consistency model all
nodes have the same
view on the sequence
of read and write
operations.

Under the atomic
consistency model all
nodes read the same
value before the next
(in time) write operation
takes place.

Difference between Sequential and Atomic Consistency

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

P1
P2
P3
P4

wv1

rv1

ws1 wv2

rv2

rv1

rv1

rs1

rs1

coherent
but not
consistent

rv2

rs2

rs2

ws2

P1
P2
P3
P4

wv1

rv1

ws1 wv2

rv2

rv1

rv1

rs1

rs1

neither coherent
nor consistent

rv2

rs2

rs2

ws2

Consistency Models

Coherency: Sequential consistency for a single memory location.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Beyond sequential consistency

Approaches to increase efficiency and cost effectiveness of DSM:

 - Exploit knowledge of what is shared data and what is not.
 Only accesses to shared data have to be synchronized

 - Identify a priori known characteristic access pattern.
 Classify data items accordingly and adapt consistency
 overhead.

 - Encapsulate multiple operations on shared data.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Release consistency

Observation:
 accesses of two processes compete if
 - they occur concurrently
 - at least one is a write access

Conclusion:
 - multiple read operations do not compete
 - multiple synchronized operations do not compete because
 concurrency is controlled by synchronization mechanisms.

Approach:
 - divide competing accesses in synchronizing and non-synchronizing
 accesses and let the programmer define critical sections.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Process 1: 	

	
acquireLock();	
 	
 	
// enter critical section	

	
a := a + 1;	

	
b := b + 1;	

	
releaseLock(); 	
 	
 	
// leave critical section	

Process 2: 	

	
acquireLock();	
 	
 	
// enter critical section	

	
print ("The values of a and b are: ", a, b);	

	
releaseLock(); 	
 	
 	
// leave critical section	

Release consistency

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Release consistency

Definition:

 RC1: before a read or write operation can be executed all
 preceding acquire-operations have to be performed.

 RC2: before a release-operation can be performed for another
 process, all read and write operations have to be finished.

 RC3: acquire and release operations are sequentially consistent
 to each other.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Release consistency

By knowing the synchronization constraints when accessing
shared variables, a better efficiency can be obtained without
sacrificing application consistency.

A correctly instrumented program is unable to distinguish between
a release consistent and a sequentially consistent DSM.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Munin - a flexible and adaptable DSM

- allows parameterization of protocols
- distinguishes data types according to synchronization constraints

some Data types:
- read-only
- write shared
- producer-consumer
- migratory
- result
- conventional

some protocol options:
- write update
- write invalidate
- only one process writes, all others read
- data element can be read and modified
 > needs more semantics (e.g. multiple records on page)
- data item is used by a fixed set of processes

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Implementation options

centralized function shipping

clients

data
access
request

so

so: storage object

client

data
access
request

so

so

so

centralized data shipping

old

act

page
migration

server server

so

actual so may be migrated between
clients (who provides location
information?)

so always is in one place --> no consistency problems for the price of low concurrency.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Update options

Assumption: Copies of DSM memory images are distributed over multiple
 process address spaces on multiple nodes.

Concurrent reads: no problem

Concurrent writes:

 write update: all copies are updated with the new value
 write invalidate: all copies are invalidated. New reads require
 to request a new copy of the data items.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

centralized SO replication (read-only)

clients

data
access
request

SO
server

distributed SO replication (read-write)

so-repl.

current

RSO

up-/invalidate upon write

writer only receives a copy of
SO iff all RSOs (Replicated Storage
objects) are invalidated.

RSO RSO clients

data
access
request

sequencer

RSO

up-/invalidate upon write

RSO RSO

Implementation options

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

time

time

a := 7;
b := 7;

if(b=8) then
 print("after");

if(a=7) then
 b := b+1;

...

if(b=a) then
 print("before");

time

updates

Update option: Write-update

Problems: Overhead of a totally ordered multicast protocol if sequential consistency
 is required.

Conclusion: Read operations are cheap, write operations VERY expensive.

All changes are
multicasted to all
nodes which hold the
respective memory
items.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Update option: Write-invalidate

A data item can be either:
- be read by multiple processes
- be written by a single process

Before it can be written, an invalidate is multicasted to all readers.
When having received all invalidation acknowledges, the data is updated.

invalidate

invalidate
acknowledge

write

P1

P2

P3

P4

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Problems and trade-offs in DSM

Granularity affects:
 - amount of data to tranfer
 - interference beetween processes
 - frequency of requests
 - management overhead

False Sharing

Proc. A Proc. B access
conflict

page size

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Thrashing:
 - multiple processes access the same data object
 - write invalidate
 - may be because of real sharing
 - may be because of false sharing

Problems and trade-offs in DSM

define minimum hold time for a data object - Mirage
define usage pattern with appropriate update options - Munin

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Example: sequential consistency and write update
Problems with write-udate

Assumption: -system exploits hardware page protection,

 - rights may be set to none, read-only or read/write

Problem: next write does not generate a page fault! How to detect that a
 multicast has to be performed?

Solution: put process into trace mode and generate a trace exception. Exception
 resets the write access rigth. VERY EXPENSIVE !

Algorithm: on write, 1. a page fault is generated, 2. passed to a page-fault
 handling routine, 3. receives the page and sets appropriate rights,
 4. multicasts the update and completes the write operation.

Optimization: Buffering of write operations and multiple write accesses to a page.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

write invalidate

uses page protection information to enforce consistency:

possible combinations of read and write rights
single writer - no other process will have access
multiple readers - no writer

owner of page (owner (p)) holds the most recent version of the page:
- the (single) writer
- one of the readers

the set of processes which hold a copy is called the "copy set" (copyset (p))

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Pread

1. page fault occurs

2.
page is copied
from owner

if Powner was writer it
retains a read right and
remains owner (because this
is the most recent copy). It
has to handle subsequent
requests.

Powner

3. copyset := copyset ∪ {Pread}

copyset and owner transfer during write invalidate

P reads a DSM page

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Pwrite

1. page fault occurs

Pold owner

4. new status Pwrite is owner
copyset := {Pwrite}

copyset and owner transfer during write invalidate

P writes a DSM page

.............

(old) copy set

2. copy set is invalidated
and set to "no access"

3.
recent copy is transfered
in case Pwrite has not yet
a valid copy.

5. DSM runtime system maps page in the address
space of Pwrite and resumes at the instruction causing the
page fault

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Issues to solve for implementing DSM

Problems:
 1.) Finding the owner of a page
 2. Determining the copy set and where it is stored

Solutions:
 1.) Central Manager
 2.) Multicast (totally ordered)
 3.) Dynamically Distributed Manager
 -build a chain of hints
 -update the hints dynamically

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

Page Owner
no.

Manager

Current ownerFaulting process

1. page no., access (R/W) 2. requestor, page no., access

3. Page

.........

Central manager approach

 Finding the owner of a page

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

B C D

A

E

OwnerOwner

B C D

A

E

Owner

Owner

B C D

A

E

OwnerOwner

initial situation

situation after write
request

situation after read
request

Dynamic distributed manager approach

 Finding the owner of a page

J. Kaiser
AOSI
IVS-EOS Winter Term 2011/12

The
End

