
J. Kaiser
AOSI
IVS-EOS Winter Term 2011

AOSI

Programming
Abstractions for

Distributed Computing

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Programming Abstractions for Distributed Computing

Why ?

Motivating Example:

 Data: Shared Variable
 Operation: Read/Write

Is this the right granularity of data and ops?

Goals:

•  Independent development and evolution
•  Well-defined interfaces and information hiding
•  Larger entities for deployment and distribution
•  Well-defined complex operations

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Programming Abstractions for Distributed Computing

How? Discussion:

 objective granularity benefit

•  Objects information hiding fine design
•  Components deployment fine config
•  Services independance, dynamic coarse runtime
•  Actors object+explicit_sync medium design

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Object: Incarnation of an abstract data type.
Characteristics of o-o: class, inheritance, polymorphism

•  An object is a unit of instantiation; it has a unique identity.
•  An object has state; this state can be persistent state.
•  An object encapsulates its state and behaviour.

Programming models: Object

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Component: encapsulated unit of functionality and deployment that interact with
other components only via well defined interfaces.

- Interfaces: defining sets of operations and the associated data types.
- Receptacles: special (required) interfaces that explicitly define the dependencies
 on other components. On deployment this describes which other components must
 be present.
-  Binding: association between one single interface and one single receptacle.
-  Capsule: container providing the run-time API, e.g. a process

Programming models: Component

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Clemens Szyperski, Component Software, ACM Press/
Addison-Wesley, England, (1998).

 A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third parties.

A component is a unit of independent deployment.
A component is a unit of third-party composition.
A component has no persistent state.

Programming models: Component

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

interface.
way of providing the
component‘s service.

receptacle:
defines dependencies
to other components.

Programming models: Component

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Programming models: TinyOS Component Model

module A"

 interface used"

command!

event!

Module!

Interface!

 interface provided"

module B"

 interface used"

 interface provided"

event handled"

event signaled"

command invoked"

command implemented"

component 1!

component 2!

Interface

Receptacle

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

TimerM!

StdControl! Timer!

Clock!

Module TimerM {!
 provides {!

!interface StdControl!
!interface Timer;!

 }!
use interface Clock as Clock;!
} . . . !

command!

event!

Module!

Interface!

interface Clock {!
 command result_t setRate(char interval, char scale);!
 event result_t fire();!
}!

Programming models: TinyOS Component Model

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

TimerM!

StdControl! Timer!

Clock!

Clock!

HWTimer_Counter!

StdControl! Timer!
configuration TimerC {!
 provides {!
 interface StdControl;!
 interface Timer;!
 }!
}!
!
!
implementation {!
 components TimerM, HWTimer_Counter;!
 StdControl = TimerM.StdControl;!
 Timer = TimerM.Timer;!
 TimerM.Clk à HWTimer_Counter.Clock!
}!
!

TinyOS Configuration:

Programming models: TinyOS Component Model

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Service:

"a mechanism to enable access to one or more capablities, where access is
provided using a prescribed interface and is exercised consistently with the
constraints and policies as specified by the service description." (OASIS)

"a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-
processable format." (W3C)

What is a service?

Programming models: Service

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

-  A service can be used as an independent and self-contained entity.
-  A service is available within a network.
-  Every service has a published interface that is sufficient to use the

service.
-  The use of services is platform and language independent.
-  A service is registered in some directory.
-  Binding to a services is dynamic. At design time of an application

existence of a respective service is not required. It will be discovered
and used dynamically.

Properties of a service

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

An example of a JINI service

Problems:

1.  How to find a service?

2.  How to use a service that you have never used
before?

3.  How to deal with server and communication
crashes?

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

5. Using a Service

4. Lookup

?

2. Join - Service Registration

3. Discovery - Finding Lookup Services

Lookup
Service

Client

site 1 site 2 site 3

network

Service
ID

1. Discovery - Finding Lookup Services

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Lookup
Service

Look-Ahead
Service

Look-
Ahead
Agent

The Demo Scenario: A proactive car-to-car
service

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

The „Hardware“ of the Demo Scenario

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Camera

Jini Lookup Service

Navigation system
- position
- direction
- speed

Jini Lookup Service

Look-Ahead
Service Proxy

Location
Service Proxy

Location
Service Proxy

Display
Service Proxy

Look-Ahead Service Proxy

Display

Location
Service

Location
Service

Display
Service

Camera-
Driver

Java Media
Framework

Look-Ahead
Service

car truck

Location
Service Proxy

Display
Service Proxy

Location
Service Proxy

Ev
en

ts
/L

ea
si

ng
(R

M
I)

Ev
en

ts
/L

ea
si

ng
(R

M
I)

RTP

RMI

User
Agent User

Profile

Navigation system
- position
- direction
- speed

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

A bright future

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

.. components are concurrent objects that communicate via
messaging, rather than abstract data structures that interact via
procedure calls. ... We call them actor-oriented languages....
Actor-oriented languages, like object-oriented languages, are
about modularity of software.

Edward A. Lee, UCB, 2004

The term “actors” was introduced in the 1970’s by Carl Hewitt of MIT to
describe autonomous reasoning agents.

The term evolved through the work of Gul Agha and others to refer to
a family of concurrent models of computation, irrespective of whether
they were being used to realize autonomous reasoning agents.

Programming models: Actors
Actors and Agents

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

•  Actors provide a natural generalization for objects

•  Actors encapsulate both, code and data.

•  Actors differ from sequential objects in that they are units of concurrency.

•  Each Actor executes asynchronously and its operation may overlap with other actors

•  The unification of data abstraction and concurrency is in contrast to language
models where an explicit and independent notion of thread is used to provide
concurrency.

•  Actors free the programmer from having to write explicit synchronization code to
prevent harmful concurrent access to data within an object.

Actors

Gul A. Agha, Prasannaa Thati, Reza Ziaei:
Actors, A Model for Reasoning about Open Distributed Systems, 2001

General Properties:

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

•  Actors have unique and persistent names,

•  Actors provide buffered, asynchronous and fair (messages sent are eventually
received) communication as a primitive.

•  New actors may be created with their own unique and persistent names.

Actor primitives:

- send (a,v): send a messages with content v to actor a;
-  create (b): create a new actor with behaviour b;
-  ready (b): captures local state change.

 - Selects the behaviour to be used for the next message
 - Prepares the actor to accept another message

Actors

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Actors encapsulate a thread
and a state. The interface is
comprised of public methods
which operate on the state.

Actors

Gul A. Agha, Prasannaa Thati, Reza Ziaei:
Actors, A Model for Reasoning about Open Distributed Systems, 2001

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

An actor with local synchronization constraints

Actors

Gul A. Agha, Prasannaa Thati, Reza Ziaei:
Actors, A Model for Reasoning about Open Distributed Systems, 2001

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Actors

Actors are complex, physical, possibly distributed architectural objects that interact
with their surroundings through one or more signal-based boundary objects called
ports.

A port is a physical part of the implementation of an actor that mediates the
interaction of the actor with the outside world. It is an object that implements a
specific interface.

Bran Selic, ObjecTime Limited, Jim Rumbaugh, Rational Software Corporation: "Using UML for Modeling Complex Real-Time
Systems, March 11, 1998

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Actor orientation:
actor name

data (state)

ports

Input data

parameters

 Output data

What flows through
an actor is streams

of data

class name

data

methods

call return

What flows through
an object is

sequential control

Object orientation:

Objects vs. Actors
Edward A. Lee, UCB, 2004

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Sentient Objects

distance
sensors

speed
sensor

accel.
sensor

Drives

visualization

cmd

obstacle
detector

speed
consolidator

speed
controller

A simple control example

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

distance
sensors

odometry
sensor

accel.
sensor

Drive
Contr.

visualization
speed
controller

obstacle
detector

speed
consolidator

cmd

sm.getASpeed
od.get

dc.setSpeed(ns)

v.showSpeed(as)

cmd.getNominalSpeed()

sensor.getDistance {1,.,n} sensor.get{acc, speed}

 "
voidSpeedController::control() {"

"ns = cmd.getNominalSpeed();"
"if (od.get()) {"
" "ns=0;"
"}"
"as=sm.getASpeed();"
"if (as != ns) {"
" "dc1.setSpeed(ns);"
" "dc2.setSpeed(ns);"
"}"
"v.showSpeed(as);"

 "

C++ code of the sequential control flow:

Actors vs. Sequential Objects

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

drive!
cntrl.!

speed!
calc.!

command!

obstacle!
detector!

Command Port:!
!
• set speed!
•  set max_speed!
• set max_acc!
• stop!
• go!
• !
• !
!
Output Port:!
!
• speed!
!
!

speed!
control!

motor
drives

odometry
sensors

distance
sensors

• max_acc!
• low_dist!
• alarm_dist!
• distance!
• acceleration!
!
• !
•!

An autonomous component as a “capsule“!

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

models concurrent flow of information

speed consolidator

Actors

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

event
reception

subject filter

attribute filter

content filter

evaluation
&

event generation

event
dissem

ination

incoming
events outgoing

events

context
filter

appl.
dependant

Sentient Object Structure

Events are typed messages <subject, attr., contents>.
Event channels encapsulate network properties.

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

nominal_speed
distance
sensors

rev.
sensor

accel.
sensor

Drives

visualization
obstacle
detector

speed
consolidator

speed
controller

dist.

dist.

rev/sec

accl.

current_speed

alarm

comb.
dist.

models concurrent flow of information

A simple control example using COSMIC sentient objects

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

voidSpeedController::controlPeriod() {"

"if (as != ns) "
" "publish(speedCh,ns);"
"publish(visSpeedCh,as); }"

 "
voidSpeedController::refresh_as(p_as) {"

"as = p_as; }"
 "
voidSpeedController::refresh_ns(p_ns) {"

"if(!od) ns = p_ns; "
else ns = 0; }"
 "

C++ code of the modified
data flow control program

Actors vs. Sequential Objects

 "
voidSpeedController::control() {"

"ns = cmd.getNominalSpeed();"
"if (od.get()) {"
" "ns=0;"
"}"
"as=sm.getASpeed();"
"if (as != ns) {"
" "dc1.setSpeed(ns);"
" "dc2.setSpeed(ns);"
"}"
"v.showSpeed(as);"

 "

C++ code of the sequential
control flow:

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Actors and Agents

Properies of Agents:

 - Activity: an agent is an actor
 - Automomy: agents behave according a plan
 - Social behaviour: ability to communicate (with humans)
 - Reactivity: an agent reacts on perceived events
 - Proactivity: agents are able to take initiative

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

"Agents are autonomous, computational entitities that can be viewed as
perceiving their environment through sensors and acting upon their
environment through effectors. To say that agents are computational
entities simply means that they physically exist in the form of programs
that run on computing devices. To say that they are autonomous means
that to some extent they have control over their behavior and can act
without the intervention of humans and other systems. Agents pursue
goals or carry out tasks in order to meet their design objectives, and in
general these goals and tasks can be suplementary as well as
conflicting." (Gerhard Weiß)

Actors and Agents

J. Kaiser
AOSI
IVS-EOS Winter Term 2011

Messaging vs. Notification

sender receiver

msg (a, c)

a: address
c: contents

binding sender-receiver
by address at design time

publisher subscriber

event (t, c)

t: topic
c: contents

routing
magic

routing
magic

binding sender-receiver
by topic or contents at run
time

needs more careful examination

