
M68SOSEK

Motorola Microcontroller Families

OSEK

Operating
System

USER’S MANUAL

OSEK
Operating System

USER’S MANUAL

Motorola reserves the right to make changes without further notice to any products
herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product described herein; neither
does it convey any license under its patent rights nor the rights of others. Motorola
products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended
to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment
Opportunity/Affirmative Action Employer.

Legal Notices
iii

The information in this document has been carefully checked and is believed to be
entirely reliable, however, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function or design. Motorola does not assume liability arising
out of the application or use of any product or circuit described herein; neither does
it convey any license under its patent rights or the rights of others.

The software described in this document is furnished under a license agreement.
The software may be used or copied only in accordance with the terms of the
agreement.

© Copyright Motorola, Inc., 1997. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means - graphic, electronic, electrical, mechanical, chemical, including
photocopying, recording in any medium, taping, by any computer or information
storage retrieval systems, etc., without prior permissions in writing from Motorola
Inc.

Permission is granted to reproduce and transmit the Problem Report Form, the
Customer Satisfaction Survey, and the Registration Form to Motorola.

IMPORTANT NOTICE TO USERS

While every effort has been made to ensure the accuracy of all information in this
document, Motorola assumes no liability to any party for any loss or damage
caused by errors or omissions or by statements of any kind in this document, its
updates, supplements, or special editions, whether such errors are omissions or
statements resulting from negligence, accident, or any other cause. Motorola
further assumes no liability arising out of the application or use of any product or
system described herein; nor any liability for incidental or consequential damages
arising from the use of this document. Motorola disclaims all warranties regarding
the information contained herein, whether expressed, implied or statutory,
including implied warranties of merchantability or fitness for a particular purpose.
MOTOROLA

USER’S MANUAL v

TRADEMARKS

Microsoft, MS-DOS and Windows are trademarks of Microsoft.

UNIX is a trademark of AT&T Bell Laboratories.

Cosmic is a trademark of COSMIC Software.

iv
MOTOROLA

vi USER’S MANUAL

Table of Contents
Paragraph Page
Number Title Number
SECTION 1
Overview

SECTION 2
Notation

2.1 Manual Structure..2—1
2.2 Typographical Conventions..2—2
2.3 Definitions, Acronyms and Abbreviations...2—3
2.4 Installation Instructions...2—3
2.4.1 Required Environment..2—3
2.4.2 Installation ...2—4
2.5 Technical Support Information ...2—4

SECTION 3
Operating System Architecture

3.1 Processing Levels ..3—1
3.2 Conformance Classes..3—1
3.3 OSEK OS Overall Architecture ..3—3
3.4 Application Program Interface..3—4

SECTION 4
Task Management

4.1 Task Concept ...4—1
4.2 Task State Model ...4—2
4.2.1 Extended Tasks...4—2
4.2.2 Basic Tasks ...4—4
4.3 Task Activation and Termination..4—5
4.4 Task Properties..4—7
4.5 Task Priorities ..4—7
4.6 Task Related Resources..4—9
4.6.1 Task Configuration Table ..4—9
4.6.2 Task Control Block ..4—10
4.6.2.1 Persistent Node Assignment ...4—11
4.6.3 Task Link Table...4—12
4.6.4 Task Stack...4—13
M68SOSEK Table of Contents MOTOROLA

USER’S MANUAL vii

Table of Contents
Paragraph Page
Number Title Number
4.6.4.1 Stack allocation ...4—13
4.6.4.2 Allocation of fixed stack linked with the task node4—14
4.6.4.3 Dynamic stack allocation from the stack pool4—15
4.6.4.4 Persistent stack allocation from the stack pool4—15
4.6.4.5 Explicit stack allocation ..4—16
4.6.4.6 Stack size ..4—17
4.7 Programming Issues ..4—17
4.7.1 Configuration Options..4—17
4.7.2 Data types ...4—18
4.7.3 Task Definition...4—18
4.7.4 Run-time Services ...4—19
4.7.5 Constants ..4—19
4.7.6 Conventions ..4—19

SECTION 5
Scheduler

5.1 General ..5—1
5.1.1 Simple Scheduler ..5—1
5.2 Scheduling Policy...5—2
5.2.1 Non-preemptive Scheduling..5—2
5.2.2 Full-preemptive Scheduling...5—3
5.2.3 Mixed-preemptive Scheduling ...5—4
5.3 Programming Issues ..5—5
5.3.1 Configuration Options..5—5
5.3.2 Run-time Services ...5—5
5.3.3 Scheduler Definition ..5—6

SECTION 6
Interrupt Processing

6.1 General ..6—1
6.2 ISR stack..6—2
6.3 ISR Categories...6—2
6.3.1 ISR category 1...6—2
6.3.2 ISR category 2...6—3
6.3.3 ISR category 3...6—3
6.4 Interrupt Flag Manipulation ..6—4
6.5 Local Variables Considerations..6—4
6.6 Programming Issues ..6—5
6.6.1 Configuration Options..6—5
6.6.2 Data Types ..6—6
M68SOSEK Table of Contents MOTOROLA

USER’S MANUAL viii

Table of Contents
Paragraph Page
Number Title Number
6.6.3 Run-time Services ...6—6
6.6.4 Conventions ..6—6
6.6.5 ISR definition ...6—7

SECTION 7
Resource Management

7.1 General ..7—1
7.2 Access to Resources ...7—2
7.2.1 Priority Ceiling Protocol ...7—2
7.2.2 Scheduler as a Resource ..7—3
7.3 Programming Issues ..7—4
7.3.1 Configuration Options..7—4
7.3.2 Data types ...7—4
7.3.3 Run-time Services ...7—4
7.3.4 Resource Definition ...7—5

SECTION 8
Counters and Alarms

8.1 Counters...8—1
8.2 Alarms..8—3
8.3 Programming Issues ..8—5
8.3.1 Configuration Options..8—5
8.3.2 Data Types ..8—5
8.3.3 Counters and Alarm Generation..8—6
8.3.4 Run-time Services ...8—7
8.3.5 Constants ..8—7

SECTION 9
Events

9.1 General ..9—1
9.2 Events and Scheduling ..9—2
9.3 Programming Issues ..9—4
9.3.1 Configuration Options..9—4
9.3.2 Data Types ..9—4
9.3.3 Events Definition ...9—4
9.3.4 Run-time Services ...9—4
9.3.5 Additional usage..9—4
MOTOROLA Table of Contents M68SOSEK

ix USER’S MANUAL

Table of Contents
Paragraph Page
Number Title Number
SECTION 10
Communication

10.1 Message Concept ..10—1
10.2 State Messages ...10—3
10.3 Event Messages...10—4
10.4 Programming Issues ..10—5
10.4.1 Configuration Options..10—5
10.4.2 Identifiers...10—6
10.4.3 Message Definition..10—6
10.4.4 Run-time Services ...10—7
10.4.5 Usage of Messages...10—8

SECTION 11
Error Handling and Special Routines

11.1 Hook Routines..11—1
11.2 Error Handling ..11—2
11.2.1 Error Interface ...11—2
11.2.2 Extended Status ..11—3
11.2.3 Possible Error Reasons...11—4
11.3 Start-up Routine...11—4
11.4 Programming Issues ..11—4
11.4.1 Configuration Options..11—4
11.4.2 Hook Routine Definition...11—4

SECTION 12
System Configuration

12.1 General ..12—1
12.2 Application Configuration File ..12—1
12.2.1 Configuration File Grammar..12—2
12.2.1.1 Statements Types ..12—2
12.2.2 Separate Output Files ...12—3
12.3 System Properties Definition..12—4
12.4 System Objects Definition ..12—10
12.4.1 DefineScheduler..12—10
12.4.2 DefineInterrupts...12—11
12.4.3 DefineHooks..12—12
12.4.4 DefineTask ..12—13
12.4.5 DefineStackPool..12—14
12.4.6 DefineResource...12—14
12.4.7 DefineSystemTimer...12—14
M68SOSEK Table of Contents MOTOROLA

USER’S MANUAL x

Table of Contents
Paragraph Page
Number Title Number
12.4.8 DefineCounter ...12—16
12.4.9 DefineAlarm...12—16
12.4.10 DefineStateMessage...12—17
12.4.11 DefineEventMessage ..12—18
12.4.12 DefineMessageAlarm..12—19
12.4.13 ActivateOnMessage ..12—20
12.4.14 SetEventOnMessage ..12—20
12.5 System Generator Warning and Error Messages ..12—21

SECTION 13
Building of Application

13.1 Application Structure ...13—1
13.2 Action Sequence to Build an Application ...13—1
13.2.1 Application Configuration ..13—2
13.2.2 Source Files ..13—3
13.2.3 Compiling and Linking...13—5
13.3 Sample Application ..13—5

SECTION 14
Platform-Specific Features

14.1 HC08 features ..14—1
14.1.1 Base Page Memory Usage ...14—1
14.1.2 Compiler Issues...14—1
14.1.3 Interrupt Vector Table..14—2
14.1.4 Recommendations on System Properties ...14—2
14.1.4.1 UseMainStack property ...14—2
14.1.4.2 UseSameContext property ..14—2
14.1.4.3 InterruptMaskControl property ...14—2
14.1.4.4 CounterSize property ...14—2
14.1.4.5 Unused services ..14—3
14.1.5 System Timer Hardware..14—3
14.1.6 Scheduler Architecture ..14—4

SECTION 15
Application Troubleshooting

15.1 System Generation ..15—1
15.2 Using OS Extended Status for Debugging...15—1
15.3 Context Switch Routines ..15—2
15.4 Stack Errors ...15—2
15.5 Known Problems..15—3
MOTOROLA Table of Contents M68SOSEK

xi USER’S MANUAL

Table of Contents
Paragraph Page
Number Title Number
SECTION 16
System Services

16.1 General ..16—1
16.2 Task Management Services...16—3
16.2.1 Data types ...16—3
16.2.2 Constants ..16—3
16.2.3 Conventions ..16—3
16.2.4 Task Declaration ...16—3
16.2.5 ActivateTask..16—5
16.2.6 TerminateTask ..16—6
16.2.7 ChainTask ...16—7
16.2.8 Schedule ...16—9
16.2.9 GetTaskId..16—10
16.2.10 GetTaskState ..16—11
16.2.11 Examples for Task Management Services..16—12
16.3 ISR Management Services ..16—14
16.3.1 Data Types ..16—14
16.3.2 Conventions ..16—14
16.3.3 EnterISR..16—15
16.3.4 LeaveISR...16—17
16.3.5 EnableInterrupt..16—19
16.3.6 DisableInterrupt ...16—20
16.3.7 GetInterruptMask...16—21
16.3.8 Examples for Interrupt Management Services16—22
16.4 Resource Management Services ...16—24
16.4.1 Data types ...16—24
16.4.2 Resource Declaration..16—24
16.4.3 GetResource ...16—25
16.4.4 ReleaseResource..16—26
16.4.5 Examples of using resources ..16—27
16.5 Counters and Alarms Management Services...16—28
16.5.1 Data Types and Identifiers ..16—28
16.5.2 Constants ..16—28
16.5.3 Counter and Alarm Declaration ...16—29
16.5.3.1 Counter Declaration ...16—29
16.5.3.2 Alarm Declaration ..16—29
16.5.4 InitCounter...16—30
16.5.5 CounterTrigger ..16—31
16.5.6 GetCounterValue...16—32
16.5.7 GetCounterInfo..16—33
M68SOSEK Table of Contents MOTOROLA

USER’S MANUAL xii

Table of Contents
Paragraph Page
Number Title Number
16.5.8 SetRelAlarm ..16—34
16.5.9 SetAbsAlarm ...16—36
16.5.10 CancelAlarm..16—38
16.5.11 GetAlarm ...16—39
16.5.12 Examples for Counter and Alarm Management16—40
16.6 Event Management Services ...16—42
16.6.1 Data Types ..16—42
16.6.2 SetEvent..16—43
16.6.3 ClearEvent...16—44
16.6.4 GetEvent ...16—45
16.6.5 WaitEvent..16—46
16.6.6 Examples of using events ...16—47
16.7 Communication Management Services ...16—50
16.7.1 Data Types and Identifiers ..16—50
16.7.2 Message Declaration...16—50
16.7.2.1 State Message Declaration ...16—50
16.7.2.2 Event Message Declaration ...16—51
16.7.3 SendStateMessage...16—53
16.7.4 ReceiveStateMessage ..16—55
16.7.5 SendEventMessage ..16—56
16.7.6 ReceiveEventMessage..16—58
16.7.7 Examples of using messages..16—60
16.8 Error Handling and Debugging Services..16—62
16.8.1 OSShutdown ...16—62
16.8.2 Hook Routines...16—63
16.8.2.1 OSError ...16—63
16.8.2.2 OSPreTask ..16—64
16.8.2.3 OSPostTask ..16—65

APPENDIX A
SAMPLE APPLICATION

A.1 Description ...A—1
A.2 Configuration File...A—2
A.3 Source Files ...A—4

APPENDIX B
SYSTEM SERVICE TIMING

B.1 General Notes ..B—1
B.2 Data Sheet ...B—3
MOTOROLA Table of Contents M68SOSEK

xiii USER’S MANUAL

Table of Contents
Paragraph Page
Number Title Number
APPENDIX C
MEMORY REQUIREMENTS

C.1 Memory for the OSEK Operating System ..C—1
C.2 Data Sheet ...C—4

APPENDIX D
SYSTEM GENERATION ERROR MESSAGES

D.1 Error Message Description Format ..D—1
D.2 Error Messages..D—1

APPENDIX E
SYSTEM SERVICES QUICK REFERENCE
M68SOSEK Table of Contents MOTOROLA

USER’S MANUAL xiv

List of Illustrations
Figure Page
Number Title Number
Figure 4–1 Task status model of an Extended Task with its task transitions.........4—3
Figure 4–2 Task status model with task transitions for Basic Tasks......................4—5
Figure 4–3 Task management architecture ...4—6
Figure 4–4 Task priorities ..4—8
Figure 4–5 Persistent task node assignment...4—12
Figure 4–6 Task link table..4—13
Figure 4–7 Fixed stack linked with the task node ..4—14
Figure 4–8 Dynamic stack allocation ...4—15
Figure 4–9 Dynamic stack allocation ...4—16
Figure 4–10 Static stack allocation ..4—16
Figure 5–1 Non-preemptive scheduling...5—3
Figure 5–2 Full-preemptive scheduling..5—4
Figure 7–1 Priority Ceiling Protocol ...7—3
Figure 8–1 Counters and alarms ...8—1
Figure 8–2 Two cases for the absolute alarm..8—4
Figure 9–1 Synchronization of Extended Tasks by setting events in case of full-

preemptive scheduling. ..9—3
Figure 9–2 Synchronization of Extended Tasks by setting events in case of non-

preemptive scheduling. ..9—3
Figure 10–1 Operations with Event Messages ..10—5
Figure 13–1 Application building process ..13—2
MOTOROLA Table of Figures M68SProductName

xv USER’S MANUAL

List of Illustrations
Figure Page
Number Title Number
M68SProductName Table of Figures MOTOROLA

USER’S MANUAL xvi

List of Tables
Table Page
Number Title Number
3–1 OSEK Operating System Conformance Classes .. 3—3
4–1 States and status transitions in the case of Extended Tasks........................ 4—3
4–2 States and status transitions in the case of Basic Tasks 4—4
4–3 Task Properties... 4—7
4–4 Task Management Run-time Services .. 4—19
6–1 Interrupt Management Services .. 6—6
8–1 Counter and Alarm Management Run-time Services.................................... 8—7
9–1 Event Management Run-time Services... 9—4
10–1 Features of the Message Concept.. 10—2
10–2 Task Management Run-time Services .. 10—7
11–1 OSEK OS Error codes .. 11—3
12–1 System Generator command line options ... 12—2
12–2 OSEK Operating System Properties ... 12—4
12–3 OSEK Operating System properties default values 12—8
12–4 System Generator Error Messages... 12—21
14–1 Parameters to define System Timer hardware.. 14—3
B–1 OSEK OS Run-time Services Timing Characteristics B—3
C–1 OSEK OS Memory Requirements.. C—4
M68SProductName Table of Tables MOTOROLA

USER’S MANUAL xvii

List of Tables
Table Page
Number Title Number
M68SProductName Table of Figures MOTOROLA

USER’S MANUAL xviii

SECTION 1
OVERVIEW

OSEK1 Operating System (OSEK OS) is a real-time operating system conforms
the specification of the OSEK Operating System v.1.00.

OSEK OS conforms the following requirements:

• OS is fully configured and scaled statically;

• OSEK OS is a ROM-able system, i.e. the OS code may be executed from
Read-Only-Memory. OSEK OS may be placed into the chip memory during
manufacturing time and users’ applications may be added during
development time;

• OS performance parameters are well known;

• Being written in strict correspondence with ANSI C standard, the OS and
application on its basis can be easily ported from one platform to another.

Wide range of scalability, a set of system services, various scheduling
mechanisms, convenient configuration features make the OSEK Operating
System feasible for a broad spectrum of applications and hardware platforms.

The OSEK OS provides a pool of different services and processing mechanisms
for task management and synchronization, data exchange, resource management
and interrupt handling. The following features are granted to the user:

Task Management

• Activation and termination of tasks;

• Management of task states, task switch.

Scheduling Policies

• Full-, non-, and mixed-preemptive scheduling techniques.

Event Control

• Event Control for task synchronization.

1. The term OSEK means “Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug“

(Open systems and the corresponding interfaces for automotive electronics). A real-time operating system,

software interfaces and functions for communication and network management tasks are thus jointly

specified within the OSEK standard.
M68SOSEK Overview MOTOROLA

USER’S MANUAL 1—1

Interrupt Management

• Services for hardware interrupt flag manipulations;

• Frames for interrupt service routines.

Resource Management

• Mutually exclusive access control for inseparable operations to jointly used
resources or devices, or for control of a program flow.

Communication

• State Message: Data exchange without buffering;

• Event Message: Data exchange with buffering.

Counter and alarm management

• Counter management provides services for execution of recurring events;

• Alarm management is based on counter management. It enables entry of
(cyclic) alarm requests. The expiration of a preset relative counter value, or
the fact that a preset absolute counter value is reached, results in activating
of a task, or setting a task event.

Error treatment

• Mechanism supporting the user in case of various error classes.

OSEK Operating System is scaled in two ways - either by changing the set of
system services or via the so-called Conformance Classes. They are available to
satisfy different requirements concerning functionality and capability of the OS.
These Conformance Classes do not only differ concerning the number of services
they provide, but also with regards to their capabilities and scalability. The classes
are based on one another in upwardly compatible fashion. The Conformance
Classes are generated by meaningful grouping of services (see section 3.2
Conformance Classes).

The OSEK OS is built according to the user’s configuration instructions at system
generation time. Both system and application parameters are configured statically.
Therefore, the special tool is used for this purpose which is called System
Generator. Special statements are designed to tune any parameter. The user
should only edit the definition file, run System Generator and then assemble
resulting files with application files. Thus, the user can adapt the Operating System
to the control task and the target hardware. OS cannot be modified later at
execution time.

OSEK Operating System is well documented and measured. In the User’s Manual
all system mechanisms, particularities, services and programming techniques are
 MOTOROLA Overview M68SOSEK

1—2 USER’S MANUAL

described in detail with numerous examples. Numbers for performance
characteristics and memory requirements are provided.
M68SOSEK Overview MOTOROLA

USER’S MANUAL 1—3

 MOTOROLA Overview M68SOSEK

1—4 USER’S MANUAL

SECTION 2
NOTATION

2.1 Manual Structure

This User’s Manual consists of the following sections:

SECTION 1 Overview describes what the OSEK OS is and highlights its basic
features.

SECTION 2 Notation contains the description of the Manual structure,
typographical conventions and the list of acronyms.

SECTION 3 Operating System Architecture gives the high level description of
OS architecture and presents OS Conformance Classes.

SECTION 4 Task Management explains the task concept in OSEK and all other
questions related to tasks.

SECTION 5 Scheduler provides the description of scheduling policies in OSEK
OS.

SECTION 6 Interrupt Processing highlights OSEK approach to interrupts
handling.

SECTION 7 Resource Management describes resource management and task
coordination by resources.

SECTION 8 Counters and Alarms describes usage of these control mechanisms
in OSEK OS.

SECTION 9 Events is devoted to event management and task coordination by
events.

SECTION 10 Communication describes message concept in OSEK and their
usage.

SECTION 11 Error Handling and Special Routines describes support provided
to the user to debug an application and handle errors.

SECTION 12 System Configuration describes possible OSEK OS versions,
configuration options and the configuration mechanism.

SECTION 13 Building of Application contains information on how to build an
user’s application using OSEK OS. It also describes memory requirements.
M68SOSEK Notation MOTOROLA

USER’S MANUAL 2—1

SECTION 14 Platform-Specific Features discusses special OSEK OS features
for different MCU types and issues connected with porting applications to these
MCUs.

SECTION 15 Application Troubleshooting contains useful information for
debugging applications developed using OSEK OS.

SECTION 16 System Services provides a detailed description for all OSEK
Operating System run-time services, with appropriate examples.

APPENDIX A Sample Application contains the text and listing of a sample
customer applications developed using OSEK OS.

APPENDIX B System Service Timing provides information about OS services
execution time.

APPENDIX C Memory Requirements provides information about the amount of
ROM and RAM directly used by various versions of the OSEK OS.

APPENDIX D System Generation Error Messages explains OSEK OS System
Generator error messages.

APPENDIX E System Services Quick Reference briefly lists all OSEK OS
run-time services, with entry and exit conditions.

2.2 Typographical Conventions

This manual employs the following typographical conventions:

 boldface type

Bold is used for important terms, notes and warnings.

Italics

Italics are used for all OSEK names of directives, macros, constants, routines
and variables.

Courier font

Courier typeface is used for code examples in the text.

Courier Italic

Courier Italic typeface is used for OSEK terms when these are first introduced.
 MOTOROLA Notation M68SOSEK

2—2 USER’S MANUAL

2.3 Definitions, Acronyms and Abbreviations

2.4 Installation Instructions

This is OSEK Operating System version 1.0 RP release.

2.4.1 Required Environment

This version of the product is to be used on IBM PC 486 (and higher) compatible.
To install and evaluate the product about 8 MB disk space is required.

API
Application Program Interface (a set of data types and
functions)

BCC
Basic Conformance Class, a defined set of functionality in
OSEK, for which the waiting state of tasks is not permitted

BT Basic task (task, which never has the waiting state)

CPU Central Processor Unit

ECC
Extended Conformance Class, a defined set of functionality
in OSEK, for which the waiting state of tasks is permitted

ECU Electronic Control Unit (similar to MCU)

ET Extended Task (task, which may have the waiting state)

ID Identifier, an abstract identifier of a system object

ISF
Interrupt Stack Frame, a stacked model of CPU registers,
produced by CPU hardware and/or software instructions
during CPU interrupt

ISR Interrupt Service Routine

MCU Microcontroller Unit (Motorola’s microcontrollers)

MO Message object

OS Operating System, a part of the OSEK

OSEK
Open systems and their corresponding interfaces for
automotive electronics (in German)

RAM Random Access Memory

ROM Read Only Memory

SG System generator
M68SOSEK Notation MOTOROLA

USER’S MANUAL 2—3

The PC has to work under MS Windows 3.1x, MS Windows 95 or Windows NT 3.51
during OSEK installation.

To use OSEK OS after installation the Cosmic Software version 4.0p should be
installed on the computer. It is necessary to call the DOS prompt under Windows
NT to run the MAKE utility.

All supplied makefiles are developed for the Microsoft C++ NMAKE utility. For
Windows 3.1x it is possible to use Microsoft C++ v1.5 NMAKER utility instead
NMAKE.

2.4.2 Installation

To setup OSEK on your hard disk:

1. Insert the installation disk into a 3.5” floppy drive. The following instructions
assume that the drive letter is a:. If another drive is chosen, substitute that
drive letter where appropriate.

2. Run the A:\SETUP.EXE program either from the File Manager or Program
Manager.

3. Follow the prompts and instructions of the installation program.
4. After installation verify the consistency of the package by means of

comparing the real set of the files and directories with the list in
FILELIST.TXT file.

After installation, the hard drive should contain the root directory of OSEK which
will contain a set of files in the following subdirectories:

• BIN System Generator

• INC Operating System header files

• SRC Operating System source files

• SAMPLE OSEK Operating System Sample application

• MAN User’s Documentation

There is FILELIST.TXT file in the OSEK root directory. This file contains a
complete list of files which are included in this release.

Besides, the root directory contains README.TXT file, which provides additional
information for the user.

2.5 Technical Support Information

To order any additional information or to resolve arising problems contact with
Motorola ZAO - St. Petersburg Branch Office, Russia:

Europa House, 1 Artilleriyskaya Street,
St.Petersburg, 191104, Russia
 MOTOROLA Notation M68SOSEK

2—4 USER’S MANUAL

Phones: (089) 92 103 308 (Munich, Germany)
+7 (812) 329-1910 (St.Petersburg, Russia)

Fax: (089)92 103 101 (Munich, Germany)

+7 (812) 329-1912 (St.Petersburg, Russia)

E-mail: R21898@email.sps.mot.com
rfrance@sdt.sps.mot.com
rte-users@sprl.sps.mot.com

Developers: Maxim Chervinsky, Irene Bratanova, Ivan Gumenyuk, Alexander
Semjonov, Vladimir Belov
M68SOSEK Notation MOTOROLA

USER’S MANUAL 2—5

 MOTOROLA Notation M68SOSEK

2—6 USER’S MANUAL

SECTION 3
OPERATING SYSTEM ARCHITECTURE

3.1 Processing Levels

The OSEK Operating System provides a pool of different services and processing
mechanisms. It serves as a basis for application programs which are independent
of each other, and provides their environment on a processor. The OSEK OS
enables a controlled real-time execution of several processes which virtually run in
parallel.

The highest processing priority is assigned to the interrupt level, where interrupt
service routines (ISR) are executed. Interrupt services may call a number of
operating system services. The processing level of the operating system has a
priority ranking immediately below the former one. This is the level on which the
operating system works - task management procedures, scheduler and system
services. Just below this is the task level on which the application software is
executed. Tasks are executed according to their user assigned priority. A
distinction is made between the management of tasks with and without waiting
state (Extended and Basic Tasks , see 4.1 Task Concept). The run time
context refers to resources which are occupied at the beginning of execution time
and are released again once the task is finished.

3.2 Conformance Classes

Various requirements of the application software for the system, and various
capabilities of a specific system (e.g. processor type, amount of memory) demand
different stages of the operating system. These operating system stages are
described as Conformance Classes (CC). They differ in the number of services
provided, their capabilities and different types of tasks.

An application which has been written for a certain Conformance Class is
executable in any higher Conformance Class (upwardly compatible). The
Conformance Classes are based upon one another. This applies to the
functionalities provided and to the availability of a minimum number of resources
(e.g. minimum number of available priorities). Any higher Conformance Class is
defined so that it also covers the functionalities and minimum equipment of the
previous one.

The desired Conformance Class is selected by the user at system generation time
and cannot be changed during execution.
M68SOSEK Operating System Architecture MOTOROLA

USER’S MANUAL 3—1

The definition of the functionalities provided by each Conformance Class depends
on the properties of the tasks and on the scheduling behavior. As the task
properties (Basic or Extended, see 4.2 Task State Model) have a distinct influence
on CC, they also resume part of their names. There are Basic-CC and Extended-
CC, and each of these groups can have various “derivatives”. The following
Conformance Classes, which are based upon one another, are defined: BCC1,
BCC2, BCC3, ECC1, ECC2.

• BCC1 - only Basic tasks, limited to one request per task and one task per
priority, while all tasks have different priorities;

• BCC2 - like BCC1, more than one task per priority possible;

• BCC3 - like BCC2, additionally multiple activation admissible;

• ECC1 - like BCC3, plus Extended tasks without multiple activation admissible;

• ECC2 - like ECC1, plus multiple activation possible for Extended tasks.

BCC1 defines the minimum Conformance Class of the OSEK OS, ECC2 defines
its maximum CC.

Multiple activations means that the OSEK OS receives and records
activations (even multiple activations) of a task already activated. On terminating
the task, the system checks whether activations have already been noted. If so, the
task being terminated is reactivated immediately.

Table 3–1 presents minimum resources to which an application may resort and
which have been determined for each Conformance Class.
 MOTOROLA Operating System Architecture M68SOSEK

3—2 USER’S MANUAL

The system configuration option ConformanceClass (specified by the user)
defines the class of the overall system. This option can have values BCC1, BCC2,
BCC3, ECC1, ECC2 (see 12.3 System Properties Definition).

It is impossible to have tasks of different Conformance Classes in one application!
All tasks must strictly conform the Conformance Class specified at the system
configuration stage.

3.3 OSEK OS Overall Architecture

The OSEK OS is a real-time operating system, which is executed within a single
electronic control unit. It provides local services for user’s tasks. The OSEK-OS
consists of the following components:

• Scheduler - controls the allocating of the CPU to the different
tasks;

• Task management - provides operations with tasks;

• ISR management - provides entry/exit frames for interrupt service
routines and supports CPU interrupt flag
manipulation;

• Resource management - supports special kind of semaphores for mutually
exclusive access to the shared resources;

• Local communication - provides message exchange between tasks;

Table 3–1 OSEK Operating System Conformance Classes

BCC1 BCC2 BCC3 ECC1 ECC2

Multiple activation of
tasks

no yes
BT: yes,
ET: no

YES

Number of tasks
which are not in the
suspended state

m8
m 16, any combination

of BT/ET

Number of tasks per
priority

1 >1
BT: >1,
ET: 1

>1

Number of events per
task

-
BT: no
ET: m 8

Number of priority
classes

m8

Resources only Scheduler m 8 resources (including Scheduler)

Alarm m 1 single or cyclic alarm

Messages possible
M68SOSEK Operating System Architecture MOTOROLA

USER’S MANUAL 3—3

• Counter management - provides operations on the objects like timers and
incremental counters;

• Alarm management - links the tasks and counters;

• Error handlers - handle the user’s application errors and internal
errors, and provide recovery from the error
conditions;

• Hook routines - provides additional debugging features

• System start-up - initializes the data and starts the execution of the
applications;

• System timer - provides implementation-independent time
management.

As you have seen in Table 3–1 , Conformance Classes, in general, differ in the
degree of services provided for the task management and scheduling (number of
tasks per priority, multiple requesting, Basic/Extended Tasks). In higher CC
advanced functionality is added for resource management and event management
only. But even in the lowest BCC1 the user is provided with merely all OSEK OS
service mechanisms.

The OSEK Operating System is scaled not only via Conformance Classes but it
also has many various extensions which can be in any Conformance Class. These
extensions affect memory requirements and overall system performance. The
extensions can be turned on or turned off with the help of the corresponded system
configuration options. All them are described in SECTION 12 System
Configuration .

Since the OSEK Operating System is fully statically configured, the configuration
process is supported by the System Generator (SG). This is a command-line
utility, which processes system generation statements defined by the user in the
special file. These statements fully describe the desired system features and
application object’s parameters. SG produces C-code that is to be compiled
together with other user’s source code. The produced code consists of C-language
definitions and declarations of data as well as C-preprocessor directives. See
SECTION 12 System Configuration and SECTION 13 Building of Application
for details about system generation.

3.4 Application Program Interface

The OSEK Operating System establishes the Application Program Interface (API)
which must be used for all user’s actions connected with system calls and system
objects. This API defines data types used by the system, the syntax of all run-time
service calls, declarations and definitions of the system.

OSEK OS data types are described in subsections dedicated to the corresponded
mechanisms. Syntax of system calls and system configuration statements are
 MOTOROLA Operating System Architecture M68SOSEK

3—4 USER’S MANUAL

described briefly in corresponded subsections and in detail in SECTION 12 and
SECTION 16 .

NOTE:

The user’s source code shall strictly corresponds to the rules
presented in this Manual.

The OSEK OS can has the Extended Status . It means that additional checking
is made inside all OS activities and extended return codes are returned by all OS
services to indicate errors if they are occurred. See SECTION 16 System
Services and 11.2 Error Handling about Extended Status return values. To
provide the Extended Status in the system the configuration option
ExtendedStatus must be turned on at configuration stage.
M68SOSEK Operating System Architecture MOTOROLA

USER’S MANUAL 3—5

 MOTOROLA Operating System Architecture M68SOSEK

3—6 USER’S MANUAL

SECTION 4
TASK MANAGEMENT

4.1 Task Concept

Complex control software can conveniently be subdivided in parts executed
according to their real-time requirements. These parts can be implemented by
means of tasks. A task provides the framework for the execution of functions. The
Operating System provides parallel and asynchronous task execution organizing
by the scheduler.

OSEK OS provides a set of tools for the user to manage tasks. They are activated
before their execution - memory resources needed for a task are allocated. Tasks
may be terminated after needed actions were performed - memory resources are
released. After a task is activated it may run and terminate or it may be
implemented in an endless loop with at least one synchronizing system call. It is
not possible to run several parallel endless loops without switching mechanism
(scheduler). Tasks can be switched during their execution from one to another,
or may be interrupted by ISR. If no task is active, only the scheduler idle loop runs
(see 5.1 General). Task states and transitions between them are discussed in
section 4.2 Task State Model.

Two different task concepts are provided by the OSEK OS:

• Basic Tasks (BT);

• Extended Tasks (ET).

Basic Tasks only release the processor, if:

• they are being terminated,

• the OSEK OS is executing higher-priority tasks, or

• interrupts occur which cause the processor to switch to an interrupt service
routine.

Extended Tasks are distinguished from Basic Tasks by being allowed to use
additional operating system services which may result in a waiting state. The
waiting state allows the processor to be freed and to be reassigned to a
lower-priority task without the need to terminate the Extended Task.

Both kinds of tasks have their advantages which must be compared application
dependent. They are both justified and are supported by the OSEK operating
system.
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—1

Each task have a set of data related to it - a task descriptor located in ROM (task
configuration table) and a task control block in RAM (task node) for
activated tasks. Also each task has its own stack assigned. See section 4.6 Task
Related Resources about the task control block, the task configuration table and
the task stack.

Every running task is represented by its run time context . This refers to CPU
registers and some compiler-dependent "pseudoregisters" in RAM. When the task
is interrupted or preempted by another task the run time context is saved in the
task’s stack. Run time context differs for non-preemptive and preemptive tasks - for
preemptive tasks more RAM is required to save the context. Therefore, for
mixed-preemptive system (it means that both non-preemptive and preemptive
tasks can exist in the system, see section 5.2 Scheduling Policy) a distinction can
be made by the Operating System between these types of contexts. It is controlled
by the UseSameContext configuration option. In case if different contexts are
saved for non-preemptive and preemptive tasks OS has to perform additional code
to distinct the task type. Otherwise, some more RAM is required to store the "full"
context for non-preemptive tasks too. The use of this option is application
dependent.

4.2 Task State Model

A task can be in several states, as the processor can only execute one instruction
of a task at any point in time, while several tasks may be competing for the
processor at the same time. The OSEK OS is responsible for saving and restoring
task context in conjunction with state transitions whenever necessary.

4.2.1 Extended Tasks

Extended Tasks have four task states:

• running In the running state, the CPU is assigned to the task, so that its
instructions can be executed. Only one task can be in this
state at any point in time, while all the other states can be
adopted simultaneously by several tasks.

• ready All functional prerequisites for a transition into the running
state exist, and the task only waits for allocation of the
processor. The scheduler decides which ready task is
executed next.

• waiting A task cannot be executed (any longer), because it has to wait
for at least one event (see SECTION 9 Events).

• suspended In the suspended state, the task is passive and does not
occupy any resources, merely ROM.
 MOTOROLA Task Management M68SOSEK

4—2 USER’S MANUAL

Table 4–1 States and status transitions in the case of Extended Tasks

Transition Former
state

New state Description

activate suspended ready
A new task is entered into the ready list by a
system service.

start ready running
A ready task selected by the scheduler is
executed.

wait running waiting
To be able to continue operation, the running
task requires an event. It causes its transition
into the waiting state by using a system service.

release waiting ready
Events have occurred which a task has waited
on.

preempt running ready
The scheduler decides to start another task.
The running task is put into the ready state.

terminate running suspended
The running task causes its transition into the
suspended state by a system service.

running

suspended

ready

waiting

wait

preempt

release

start

terminate

activate

Figure 4–1 Task status model of an Extended Task with its task transitions.
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—3

Termination of tasks is only possible if the task terminates itself ("self-termination").
This restriction is to avoid complex book-keeping of resources dynamically
allocated by the task.

There is no provision for a direct transition from the suspended state into the
waiting state. This transition is redundant and would add to the complexity of the
scheduler. The waiting state is not directly entered from the suspended state, as
the task starts and explicitly enters the waiting state on its own.

4.2.2 Basic Tasks

The state model of Basic Tasks is nearly identical to the Extended Tasks state
model. The only exception is that Basic Tasks do not have a waiting state.

• running In the running state, the CPU is assigned to the task, so that its
instructions can be executed. Only one task can be in this
state at any point in time, while all the other states can be
adopted simultaneously by several tasks.

• ready All functional prerequisites for a transition into the running
state exist, and the task only waits for allocation of the
processor. The scheduler decides which ready task is
executed next.

• suspended In the suspended state, the task is passive and does not
occupy any resources, merely ROM.

Table 4–2 States and status transitions in the case of Basic Tasks

Transition Former
state

New state Description

activate suspended ready
A new task is entered into the ready list by a
system service.

start ready running
A ready task selected by the scheduler is
executed.

preempt running ready
The scheduler decides to start another task.
The running task is put into the ready state.

terminate running suspended
The running task causes its transition into the
suspended state by a system service.
 MOTOROLA Task Management M68SOSEK

4—4 USER’S MANUAL

4.3 Task Activation and Termination

Depending on the Conformance Class a task can be activated single or multiple.
The difference between single and multiple activation is that:

• In the case of a task suited for multiple activation, all task activations are
noted down. It means, that whenever a task is activated by the application,
the appropriate task is started at the next possible time, even if it is already
running while the request is issued. In this case, the request is saved by the
operating system, so the task can be started again by the operating system
once it has been terminated. This procedure is repeated several times until of
all requests has been completed.

• In the case of a task suited for single activation, either the task activation is
noted down, or, if the task has already been requested, nothing happens.

Multiple activation property exists only for BCC3, ECC1 and ECC2 Conformance
Classes. It is possible to turn it off via the system configuration option
MultiplyActivation.

OSEK OS uses the scheme of task activation and termination like presented on
Figure 4–3 . This idea allows dynamic memory reallocation which provides
economical resources consuming.

running

suspended

ready

preempt start

terminate

activate

Figure 4–2 Task status model with task transitions for Basic Tasks.
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—5

During task activation the ActivateTask service analyzes the task configuration
table of the task to be activated, and allocates a stack buffer and a task node as it
is specified in the task configuration table. In the figure the typical allocation
method is shown - a stack buffer is retrieved from the stack pool and a task node
from the scheduler’s list of free task nodes. If these resources are available, then
the task node is initialized and inserted into the scheduler’s queues to be
dispatched.

The TerminateTask service releases both the task node and the stack buffer and
returns them to the system for re-use.

This way task activation may be considered as dynamic resource allocation,
because task control blocks and stack pools are allocated dynamically. This
approach allows the optimization of using resources, because one resource (for
instance, a task control block) may be used by different tasks at different moments
of time.

But in case when requested resources aren’t available, it may lead to
indeterministic behavior of the operation. This situation may occur, when too many

Stack Pools Task Nodes Task Configuration Tables

ActivateTask TerminateTask

Scheduler Queues

Stack
Buffer

Free task
node

Task configu-
ration table

Initialized
task node

Running
task node

Figure 4–3 Task management architecture

(Control Blocks)
 MOTOROLA Task Management M68SOSEK

4—6 USER’S MANUAL

tasks are activated. To avoid that weakness, the user is also allowed to statically
assign task control blocks and stack areas for critical tasks. Such explicitly defined
resources are hold by a task for the application life time. In this case the task control
block and/or the task stack are not released and cannot be re-assigned for other
tasks.

4.4 Task Properties

In OSEK OS every task is characterized by the set of properties. These properties
define the task behavior and resource allocation method. Each task property has
its own name, and the user defines the task features by placing the desired
symbolic constants in the DefineTask statement. These constant can be united via
the ’OR’ operator in DefineTask. See SECTION 12 about task definition. The list
of possible task properties is provided in Table 4–3 .

4.5 Task Priorities

In OSEK OS a priority is statically assigned to each task and it cannot be changed
by the user at the execution time. Some Conformance Classes permit several
tasks of the same priority level (see Table 3–1). A dynamic priority management

Table 4–3 Task Properties

Property Name Description

BASIC Basic task

EXTENDED Extended task

NONPREEMPT Non-preemptive task

PREEMPT Preemptive task

ACTIVATE Activate the task at system start-up

ASSIGNNODE
A persistent task control block is assigned (linked with the task
configuration tables)

POOLSTACK
A stack should be allocated to the task during task activation -
dynamic stack allocation from the stack pool

OWNSTACK
A stack is explicitly assigned to the task (address of the top of
the stack is included into the task configuration table)

NODESTACK
A task node stack is implicitly assigned to be used by the task
(during the task activation)

ASSIGNSTK
A persistent stack from the stack pool (the pool identifier is
included into the task configuration table)
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—7

is not supported. However, in particular cases the operating system can treat a task
with a defined higher priority. In this context, please refer to 7.2.1 Priority Ceiling
Protocol.

On the basis of the task priority the scheduler decides which is the next of the ready
tasks to be transferred into the running state. Tasks are started depending on their
order of activation according to the FIFO mechanism, whereby Extended Task in
the waiting state do not block the start of subsequent tasks of identical priority.

A preempted task is considered to be the oldest task in the ready list of its current
priority. A task being released from the waiting state is treated like the newest task
in the ready list of its priority.

Figure 4–4 illustrates how tasks priorities affect on the order of their execution.

Several tasks of different priorities are in the ready state - three tasks of priority 2,
one priority 3 and 4 tasks, and two priority N tasks. The tasks which has waited the
longest time, depending of its order of requesting, is shown at the bottom of each
FIFO queue. CPU has just processed and terminated a task with priority 1. The

Figure 4–4 Task priorities

1 2 3 4 N

priority

processor time

high low

FIFO
list of

actually processed and
terminated task
(with priority 1)

scheduler

> >
search the

next task to
be processed

next running task

scheduler

CPU

ready
tasks

These tasks will be
executed in turn later
 MOTOROLA Task Management M68SOSEK

4—8 USER’S MANUAL

scheduler selects the next task to be processed (priority 2, first FIFO location).
Before priority 3 tasks can be processed, all tasks of higher priority must have been
executed completely.

Thus, the following three steps are made to switch to the next running task:

5. The scheduler searches for all tasks in the ready state.
6. From the set of ready tasks the scheduler determines the set of tasks with

the highest priority.
7. Within the set of tasks in the ready state and of the highest priority the

scheduler finds the task which has been in the ready state the longest time
("oldest" task).

4.6 Task Related Resources

Each task has a task configuration table in ROM and task control block (task node)
and task stack in RAM (during the task run time, if they are not assigned statically).
These resources uniquely define task properties and the task run-time context.
Also at run-time the task link table exists in RAM to provide the correspondence
between the task control block and the task configuration table.

4.6.1 Task Configuration Table

The ROM-based task configuration table contains a static task description. This
table holds all information describing the tasks’s properties and serves to initialize
the RAM-based task control block during task activation.

The task configuration table contains the following data:

• Task properties (see Table 4–3) which define a run-time behavior of the task,
as well as task activation parameters. The main properties are whether it is a
Basic/Extended task (for the extended Conformance Classes only) or a
preemptive/non-preemptive task (for a mixed-preemptive scheduling policy).
The properties also specify the source of the stack for the task, and the
assignment of the task control block;

• The starting priority of the task;

• The hardware memory bank of the task. The user is responsible to switch the
hardware bank by means of using hooks (See section 11.1 Hook Routines).
If bank switching is not supported (the HCBankCode system configuration
option is turned off) this field is absent in the task configuration table;

• The starting interrupt mask of the task. The field is absent if interrupt mask
control is not supported;

• The program counter value (the entry point) of the task;
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—9

• The address of the persistent task node, that is a task node, which is
permanently assigned to the task (see 4.6.2 Task Control Block). This field
is absent if persistent task control blocks are not supported in the system;

• The address of the task stack source, i.e. the address of the stack pool or the
constant address of the own task stack (see 4.6.4 Task Stack). This field is
absent if all tasks use only node stacks.

• The address of the element of the task link table (see 4.6.3 Task Link Table).
This field is absent if the simplified scheduler is used in the system (see 5.1.1
Simple Scheduler) or the system configuration option TaskIndexMethod is
off.

Some of these parameters are specified by the user during system configuration
by means of the DefineTask statement while others are generated automatically.
See SECTION 12 and SECTION 13 about system configuration and building an
application.

4.6.2 Task Control Block

A RAM-based task control block (task node) serves as a dynamic
descriptor of the task. It is valid only during task execution, that is when the task is
not in the suspended state. Except persistent node assignment (see 4.6.2.1), this
task control block is linked to the scheduler’s list of free nodes when it is not
assigned to the task. In general, this block is allocated to the task during task
activation, and it is initialized at that moment (see Figure 4–3).

The task control block contains the following data:

• A pointer for linking the task control block into scheduler queues. There is no
this field if the simplified scheduler is used in the system;

• The current task status. Some of the status bits are copied from the task
properties bits of the task configuration table. Others bits are:

— a task waiting bit, which is set when the task is waiting for an event(s);

— a scheduler bit, which is set when the task occupies the scheduler.

• The current task priority. In general, the current priority may differ from the
starting priority (located in the task configuration table) during the periods of
time, when the task occupies the resources, see 7.2.1 Priority Ceiling
Protocol.This field is absent if the simplified scheduler is used in the system;

• A pointer to the task configuration table;

• The task context (for non-preemptive tasks), or a pointer to the stack frame,
where the context is saved (for preemptive tasks). Note, that for
mixed-preemptive scheduling systems both non-preemptive context and a
pointer to the preemptive context are defined if the system configuration
option UseSameContext is turned on. Otherwise, the preemptive context is
used for non-preemptive tasks also;
 MOTOROLA Task Management M68SOSEK

4—10 USER’S MANUAL

• Two fields for event control in Extended Classes of the system. The first field
contains the mask of the events the task is waiting for, while the second field
contains the mask of the events, which are set for the task (see SECTION 9
Events). If event management is not supported, these fields are absent;

• If the system supports multiple activations of the task, the task control block
contains the counter of times of activation. That is, the content of this field
makes an increment each time, when the task to be activated is in the
non-suspended state, and makes decrement each time, when the task is
re-activated after terminating (if it is greater than zero during task termination);

• The pointer to the head of the list of resources occupied by the task (if
resource management is supported and the system property FastResource
is turned off, see SECTION 7 Resource Management);

• The address of the stack buffer, allocated to the task. It is used during task
termination when task management returns this stack buffer into the stack
pool. If stack pools are not supported in the system then this field is absent;

• The address of the task node stack or address of the persistent task stack if
persistent node assignment is supported by the system. This field is absent if
neither task node stacks nor persistent stacks are used;

• The real address of the top of the task stack. This field is absent if multiple
activation is not supported and the system configuration option
ChainTaskItself is turned off (see 12.3 System Properties Definition).

The task control block size depends on the system configuration and task
properties. Generally, the minimal task control block size is 5 bytes and the
maximal size is 19 bytes.

4.6.2.1 Persistent Node Assignment

The task control block may be statically assigned to the task. This mechanism
prevents a task activation failure due to missing free task nodes and increases the
speed of task activation/termination operations by means of excluding a task node
queues manipulation. This mechanism is called persistent task node assignment,
and it is illustrated in Figure 4–5 . To define persistent node assignment for the
task the task property ASSIGNNODE shall be set in the DefineTask statement for
this task and the system configuration option PersistentNode must be turned on.

As it is in the figure, task#2 has persistent task node#3, assigned to this task.
Therefore, this task control block cannot be used by any other task in the system,
and is not linked into the scheduler’s list of free nodes when task#2 is not activated
(not used). This task node is exclusively assigned for use by task#2. On the other
hand, task#1 may use any of task nodes #1, #2 or #4, if they are free while task#2
is activated.

Persistent task node assignment may be used in combination with any of the stack
allocation options (see 4.6.4 Task Stack).
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—11

4.6.3 Task Link Table

Every task in the system is defined via the ROM-based task configuration table.
When a task is activated, the task allocates a task node, and the address of the
task configuration table is stored in the task node. To accelerate the procedure of
run-time task referencing, the system supports a special RAM-based vector of the
links between the task configuration tables and task nodes. This vector is called the
task link table. It serves for fast access to the task configuration table and the
corresponding task control block during operations which reference to a task.

The task link table is illustrated in the figure below:

Task Configuration Table #1

Task Configuration Table #2

Task Nodes Array

ActivateTask

Free task node#1

Free task node#2

Free task node#4

Persistent task node#3

the task node address

Figure 4–5 Persistent task node assignment
 MOTOROLA Task Management M68SOSEK

4—12 USER’S MANUAL

The task link table contains one element per each task, configured in the system.
The element contains a NULL-pointer, if the task is in the suspended state, or the
task node address, if the task is in the non-suspended state (it is saved there during
task activation). For instance, in Figure 4–6 task#1 is not activated, while task#2
and task#8 are activated. Task#2 uses task node#4, and task#8 uses task node#1.
The task configuration table contains the address of the task link element. The
system uses this address when the task is referenced, and looks at the contents of
the element of the task link table to define the current state of the task.

4.6.4 Task Stack

4.6.4.1 Stack allocation

During run-time every task has its own stack. The stack is either dynamically
assigned to a task during its activation or statically allocated for a task during
system initialization. If a stack is allocated dynamically, it is got from a stack pool.
Several options are possible for static stack assignment during system start-up.

Stack pools are used by task management to dynamically allocate stack area for a
task during task activation. To have stack pools in the system the configuration
option StackPool must be turned on. The user should specify the desired number
of stack pool with a defined number of buffers of needed size in them. This is done
with the help of the DefineStackPool configuration statements, see SECTION 12
and SECTION 13 . The stack pool contains a queue of stacks of a fixed size. The
task control block contains the address of the stack pool control block, and the
stack buffer is unlinked from the pool and assigned to the task during task

Task Configuration Tables Task Nodes

Task Link Table
Task#1

Task#2

...

Task #8

NULL

...

Task node#4

Task node#1

Task node#1

Task node#2

Task node#3

Task node#4

Figure 4–6 Task link table
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—13

activation. During task termination the stack buffer is returned back to the stack
pool.

The simplest method of stack allocation is to use task node stacks. Each task in
the OSEK Operating system has the stack linked with a task node. The size of this
stack is the same for all tasks, it is defined via the DefineScheduler configuration
statement. See 4.6.4.2 for this option.

The following options are available for task stack allocation:

1. Allocation of fixed stack linked with the task node.
2. Dynamic stack allocation from the stack pool.
3. Persistent stack allocation from the stack pool.
4. Explicit stack allocation.

These options may be used simultaneously in the system, but one task must use
only one of them. These options allow the user to optimize stack usage in the
application.

The use of the stack allocation options is illustrated in Figure 4–7 , Figure 4–8 ,
Figure 4–9 , Figure 4–10 and explained below.

4.6.4.2 Allocation of fixed stack linked with the task node

To allocate a task stack in this manner the option NODESTACK should be
specified in the DefineTask statement. Every task control block in the system has
an associated stack. The size of this stack is defined via the DefineScheduler
configuration statement and is the same for all task nodes. During task activation,
the system allocates a task control block and the linked stack, and uses this stack
as a task stack. Because all task control blocks have an associated stack, it is the
simplest method of stack allocation. But in this case all tasks will use a stack of the
same (fixed) size regardless of the stack space, really needed for tasks. To remove
such type of stack the system configuration option NodeStack should be turned
off.

Task Node #1 Task Node Stack

stack pointer

task node stack

Task Configuration
Table #1

Figure 4–7 Fixed stack linked with the task node
 MOTOROLA Task Management M68SOSEK

4—14 USER’S MANUAL

4.6.4.3 Dynamic stack allocation from the stack pool

To force a task to use dynamic stack allocation the option POOLSTACK should be
defined in the DefineTask statement and the reference to the stack pool. The stack
pool is defined separately and it is statically assigned to the task. Task #2 is
configured to allocate a stack from the stack pool during task activation. The task
configuration table contains the address of the stack pool, and the system allocates
a stack buffer from this pool, and saves the address of the stack buffer in task node
#2. During task termination the stack buffer is returned to the stack pool queue. The
user is allowed to configure a stack pool of different sizes and the number of stack
buffers in each to satisfy different stack space requirements for various tasks.

NOTE:

The user is responsible for proper quantity of stack buffers to avoid a
possible failure of task activation, if there is no stack buffers left. Also
the increased time of task activation/termination due to stack pool
manipulations timing should be taken into consideration. This
method allows most efficient RAM distribution for task stacks.

4.6.4.4 Persistent stack allocation from the stack pool

To use this option the user should define the ASSIGNSTK and ASSIGNNODE
properties in the DefineTask statement. The system configuration option
PersistentStack must be turned on. In this case the task stack is allocated from the
stack pool during system initialization and the address of the stack is written in the
task control block, which is persistently designated to the task too. In Figure 4–9
task #3 is configured so that the persistent task node and a stack buffer from the
specified pool are allocated for the task at system start-up, and the address of the
allocated stack buffer is placed in the task node.

Task Configuration Task Node #2
Stack Pool

Stack Bufferstack pool node
stack pointer

stack buffer

Figure 4–8 Dynamic stack allocation

Table #2
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—15

NOTE:

Persistent stack from a stack pool may be assigned only for the task
with assigned persistent task node and with assigned stack pool.

4.6.4.5 Explicit stack allocation

Persistent stack allocation is selected via the option OWNSTACK in the task
definition. The system configuration option TaskOwnStack must be turned on. The
user must also specify the stack size. In the figure above the task #4 has a stack
permanently assigned to the task. The user is allowed to assign one static stack
area to different tasks, if these tasks are not activated simultaneously. But with

Task Configuration

Task Node #3

stack pool node

stack pointer

stack buffer

Figure 4–9 Dynamic stack allocation

Table #3
Stack pool

Buffer

Buffer

Buffer

Buffer

buffer
Persistent

Free task

Free task

Persistent

Free task

task node
address

task node#3

node#1

node#2

node#4

Task Nodes

Task Configuration Task Node #4Static Stack

stack pointer

top of stack

Figure 4–10 Static stack allocation

Table #4
 MOTOROLA Task Management M68SOSEK

4—16 USER’S MANUAL

such stack allocation there is the overhead connected with non-used RAM areas
when the task is not activated.

4.6.4.6 Stack size

The minimal size of the task stack depends on:

• the scheduling policy (non-preemptive or preemptive task);

• the services which are used by the task;

• the interrupt and error handling policy;

• the processor type.

The recommended values of the minimal task stack size is provided in SECTION
14 Platform-Specific Features.

NOTE:

If the task stack is less than the minimal value for the given
configuration, it may lead to the unpredictable behavior of the task
and to the system crash.

4.7 Programming Issues

4.7.1 Configuration Options

The following system configuration options affect the task management:

• MultiplyActivation The option controls the multiply activation ability for
Conformance Classes BCC3, ECC1 and ECC2. If the
option is turned off multiply activation is disabled for
tasks of these Conformance Classes.

• TaskIndexMethod If the option is turned on then the intermediate vector of
the pointers to the tasks control blocks is used (fast and
deterministic access to task control blocks).

• NodeStack The option defines the presence of task node stacks in
the system. If it is turned off there are no task node
stacks implemented.

• StackPool The option defines the presence of stack pools in the
system. If it is turned off there are no stack pools
implemented.

• PersistentNode If the option is turned on a persistent task control block
may be assigned to the task.

• PersistentStack If the option is turned on a persistent stack buffer may
be assigned to the task.

• TaskOwnStack The option defines that a task may have its own stack.
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—17

• UseSameContext If the option is turned on the same run time context
frame is used both for non-preemptive and preemptive
tasks in mixed-preemptive systems.

• TaskBasePage If the option is turned on, the task control blocks are
placed into the base page memory. It increases the
system performance since CPU accesses the base
page faster than extended memory. In this case the
user is responsible for the needed amount of RAM in
the base page for the desired number of task control
blocks.

4.7.2 Data types

The OSEK Operating System establishes the following data types for the task
management:

• TaskRefType The abstract data type for task identification;

• TaskStateType The data type for variables to store the state of a task;

• TaskStateRefType The data type to refer variables of the TaskStateType
data type.

The only data types must be used for operations with tasks.

4.7.3 Task Definition

Each task in an application is generated by means of using the DefineTask system
generation statement like the following:

DefineTask(<TaskName>, <TaskProperties>, <TaskPriority>,
<EntryPoint> [,<TaskBank>] [,<InterruptMask>]
[,<TaskStack> [,<TaskStackSize]]);

The application definition file contains one such statement per task. In detail task
generation statement is described in SECTION 12 System Configuration.

To refer to a task the constructional statement should be used to declare the task
before references to it:

DeclareTask(TaskRefType <TaskName>)

This declaration is equivalent to the external declaration of variables.
 MOTOROLA Task Management M68SOSEK

4—18 USER’S MANUAL

4.7.4 Run-time Services

OSEK OS grants a set of services for the user to manage tasks. Detailed
description of these services is provided in SECTION 16 System Services. Here
only the brief list of them is given.

Examples of using the run-time services are provided in section 16.2.11 Examples
for Task Management Services.

4.7.5 Constants

The following constants are used within the OSEK Operating System to indicate
task states:

• RUNNING Constant of data type TaskStateRefType for task state
running

• WAITING Constant of data type TaskStateRefType for task state
waiting

• READY Constant of data type TaskStateRefType for task state
ready

• SUSPENDED Constant of data type TaskStateRefType for task state
suspended

These constants can be used for variables of the TaskStateType.

4.7.6 Conventions

Within the application a task should be defined according to the following pattern:

TASK EntryPoint(void)
{
...
}

Table 4–4 Task Management Run-time Services

Service Name Description

ActivateTask Activates the task, i.e. put it from the suspended into the ready state

TerminateTask Terminates the task, i.e. put it from the ready into the suspended state

ChainTask Terminates the task and activates a new one immediately

Schedule Yields control to a higher-priority ready task (if any exists)

GetTaskId Gets the identifier of the running task

GetTaskState Gets the status of the specified task
M68SOSEK Task Management MOTOROLA

USER’S MANUAL 4—19

The keyword TASK is evaluated by the system generation to clearly distinguish
between functions and tasks in the source code.
 MOTOROLA Task Management M68SOSEK

4—20 USER’S MANUAL

SECTION 5
SCHEDULER

5.1 General

The algorithm deciding which task has to be started and triggering all necessary
OSEK Operating System internal activities is called scheduler . It performs all
actions to switch CPU from one instruction thread to another. It is either switching
from task to task or from ISR back to a task. The task execution sequence is
controlled on the base of task priorities (see section 4.5 Task Priorities) and the
scheduling policy used.

The scheduler is activated whenever a task switch is possible according to the
scheduling policy. The principle of multitasking allows the operating system to
execute various tasks concurrently. The sequence of their execution depends on
the scheduling policy, therefore it has to be clearly defined.

Scheduler also provides the endless idle loop if there is no ready task to be
running. It may occur, when all tasks are in the suspended or waiting state until the
awakening signal from an Interrupt Service Routine occurs. In this case there is no
currently running task in the system, and the scheduler occupies the processor
performing an endless loop while ISR awake a task to be executed. If it is
supported by hardware the scheduler’s idle loop may be replaced by an instruction
that puts CPU in low power mode to reduce power consumption. This property is
turned on via the system configuration option HCLowPower.

The scheduler has its own small stack (the scheduler’s stack) which is needed for
the endless idle loop. The stack size is specified by the user, see section 12.4.1
DefineScheduler. The system property UseMainStack can be specified by the
user. In this case the same stack is used by the main() function, by the scheduler
and by ISRs. This option saves RAM consumption but the user is responsible for
the required memory amount for the stack.

The scheduler can be treated as a specific resource that can be occupied by any
task. See 7.2.2 Scheduler as a Resource for details.

The scheduling policy and some scheduler-related parameters are defined by the
user, see section 12.4.1 DefineScheduler.

5.1.1 Simple Scheduler

If each task in the application has an unique priority the simplified scheduler may
be used to reduce memory and time consuming. In this case the scheduler uses a
M68SOSEK Scheduler MOTOROLA

USER’S MANUAL 5—1

table of tasks instead of the queues. This system property can be turned on via the
system configuration option SimpleScheduler. By default this option is turned off.

The option does not depend on Conformance Classes so it is possible to use this
system property in ECC2 as well as in BCC1, only unique task priorities are
required (one task per priority).

The simplified scheduler can not be used with resource management. Therefore,
if the SimpleScheduler and the Resources options are both turned ON in the
system configuration file, then SimpleScheduler is ignored by the System
Generator, and a warning message is produced (see SECTION 12 System
Configuration).

5.2 Scheduling Policy

The scheduling policy being used determines whether execution of a task may be
interrupted by other tasks or not. In this context, a distinction is made between full-,
non- and mixed-preemptive scheduling policies. The scheduling policy affects the
system performance and memory resources. In the OSEK Operating System all
listed scheduling policies are supported, but in case of the mixed-preemptive policy
each task in an application may use only one of the three policies. It is defined via
the appropriate task property (preemptive/non-preemptive).

Note that the interruptibility of the system depends neither on the Conformance
Class, nor on the task type.

The desired scheduling policy is defined by the user via the system configuration
option SchedulerPolicy. The valid values are - NONPREEMPT, FULLPREEMPT,
MIXPREEMPT.

5.2.1 Non-preemptive Scheduling

The scheduling policy is considered as non-preemptive, if a task switch is only
performed via one of a selection of explicitly defined system services (explicit point
of rescheduling).

Non-preemptive scheduling imposes particular constraints on the possible timing
requirements of tasks. Specifically the non-preemptive section of a running task
with lower priority delays the start of a task with higher priority up to the next point
of rescheduling. The time diagram of the task execution sequence for this policy
looks like the following:
 MOTOROLA Scheduler M68SOSEK

5—2 USER’S MANUAL

Task T2 has the lower priority than task T1. Therefore, it delays task T1 up the point
of rescheduling (in this case termination of task T2).

The following points of rescheduling exist in the OSEK Operating System:

• Successful termination of a task (via the TerminateTask system service);

• Successful termination of a task with explicit activating of a successor task (via
the ChainTask system service);

• Explicit call of the scheduler (via the Schedule system service);

• Explicit wait call, if a transition into the waiting state takes place (via the
WaitEvent system service, Extended Tasks only).

In the non-preemptive system all tasks are non-preemptive and the task switching
will take place exactly in the listed cases.

5.2.2 Full-preemptive Scheduling

Full-preemptive scheduling means that a task which is presently running may be
rescheduled at any instruction by the occurrence of trigger conditions preset by the
operating system. Full-preemptive scheduling will put the running task into the
ready state, as soon as a higher-priority task has got ready. The task context is
saved so that the preempted task can be continued at the location where it was
interrupted.

With full-preemptive scheduling the latency time is independent of the run time of
lower priority tasks. Certain restrictions are related to the increased RAM space
required for saving the context, and the enhanced complexity of features
necessary for synchronization between tasks. As each task can theoretically be
rescheduled at any location, access to data which are used jointly with other tasks
must be synchronized.

Figure 5–1 Non-preemptive scheduling

Task T1

Task T2

suspended ready

suspendedrunning

running

activation of task T1 latency time
for task T1

termination of task T2
M68SOSEK Scheduler MOTOROLA

USER’S MANUAL 5—3

In full-preemptive system all tasks are preemptive.

5.2.3 Mixed-preemptive Scheduling

If full-preemptive and non-preemptive scheduling principles are to be used for
execution of different tasks on the same system, the resulting policy is called
“mixed-preemptive” scheduling. The distinction is made via the task property
(preemptive/non-preemptive).

The definition of a non-preemptive task makes sense in a full-preemptive operating
system in the following cases:

• if the execution time of the task is in the same magnitude of the time of a task
switch,

• if RAM is to be used economically to provide space for saving the task context,

• if the task must not be preempted.

Many applications comprise only few parallel tasks with a long execution time, for
which a full-preemptive operating system would be convenient, and many short
tasks with a defined execution time where non-preemptive scheduling would be
more efficient. For this configuration the mixed-preemptive scheduling policy was
developed as a compromise.

NOTE:

Tasks can be ported between preemptive, non-preemptive and
mixed-preemptive OSEK applications if they do not any assumption
of non-preemptability. That means, that critical data must be
protected using resources and communication must be done using
messages.

Figure 5–2 Full-preemptive scheduling

Task T1

Task T2

suspended suspended

running running

activation of task T1

termination of task T2

ready

termination of task T1

running
 MOTOROLA Scheduler M68SOSEK

5—4 USER’S MANUAL

5.3 Programming Issues

5.3.1 Configuration Options

The following system configuration options is intended to define scheduler
properties:

• SimpleScheduler If the option is turned on the simplified scheduler will be
used in the system, if each task has an unique priority.
It reduces the OS code and increases system
performance.

• SchedulerPolicy The option defines which scheduling policy -
non-preemptive, full-preemptive or mixed-preemptive
will be used in the application.

• UseMainStack If the option is turned on the same stack area is used
for the main() function (during start-up), for the
scheduler stack and for the ISR stack.

• HCLowPower If the option is turned on an instruction that puts CPU in
low power mode is used instead of the scheduler’s idle
loop.

5.3.2 Run-time Services

The scheduler is not accessed by the user directly. The user can only pass the
CPU control to the scheduler by means of the Schedule system service. That leads
to task rescheduling.

The scheduler can be used by the programmer as a resource (in all Conformance
Classes). To provide this possibility, the services GetResource and
ReleaseResource with the constant RES_SCHEDULER as a parameter can be
called by a task. It means that the task cannot be preempted by any other task after
the scheduler occupation, before the corresponding call ReleaseScheduler will be
performed. While the task occupies the scheduler it has the highest priority and,
therefore, cannot be interrupted by other tasks (only ISRs can get the CPU control
during this period). Such programming practice can be used for important critical
sections of code.

See the example:

GetResource(RES_SCHEDULER);
...
/* Critical section - the code here cannot be interrupted by any
other task */
...
ReleaseResource(RES_SCHEDULER); /* End of the critical section */
M68SOSEK Scheduler MOTOROLA

USER’S MANUAL 5—5

5.3.3 Scheduler Definition

The scheduler and some parameters must be defined by the user in the
configuration file via the DefineScheduler statement.

DefineScheduler(<NumberOfTasks>,<NumberOfPriorities>,
 <SchedulerStackSize>, <SchedulerStackAddress>,
 <TaskNodeStackSize>, <TaskNodesStackAddress>);
 MOTOROLA Scheduler M68SOSEK

5—6 USER’S MANUAL

SECTION 6
INTERRUPT PROCESSING

6.1 General

Interrupt processing is the important part of any real-time operating system. An
Interrupt Service Routine (ISR) is a routine which is invoked from an
interrupt source, such as a timer or an external hardware event. ISRs have higher
priority than all tasks and the scheduler. Addresses of ISRs should be pointed in
the vector table.

In OSEK OS all ISRs should use the separate stack (ISR stack) which is used
only by ISRs during their execution. The size of the ISR stack is defined by the
user. At the beginning of an Interrupt Service Routine the user should switch to this
stack using the system service EnterISR. After the ISR completion the
corresponded service LeaveISR should be performed to switch back to the
previous stack. The instruction sequence between the EnterISR and LeaveISR
calls is considered as ISR frame .

When interrupt occurs either current stack can be used or the ISR stack. The
current stack is:

• the stack of the interrupted task,

• the scheduler’s stack if an interrupt occurred during scheduler execution,

• ISR stack in case of nested interrupts.

OSEK OS supports nested interrupts, theoretically up to 255 levels. Special
system counter tracks the number of nested interrupts. Since OS provided means
to switch the stack and to control the interrupt mask, such nested interrupts, if they
were written correct, can be treated as the single one. To not waste a task stack
space in case of nested interrupts or complicated ISR, the ISR stack is used.

OS also controls the state of an interrupt mask. The user defines values of the
interrupt masks for disabling and enabling all interrupts, and the default interrupt
mask for task execution. See section 12.4.2 DefineInterrupts for details.

ISRs can communicate with tasks by the following means:

• ISR can activate a task;

• ISR can send a state or an event message to a task;

• ISR can trigger a counter.
M68SOSEK Interrupt Processing MOTOROLA

USER’S MANUAL 6—1

Interrupts cannot use any OS services except those which are specially allowed to
be used within ISRs. In case of using other services the system behavior will be
unpredictable. In the Extended (debugging) status of the Operating System the
error will be reported in such case. See Table 6–1 and SECTION 16 for details.

6.2 ISR stack

The purpose of the ISR stack is to save the memory. Since interrupts can be
nested, it means, that every task stack has to be big enough to store several
interrupt stack frames (in addition to task needs for local variables, function calls,
etc.). To avoid this overhead, the separate ISR stack is used in the OSEK
Operating System. Switching to this stack is performed by the EnterISR service at
the beginning of ISR. This stack is used only by ISRs, and if nested interrupts occur
after the stack has been switched, they will use this stack too. Before leaving the
ISR switching back to the interrupted task stack have to be done by means of
LeaveISR.

The interrupt stack frame usually consists of the CPU registers, and
optionally some compiler-depended ‘virtual’ registers. The CPU registers are
pushed onto the stack under hardware or software control. In the later case the
compiler generates stack frame by means of adding special sequences of the
machine instructions before the first statement in the function.

Most compilers use function modifiers (like ‘interrupt’) to generate stack frame. In
turn, the ISR keyword, specified in OSEK (see section 6.6.4 Conventions), is a
macro for this modifier.

6.3 ISR Categories

In the OSEK Operating System three types of Interrupt Service Routines are
considered.

6.3.1 ISR category 1

ISRs of this type does not use any operating system service. These ISR does not
use OS services EnterISR and LeaveISR, consequently, ISR of these type are
executed on the current stack. In this case, if ISR uses the stack space for its
execution, the user is responsible for the appropriate stack size. Moreover, if
interrupts are reenabled inside the ISR, nested interrupts are possible which will
use the same task stack. The general recommendation for ISRs category 1 may
be the following:

RULE:

ISR category 1 can not use any OS services. These ISRs have to
disable interrupts inside itself (at the beginning of the routine).
 MOTOROLA Interrupt Processing M68SOSEK

6—2 USER’S MANUAL

After the ISR is finished, processing continues exactly at the instruction where the
interrupt has occurred, i.e. the interrupt has no influence on task management.

ISR ISR_handler
{
...
/* the code without any OS service calls */
...
}

6.3.2 ISR category 2

In ISR category 2 the OSEK Operating System provides the ISR frame to execute
more complicated user code. The ISR frame is instructions between OS services
EnterISR and LeaveISR. Such ISRs must have the EnterISR call at their beginning
to switch to the ISR stack and save the initial interrupt mask. After that any user’s
routine can be executed, include allowed OS calls (to activate a task, send a
message or trigger a counter). See section 6.6.3 Run-time Services for the list of
services allowed for ISR. At the end of the ISR the LeaveISR service must be
executed to switch back to the task stack and restore the interrupt mask.

ISR ISR_handler
{
EnterISR();
...
/* the code with allowed OS calls */
...
LeaveISR();
}

Inside the ISR no rescheduling will take place. Rescheduling may only take place
on termination of the ISR if a preemptive task has been interrupted.

6.3.3 ISR category 3

Such ISR’s are similar to those of category 2. But the location of the ISR-frame in
the code segment is application dependent and user defined. The code outside the
ISR frame can be used, e.g., to access global variables or hardware registers. The
user is responsible for operations outside the ISR frame, since they are executed
on the task stack, and interrupts may be enabled (see section 6.3.1 ISR category
1). No OS service calls can be executed outside the ISR frame.

ISR ISR_handler
{
/* user’s code */
...
EnterISR();
M68SOSEK Interrupt Processing MOTOROLA

USER’S MANUAL 6—3

/* the code with allowed OS calls */
...

LeaveISR();
}

To avoid possible errors the following rule for ISR category 3 is reasonable:

RULE:

In ISR category 3 all operations with using OS services and/or with
enabled interrupts have to be performed only inside the ISR frame.

The OSEK Operating System have no means to distinct ISR category 2 and 3 at
run-time. So such distinction should be made by the user at the stage of source
code writing, and it has a rather conventional nature.

6.4 Interrupt Flag Manipulation

OSEK OS provides services to control the interrupt flag - to disable or enable
interrupts and get the current state of the interrupt mask. These services are
implemented to allow the user to control interrupts in case of several interrupt
levels (for instance, Motorola MC68HC16 MCU has 8 interrupt levels). In this case
it is possible to set the desired interrupt mask which disables some interrupts and
enables other ones. In the interrupt definition statement the user should select
interrupt masks for all interrupts disabled, all interrupts enabled and some desired
medium state (by default a task gets this interrupt mask when it is activated if it has
no its own starting interrupt mask specified). The special data type IntMaskType is
defined within the OSEK Operating System to control interrupt masks.

This version of the OSEK Operating System is intended for Motorola MC68HC08
MCU family which has only two states for interrupts - all disabled or all enabled.
Therefore for HC08 IS services for interrupt flag manipulation simply disables and
enables interrupts and inquires the current status if the interrupt flag. If a task is
preempted by other task or suspended its interrupt mask is saved. When the task
is resumed its saved interrupt mask is restored. When a task is activated it has
either the interrupt mask specified in the task definition statement (see 12.4.4
DefineTask) or the interrupt mask specified in the interrupt definition statement
(see 12.4.2 DefineInterrupts).

6.5 Local Variables Considerations

The EnterISR and LeaveISR functions assume, that the stack frame is defined on
the entry. Moreover, the stack pointer may be changed during the execution of
these functions. This way, the using of the local variables inside ISR may lead to
unpredictable behavior and crash. Therefore, the user is not allowed to use local
variables inside ISR. Instead, the user may split the interrupt service routine into
two functions. The nested function should perform useful work, and may have local
 MOTOROLA Interrupt Processing M68SOSEK

6—4 USER’S MANUAL

variables. The outermost function shall call the nested function framed by the calls
to EnterISR and LeaveISR services.

The example of the right code:

int _SciHandler(void)
{ /* The inner function with local variables */
char status; /* local variable to hold SCI status*/
int num; /* local variable to byte counter*/
... /* useful user’s code*/
}

ISR SciHandler(void) /* Interrupt service routine*/
{ /* No local variables defined*/

EnterISR(); /* Switch to the ISR stack */
_SciHandler(); /* Perform useful work to handle interrupt*/
LeaveISR();

}

The example of the wrong code - local variables are allocated on the task stack,
but the stack pointer is changed by EnterISR after, therefore references to the
variables are invalid:

int _SciHandler(void)
{ /* The inner function without local variables */
... /* useful user’s code*/
}

ISR SciHandler(void) /* Interrupt service routine*/
{
char status; /* local variable to hold SCI status*/
int num; /* local variable to byte counter*/

EnterISR(); /* Stack Pointer is changed ! */
_SciHandler(); /* Perform useful work to handle interrupt*/
LeaveISR();

}

6.6 Programming Issues

6.6.1 Configuration Options

The following system configuration options affects the interrupt management:

• EntryExitISR if the option is turned off it is assumed that there are no
interrupts in the system at all and the Operating System
does not have any interrupt handling mechanisms. No
interrupt management services are implemented.
M68SOSEK Interrupt Processing MOTOROLA

USER’S MANUAL 6—5

• InterruptMaskControl if the option is turned off (while the EntryExitISR
option is turned on) interrupt masks are not
controlled by the operating system. Services
EnableInterrupt,DisableInterrupt, GetInterruptMask
are not implemented.

6.6.2 Data Types

The OSEK Operating System uses the special data type IntMaskType for interrupt
masks. For reference to variables of this type the data type IntMaskRefType is
introduced in OSEK OS.

6.6.3 Run-time Services

OSEK OS provides the set of services for interrupt management. Also some
services may be used both on the task level and on the ISR level. These services
are shown in the Table 6–1 .

6.6.4 Conventions

Within the application an Interrupt Service Routine should be defined according to
the following pattern:

Table 6–1 Interrupt Management Services

Service Name Description

Interrupt Management Services

EnterISR
Registers the switching to the interrupt level and switch context
to the ISR stack

LeaveISR Registers the leaving of the ISR level

EnableInterrupt Enables interrupts in accordance with the given mask

DisableInterrupt Disables interrupts in accordance with the given mask

GetInterruptMask Returns the current state of interrupts

Services allowed for use in ISR

ActivateTask Activates the specified task (puts it into the ready state)

SendStateMessage Sends a state message to the specified task

SendEventMessage Sends an event message to the specified task

CounterTrigger Increments a counter value
 MOTOROLA Interrupt Processing M68SOSEK

6—6 USER’S MANUAL

ISR IsrName(void)
{
...
}

The keyword ISR is the macro for compiler specific interrupt function modifier,
which is used to generate valid code to enter and exit ISR.

6.6.5 ISR definition

To define common ISR parameters like ISR stack size and predefined interrupt
masks the DefineInterrupts statement should be specified in the configuration file:

DefineInterrupts(<DisableMask>, <EnableMask>, <TaskMask>,
 <ISRStackSize>, <ISRStackAddress>);

See 12.4.2 DefineInterrupts for details.
M68SOSEK Interrupt Processing MOTOROLA

USER’S MANUAL 6—7

 MOTOROLA Interrupt Processing M68SOSEK

6—8 USER’S MANUAL

SECTION 7
RESOURCE MANAGEMENT

7.1 General

The resource management is used to coordinate concurrent accesses of several
tasks to shared resources, e.g. management entities (scheduler), program
sequences (critical sections), memory or hardware areas. In general, the resource
management is provided in all Conformance Classes, but it is fully supported only
beginning from the BCC3 Conformance Class. In BCC1 and BCC2 only the
scheduler is treated as the specific system resource which can be used by tasks.

Resource management ensures that

• two tasks cannot “own” the same resource at the same time,

• priority inversion cannot arise while resources are used,

• deadlocks do not occur by use of these resources,

• access to resources never results in a waiting state.

The functionality of resource management is only required in the following cases:

• full- or mixed-preemptive scheduling;

• non-preemptive scheduling, if resources are also to remain occupied beyond
a scheduling point (except the scheduler resource);

• non-preemptive scheduling, if the user intends to have the application code
executed under other scheduling policies too.

Resources cannot be occupied by more than one task at a time. The resource that
is now by a task must be released before another tasks can it. The OSEK operating
system ensures that tasks are only transferred from the ready state into the running
state, if all resources which might be occupied by that task during its execution
have been released. Consequently, no situation occurs in which a task tries to
access an occupied resource. The special mechanism is used by the OSEK
Operating System to provide such behavior, see 7.2.1 Priority Ceiling
Protocol for details.

The waiting state is not admissible for Extended Tasks while a resource is
occupied. It means that the task occupying a resource is not allowed to call the
WaitEvent service.

In case of multiple resource occupation, the task has to request and release
resources following the LIFO principle (stack). For example, if the task needs to get
M68SOSEK Resource Management MOTOROLA

USER’S MANUAL 7—1

the communication hardware and then the scheduler to avoid possible preempts,
the following code may be used:

GetResource(SCI_res); /* occupy the SCI resource */
... /* user’s code */
GetResource(RES_SCHEDULER); /* occupy the scheduler resource */
... /* user’s code */
ReleaseResource(RES_SCHEDULER); /* release the scheduler */
ReleaseResource(SCI_res); /* release the SCI resource */

OSEK OS resource management allows the user to prevent such situations as
priority inversion and deadlocks which are the typical problems of common
synchronization mechanisms in real-time applications (e.g., semaphores).

7.2 Access to Resources

Before their using resources must be defined by the user at system configuration
stage via the configuration statement DefineResource, see section 12.4.6
DefineResource. Then the resource is declared in the source file where it will be
used by means of system declaration statement DeclareResource (see section
16.4 Resource Management Services). After that the task can occupy and
release the resource using the GetResource and ReleaseResource services.
While the resource is occupied i.e., while the code between these services are
executed, this resource cannot be requested by another task.

In the OSEK Operating System resources are ranked by priority. Each resource is
assigned statically to a user defined priority which is called Ceiling Priority . It is
possible to have resources with the same priorities, but the resource Ceiling
Priority has to be identical or higher to the highest task priority with access to this
resource. This resource feature supports the Priority Ceiling Protocol .

7.2.1 Priority Ceiling Protocol

The Priority Ceiling Protocol is implemented in the OSEK Operating System as a
resource management discipline.

When a task occupies a resource the system temporary changes its priority. It is
automatically set to the Ceiling Priority by the resource management. Any other
task which might occupy the same resource does not enter the running state due
to its lower or equal priority. If the resource occupied by the task is released, the
task returns to its former priority level. Other tasks which might occupy this
resource can now enter the running state.

The example shown in Figure 7–1 illustrates the mechanism of the Priority Ceiling
Protocol.
 MOTOROLA Resource Management M68SOSEK

7—2 USER’S MANUAL

In the figure above Task 1 has the highest priority, Task 4 has the lowest Priority.
The resource has the priority greater than or equal to the Task 1 priority. When
Task 4 occupies the resource it gets the priority not less then Task 1, therefore it
cannot be preempted by ready Task 1 until it release the resource. Just after the
resource is released, Task 4 is returned to its low priority and becomes ready, and
Task 1 becomes the running task. When Task 1, in its turn, occupies the resource,
its priority is also changed to the Ceiling Priority.

7.2.2 Scheduler as a Resource

The OSEK operating system treats the scheduler as a specific resource which is
accessible to all tasks. Therefore, a standard resource with the predefined
identifier RES_SCHEDULER is generated, and it is supported in all Conformance
Classes. If a task calls the services GetResource or ReleaseResource with this
identifier as a parameter, the task will occupy or release the scheduler in the
manner of a simple resource. See the code example in section 7.1.

If a task wants to protect itself against preemptions by all other tasks, it can occupy
the scheduler exclusively. When it is occupied, interrupts are received and
processed normally. However, it prevents the rescheduling of tasks. It is not

suspended

running ready

suspended

suspended

ready suspended

ready

ready

running running

running running

running

running

suspended

running

suspended

Task 1

Task 2

Task 3

Task 4

Ceiling
Priority

release
resource

request resource

release
resource

request resource

Figure 7–1 Priority Ceiling Protocol
M68SOSEK Resource Management MOTOROLA

USER’S MANUAL 7—3

allowed for a task to get the scheduler and then yield CPU via the Schedule
service. The application behavior will be unpredictable in this case.

NOTE:

If a non-preemptive task gets the scheduler as a resource it must to
release it before the point of rescheduling!

7.3 Programming Issues

7.3.1 Configuration Options

The following system configuration options control the resource management in
the OSEK OS:

• Resources This options defines whether resource management is
provided by the OS or not.

• FastResource The option can be specified by the user to increase the
system performance. If it is turned on the system will work
faster. But this option may be used only for debugged
applications, because errors related to incorrect access
and priority are not signalled. If this option is turned on
less amount of ROM and RAM is needed for resources.
But, if resources priorities have a big difference (e.g. first
resource has priority 1 and the second resource has
priority 20) this option does not lead to RAM saving.

7.3.2 Data types

The OSEK Operating System establishes the following data type for the resource
management:

• ResourceRefType the abstract data type for referencing a resource;

The only data type must be used for operations with resources.

7.3.3 Run-time Services

OSEK OS grants a set of services for the user to manage resources. Detailed
description of these services is provided in 16.4 Resource Management
Services. Here only the brief list of them is given.

Service Name Description

GetResource
This call serves to occupy the resource (critical section of the code,
assigned to the resource)
 MOTOROLA Resource Management M68SOSEK

7—4 USER’S MANUAL

7.3.4 Resource Definition

To define a resource the following definition statement should be specified in the
generation file:

DefineResource(<ResourceID>, <ResourcePriority>);

For more details see section 12.4.6 DefineResource.

To refer to a resource the declaration statement should be used to declare the
resource before its using:

DeclareResource(ResourceRefType <ResourceID>);

This declaration is equivalent to the external declaration of variables.

ReleaseResource
Releases the resource assigned to the critical section (to leave the
critical section)

Service Name Description
M68SOSEK Resource Management MOTOROLA

USER’S MANUAL 7—5

 MOTOROLA Resource Management M68SOSEK

7—6 USER’S MANUAL

SECTION 8
COUNTERS AND ALARMS

The OSEK operating system comprises a two level concept to make use of
recurring events like periodic interrupt of timers, interrupt of the sensors on rotating
angles, or any recurring software events. To manage such situation counters and
alarms are provided by the OSEK Operating System. The recurring events
(sources) can be registered by counters. Based on counters, the OSEK OS offers
alarm mechanism to the application software. Counters and alarms are provided
by the OSEK OS in all Conformance Classes.

8.1 Counters

Any event in the system can be linked with a counter. It means, when the event is
occurred, the counter value is changed. A counter is identified in the system via its
symbolic name which is assigned to the counter statically at the configuration
stage.

 A counter is represented by a current counter value and some counter specific
parameters. These parameters are the counter initial value , the
conversion constant and the maximum allowed counter value . They
are defined by the user. The latter two parameters are constants and they are
defined at system generation time. The counter initial value is the dynamic

Figure 8–1 Counters and alarms

counter

source

alarm

1:1 n:1 1:n

alarm

source source

counter

alarm
alarm

counter counter

source

alarm alarm

Task

SetEvent

Task

ActivateTask
M68SOSEK Counters and Alarms MOTOROLA

USER’S MANUAL 8—1

parameter. The user can initialize the counter with this value and thereafter on task
or on interrupt level advance it using the system service CounterTrigger.

The maximum allowed counter value specifies the number after that the counter
rolls over. When a counter reaches its maximum allowed possible value (or rolls
over the predefined size - byte etc.), it starts counting again from zero.

NOTE:

The maximum allowed counter value is never really reached by a
counter. It means, that if, for instance, value 5 is specified as the
maximum allowed one, 5 is never can be read as a current counter
value. If an alarm should be set for value 5, the maximum allowed
counter value must be 6.

The user also defines the maximal size of all counters in the system - they can be
byte-, word- or longword-sized. This is defined via the system properties
CounterSize.

The conversion constant can be used to convert the counter value into an
appropriate user specific unit of measurement, e.g. seconds for timers, angular
degrees for rotating axles. The conversion is done by the user’s code and this
parameter can be treated as a counter-specific reference value.

The operating system provides the standard service GetCounterInfo to read these
counter specific values. Also the service GetCounterValue is designed to read the
current counter value.

At least one counter always exists in the system. This counter is used as a
system timer (the internal system clock). The system timer is a standard
counter with the following additions:

• the user must always define the system timer in an application;

• special constants are defined to describe counter parameters and to decrease
access time;

• the user defines the source of hardware interrupts for the system counter.

In the system definition statement for the system timer the user should define one
of possible hardware interrupt sources. Parameters to tune the hardware can be
also defined by the user in this statement. This possibility allows the user to exactly
tune the system (see SECTION 14 Platform-Specific Features for details).

If hardware related parameters are defined, the code to initialize the system timer
hardware and the interrupt handler are automatically provided for the user as a part
of OSEK OS. In that case the user does not have to care about handling of this
interrupt and he/she can not change the provided code. If the parameters are not
defined the user has to provide the code to initialize the hardware and handle the
 MOTOROLA Counters and Alarms M68SOSEK

8—2 USER’S MANUAL

interrupt. In this case in ISR for the specified interrupt the service CounterTrigger
must be used to advance the counter.

NOTE:

The system timer will not be triggered if the EntryExitISRproperty is
turned OFF!

The system timer has a predefined conversion constant that equals to the number
of ticks required to reach 10 milliseconds.

Hardware interrupts which are used to trigger counters have to be handled in usual
manner. To perform any actions with the counter the application software
processing the event should call the system service CounterTrigger. This service
must be called within the ISR frame created by the EnterISR and LeaveISR
services. It is not allowed to use CounterTrigger in ISR category 1 (see section 6.3
ISR Categories).

The user is free to assign one source exactly to one counter (1:1 relationship),
several sources to one counter (n:1 relationship), or one source to several counters
(1:n relationship), see Figure 8–1 Counters and alarms . It means that it is
possible to advance the same counter in different software routines.

8.2 Alarms

The alarm management is built on top of the counter management. The alarm
management allows the user link task activation or event setting to a certain
counter value. These alarms can be defined to be either single (one-shoot) or
cyclic alarms.

The OSEK OS allows the user to set alarms (relative or absolute), cancel alarms
and read information out of alarms by means of system services. Alarm is
referenced via its symbolic name which is assigned to the alarm statically at the
configuration stage.

Examples of possible using of alarms are:

— “Activate a certain task, after the counter has been advanced 60 times”, or

— “Set a certain event, after the counter has reached a value of 90”.

The counter addressed in the first example might be derived from a timer which is
advanced every second. The task in the example is then activated every minute.
The counter addressed in the second example might be derived from a rotating
axle. The event is set on a 90 degree angle.

The OSEK OS takes care of the necessary actions of managing alarms when a
counter is advanced.
M68SOSEK Counters and Alarms MOTOROLA

USER’S MANUAL 8—3

Alarms are defined statically as all other system resources. The assignment of
alarms to counters, as well as the action to be performed when an alarm expires
(task and event) are defined statically, too. After the alarm was defined and
assignment to a counter an application can use this alarm. Alarms may be either
in the stop state or running state. To run an alarm the special system services are
used which set dynamic alarm parameters to start it.

Dynamic alarm parameters are

• the counter value when an alarm has to expire

• the cycle value for cyclic alarms.

An alarm can be start at any moment by means of system services SetAbsAlarm
or SetRelAlarm. An alarm will expire (and predefined actions will take place) when
a specified counter value is reached. This counter value can be defined relative to
the actual counter value or as an absolute value. The difference between relative
and absolute alarms is the following:

• Relative alarm expires when the specified number of counter tick elapses
starting from the current counter value at the moment of alarm setting.

• Absolute alarm expires when the counter reaches the specifies number of
ticks starting from zero counter value, no matter which value the counter have
at the moment of alarm setting. If the specified number of ticks is less than the
current counter value, the counter will roll over and count until the specified
value. If the specified value is greater than the current value, the alarm will
expire just after the counter reaches the desired number. It is illustrated by
Figure 8–2 . In the latter case the total time until the alarm expires is the sum
of T1 and T2.

If a cycle value is specified for the alarm it is logged on again immediately after
expiry with this relative value. Specifies actions (task activation or event setting) will
occur when the counter counts this number of ticks starting from the current value.

x

x

current
counter value

specified
absolute value

specified
absolute value

x

x

maximum allowed
counter value0

0

current
counter value

T1

T2 T1

Figure 8–2 Two cases for the absolute alarm
 MOTOROLA Counters and Alarms M68SOSEK

8—4 USER’S MANUAL

This behavior of the cyclic alarm is the same both for relative and absolute alarms.
If the cycle value is not specified (it equals zero) the alarm is considered as single
one.

8.3 Programming Issues

8.3.1 Configuration Options

The following system configuration options affect the counter and alarm
management:

• Counters This options defines whether counters are providedby the OS
or not.

• CounterSize This option defines the size of all counters. The valid values
are 8, 16 and 32 which conform to byte, word or long word
size of counters.

• Alarms This options defines whether alarms are provided by the OS
or not.

• AlarmList If the option is turned on the running alarms are linked into a
list which decreases the time for alarm handling.

8.3.2 Data Types

The following data types are established by OSEK OS to work with counters and
alarms:

• CtrRefType - the data type references a counter

• TickType - the data type represents a counter value in system ticks

• TickRefType - the data type references data corresponding to the data type
 TickType

• CtrInfoType - the data type represents a structure for storage of counter
 characteristics. This structure has the following fields:

• maxallowedvalue maximum possible allowed count value;

• tickperbase number of ticks required to reach a counter-specific
 significant unit;

• mincycle minimum allowed number of ticks for a cyclic alarm
(only for system with Extended Status).

 All fields have the data type TickType. The following code may illustrate usage
of this data type:

 CtrInfoType CntData;
 TickType maxV, minC, cons;

M68SOSEK Counters and Alarms MOTOROLA

USER’S MANUAL 8—5

 GetCounterInfo(CntID, &CntData);
 maxV = CntData.maxallowedvalue;
 minC = CntData.tickperbase;
 cons = CntData.mincycle;

• CtrInfoRefType- the data type references data corresponding to the data
 type CtrInfoType

• AlarmRefType - the data type represents the reference to an alarm element.

8.3.3 Counters and Alarm Generation

To generate a counter in an application the DefineCounter statement is used, it
looks like the following:

DefineCounter(<CounterID>, <maxallowedvalue>,
<ticksperbase> [,<mincycle>]);

The system counter (system timer) has always to be defined in the system in the
following manner:

DefineSystemTimer(<CounterID>, <maxallowedvalue>,
 <ticksperbase>, <tickduration> [,<mincycle>]

 [, <HardwareType> [, <HardwareParams>]]);

An alarm is generated by means of the DefineAlarm statement:

DefineAlarm(<AlarmID>, <CounterID>, <TaskID> [,<Event>]);

The application definition file must contain at least the system counter definition. In
detail counter and alarm generation statements is described in section 12.4.9
DefineAlarm.

To refer to a counter or alarm the declaration statements should be used to declare
the element (counter or alarm) before their using:

DeclareCounter(CtrRefType <CounterID>);
DeclareAlarm(AlarmRefType <AlarmID>);

These declarations are equivalent to the external declaration of variables.
 MOTOROLA Counters and Alarms M68SOSEK

8—6 USER’S MANUAL

8.3.4 Run-time Services

OSEK OS grants a set of services for the user to manage counters and alarms.
Detailed description of these services is provided in SECTION 16 System
Services. Here only the brief list of them is given.

Examples of the run-time services usage are provided in SECTION 16 .

8.3.5 Constants

For system counter, which is always a time counter, the special constants are
provided by the operating system:

• OSMAXALLOWEDVALUE - maximum possible allowed value of the system
timer in ticks;

• OSTICKSPERTIME - number of ticks that are required to reach 10
milliseconds in the system counter;

• OSTICKDURATION - duration of a tick of the system counter in nanoseconds;

• OSMINCYCLE - minimum allowed number of ticks for a cyclic alarm (only for
system with Extended Status).

Table 8–1 Counter and Alarm Management Run-time Services

Service Name Description

InitCounter Sets the initial value of the counter

CounterTrigger Increments the counter value

GetCounterValue Gets the counter current value

GetCounterInfo Gets counter parameters

SetRelAlarm Sets the alarm with a relative start value

SetAbsAlarm Sets the alarm with an absolute start value

CancelAlarm Cancels the alarm: the alarm is transferred into the STOP state

GetAlarm Gets the time left before the alarm expires
M68SOSEK Counters and Alarms MOTOROLA

USER’S MANUAL 8—7

 MOTOROLA Counters and Alarms M68SOSEK

8—8 USER’S MANUAL

SECTION 9
EVENTS

9.1 General

Within the OSEK operating system tasks can be synchronized via occupation of a
resource (see SECTION 7). Another means of synchronization is the event
mechanism, which is provided for Extended Tasks only. Special fields in the task
node of an Extended Task are provided for event management in the OSEK OS
(see 4.6.2 Task Control Block). Events are the only mechanism allowing a task
to enter the waiting state.

An event is an object managed by the OSEK Operating System, which is able to
store binary data. The interpretation of the event is up to the user. Examples are:
the signalling of a timer’s expiry, the availability of a resource, the receipt of a
message, etc.

Within the operating system, events are not independent objects, but allocated to
Extended Tasks. Each ET has a definite number of events - 8 or less (in fact, the
byte size are used for event management in the current OSEK OS
implementation.). Events are represented by two event masks - byte-sized fields in
the task node (See 4.6.2 Task Control Block). One field is the mask of events the
task is waiting for, this mask can be set and cleared only by the task-”owner“ (a
“private” mask). The second field (a “public” mask) contains the mask of the events,
which are set for the task by other tasks. When activating an Extended Task, all its
events are cleared.

An Extended Task can wait for several events simultaneously and setting at least
one of them causes the task to be transferred into the ready state. When a task
wants to wait for one event or several ones, the corresponding bits in its “private”
event mask are set. The system service WaitEvent is designed to force a task to
wait for an event. When other task sets an event it sets the specified bits of the
“public” event mask, and if some bits in both “private” and “public” masks are the
same, the task is transferred into the ready state. The task can clear its own events
by clearing the “private” event mask.

Various system services are available to manipulate events, depending on whether
the dedicated task is the “owner” of the event or another task which does not
necessarily have to be an Extended Task. All tasks can set any events of any
Extended Task. Only the appropriate Extended Task (the owner of the particular
event mask) is able to clear events and to wait for the setting (receipt) of events.
M68SOSEK Events MOTOROLA

USER’S MANUAL 9—1

Basic Tasks must not use the operating system services for clearing events or
waiting for them.

An alarm can also be set for Extended Task which sets an event at a certain time.
Thus, the Extended Task can delay itself (see example in section 16.6.6 Examples
of using events).

It is not possible for an interrupt service routine or a Basic Task to wait for an event,
since the receiver of an event is an Extended Task in any case. On the other hand,
any task (but not an interrupt) can set an event for an Extended Task, and thus
inform the appropriate Extended Task (its identification must be known) about any
status change via this event.

To have events in the system the configuration option Events must be turned on.

9.2 Events and Scheduling

An event is an exclusive signal which is assigned to an Extended Task. For the
scheduler, events are the criteria for the transition of Extended Tasks from the
waiting state into the ready state. The operating system provides services for
setting, clearing and interrogation of events, and for waiting for events to occur.

Extended Tasks are in the waiting state, if an event for which the task is waiting has
not occurred. If an Extended Tasks tries to wait for an event and this event has
already occurred, the task remains in the running state.

Figure 9–1 illustrates the procedures which are effected by setting an event:
Extended Task 1 (with higher priority) waits for an event. Extended Task 2 sets this
event for Extended Task 1. The scheduler is activated. Subsequently, Task 1 is
transferred from the waiting state into the ready state. Due to the higher priority of
Tasks 1 this results in a task switch, Task 2 being preempted by Task 1. Task 1
resets the event. Thereafter Task 1 waits for this event again and the scheduler
continues execution of Task 2.
 MOTOROLA Events M68SOSEK

9—2 USER’S MANUAL

If non-preemptive scheduling is supposed, rescheduling does not take place
immediately after the event has been set as it is shown in Figure 9–2 .

Figure 9–1 Synchronization of Extended Tasks by setting events in
case of full-preemptive scheduling.

waiting waiting

readyset event

reset event wait for event

running

running

running

Scheduler

Event of
Extended Task 1

Extended Task 1

Extended Task 2

reset

set

reset

Figure 9–2 Synchronization of Extended Tasks by setting events in
case of non-preemptive scheduling.

waiting waiting

readyset event

reset event wait for event

running

running

running

Scheduler

Event of
Extended Task 1

Extended Task 1

Extended Task 2

reset

set

reset

rescheduling

ready
M68SOSEK Events MOTOROLA

USER’S MANUAL 9—3

9.3 Programming Issues

9.3.1 Configuration Options

The only system configuration option Events controls event management in the
system. If it is turned off events are not implemented.

9.3.2 Data Types

The OSEK Operating System establishes the following data types for the event
management:

• EventMaskType The data type of the event mask;

• EventMaskRefType The data type to refer to an event mask.

The only data types must be used for operations with events.

9.3.3 Events Definition

Events are not defined by the user at the system configuration stage.

9.3.4 Run-time Services

OSEK OS grants a set of services for the user to manage events. Detailed
description of these services is provided in 16.6 Event Management Services.
Here only the brief list of them is given.

Examples of the run-time services usage are provided in section 16.6 Event
Management Services.

9.3.5 Additional usage

Note that it is possible to use bits in memory fields assigned for events for some
internal task’s needs, as bit flags. In case of using events in the system in every
Extended task’s control block special fields are created. If a task uses less than 8
events it is possible to use SetEvent and ClearEvent system services with

Table 9–1 Event Management Run-time Services

Service Name Description

SetEvent Sets events of the given task according to the event mask

ClearEvent Clears events of the calling task according to the event mask

GetEvent Gets the current event setting of the given task

WaitEvent Transfers the calling task into the waiting state until specified events
are set
 MOTOROLA Events M68SOSEK

9—4 USER’S MANUAL

appropriate masks to manipulate internal task’s bit flags. See the following
example:

#define X_FLG 0x80 /* define masks for internal flags */
#define Y_FLG 0x40
#define Z1_FLG 0x20
#define Z2_FLG 0x10

DeclareTask(TASK_A)
DeclareTask(TASK_C)

TASK taskA_ext
{
EventMaskType x, y, z1, z2;
z1 = Z1_FLG; z2 = Z2_FLG;
int speed;

...
if (speed == LIMIT)
 {
 x = X_FLG;
 SetEvent(TASK_A, x);
 }

GetEventMask(TASK_A, &x);
if ((x & X_FLG) != 0) ClearEvent(z1);
else SetEvent(TASK_A, z2);
if ((x & Y_FLG) == 0) ChainTask(TASK_C);
...
}

In the example the task uses 4 most significant bits of the event field as its internal
bit flags. Least significant bits are free and they can be used for “external” OSEK
OS events. But such approach requires more attention from the user to avoid
occasionaly changing of “internal” events instead of “externa” ones and visa versa.

Note that access to that binary data is performed only via the system services for
event management.
M68SOSEK Events MOTOROLA

USER’S MANUAL 9—5

 MOTOROLA Events M68SOSEK

9—6 USER’S MANUAL

SECTION 10
COMMUNICATION

10.1 Message Concept

In OSEK Operating System communication between application tasks takes place
via messages. Messages are stored in Message Objects (MO) which are
handled by the operating system. A distinction is made between the following:

• State Messages and

• Event Messages

A State Message represents the current value of a system variable, e.g. engine
temperature, wheel speed, etc. State Messages are not buffered but overwritten
with their actual values. The receive operation reads the State Message value.
Thereby the message data is not consumed.

In contrast, an Event Message contains an event information, e.g. “engine
temperature exceeds a certain limit”. Event Messages are buffered with the send
operation and consumed with a receive operation.

In OSEK OS message objects are referenced by tasks via these unique identifiers
defined by the user at the configuration stage.

The OSEK Operating System ensures data consistency of message data during
task operation, uniform in all types of scheduling. The received message data
remains unchanged until a further receive operation is performed, unless the task
or function using the data overwrites the data with a direct access operation.

OSEK supports two types of communication between tasks: 1:1 and 1:N
communication.

• 1:1 communication means that only one task receives the message;

• 1:N communication means that N tasks receive the same message.

Both types of messages, State and Event Messages can be used for 1:1 and 1:N
communication, for local (ECU-internal) and network communication.

As an option, task activation or event signalling can be defined statically to be
performed at message arrival to notify a task. Task activation or event signalling
can be used to inform tasks which want to react immediately on new message
information. There is no special operating system service to wait for messages, but
normal event mechanism is used. Only one notification method can be assigned
for certain message.
M68SOSEK Communication MOTOROLA

USER’S MANUAL 10—1

Alarms can statically be assigned to message objects (only one alarm per
message object). If the message does not arrives during the time period specified
in the DefineMessageAlarm configuration statement, the alarm counter expires
and an associated task is activated or an event is signalled. Whenever a message
arrives, the alarm is restarted again. This feature can be used to supervise if State
Messages are updated or Event Messages arrive on time.

It is possible to assign both an alarm and task notification (task activation or event
signalling) to a certain message object.

Each message in OSEK OS may have a so-called timestamp - the special field
which is updated by the user before message sending. The timestamp is designed
to notify the message receiver about the time when the message was sent. The
user defines statically whether a message has a timestamp or not with the help of
configuration options StateMsgTimeStamp and EventMsgTimeStamp. If a
message is to be with a timestamp, the following code should be written:

typedef MSGA tagMsgA
struct tagMgsA
{

TickType timeStamp;
int x;

};

OSEK OS communication services provide all means for local message transfer,
within single ECU. To transfer data over the network the OSEK Communication
System (COM) will be used, which is designed to handle all other types of
communication through the network. And OSEK OS communication services
provide an interface for application tasks to exchange data. Thus, messages serve
as interface for both, ECU - internal and network communication. Uniform services
with identical interfaces are offered (network transparency).

Table 10–1 Features of the Message Concept

State Message Event Message

No buffering Buffering in a FIFO-queue

No consumption of message Consumption of messages

Direct access possible in non-preemptive
systems (no copies)

No direct access possible (always copies)

Static definition of task activation or event signalling

Static definition of a message alarm
 MOTOROLA Communication M68SOSEK

10—2 USER’S MANUAL

10.2 State Messages

State Messages represent the current value of a state variable. Tasks can have
three various access type to State Messages - read only (receive), write only
(send) and full read/write access. The send operation overwrites the current value
of a message, i.e. State Messages are not buffered. The receive operation reads
the current value of a State Message whereby the message data is not consumed.

These services ensure:

• the consistent writing and reading of message data within the send and
receive operation (also in preemptive systems) and

• the consistency of data while tasks and functions (subprograms) use the
message data.

A State Message can have a default value which is assigned to the message at the
configuration stage statically. This value is returned when the message is received
first time without prior send operation.

State Messages may be either with local copy of a message or without one. It
indicates with qualifiers WithCopy and WithoutCopy when message is declared.
The distinction between these kinds of State Messages is the following:

• When the WithCopy qualifier is used, the State Message item is copied from
the task data space into the message item for send operation, and from the
message item to the task data space for receive operation. The message
body is copied consistently, i.e. the operating system provides atomic
behavior of the send-receive operations. The default value is copied from the
user’s-defined area into the message body during system start-up.

• When the WithoutCopy qualifier is used, the State Message item is not
copied from the task data space into the message item. Instead, the
task-sender updates the message body directly via de-referencing of the
pointer and writing the data at the pointer address, and the task-receiver uses
the message body by means of de-referencing the pointer and reading the
data. The operating system doesn’t provide atomic behavior of the
send-receive operations, and this consistency is to be provided by the user’s
code.

State Messages are used similar to C-language variables (direct access e.g. in a
C-language assignment or in a C-language expression). The access privileges
(send, receive or send/receive) defined for a message also determine which direct
access operations are allowed.

1:N communication for State Messages does not have any difference from 1:1
communication, since any task can read the State Messages if its identifier is
known.
M68SOSEK Communication MOTOROLA

USER’S MANUAL 10—3

To have State Messages in the system the configuration option StateMessage
must be turned on.

10.3 Event Messages

In contrast to State Messages, Event Message objects can temporarily store
several messages. The temporary storage follows the FIFO principle, i.e.
messages are received in the same order as they were sent. During the send
operation the message item is copied from the task data space into the message
FIFO area at the write pointer. During the read operation the message item is
copied from the FIFO area at the read pointer into the receiving task space. The
data is copied consistently, i.e. the operating system provides atomic behavior of
the send-receive operations. The FIFO area is circular. It is illustrated in Figure
10–1. Message “msg1” is consumed from the Event Message object by a task, and
other message items are “moved” in the Event MO towards the top (in fact, read
and write pointers are changed). After the message item “msg1” was consumed,
new message “msg5” is written by a task at the empty location (the last one). If an
Event Message object has no memory capacity left to store the new message, the
oldest message is overwritten - in Figure 10–1 “msg2” is overwritten by the
message item “msg6” in spite that “msg2” has not been consumed. The overwriting
process is indicated both to sender and receiver in systems with Extended Status
by means of return codes while send or receive services are executed by a task.

An Event Message is characterized by the length of a single message item and by
the depth of a queue. These parameters are defined by the user at the
configuration stage.
 MOTOROLA Communication M68SOSEK

10—4 USER’S MANUAL

Event communication includes an implicit synchronization of the communication
partners since an Event Message must be sent before it can be received. When
the receive operation is performed, an Event Message is removed from the
message object and is thus consumed.

In case of multiple receivers (1:N communication) OSEK OS ensures that no
receiver may receive a new message, until all receivers will complete the reception
of the current message. The last receiver consumes the message.

To have Event Messages in the system the configuration option EventMessage
must be turned on.

10.4 Programming Issues

10.4.1 Configuration Options

The following system configuration options are intended to control communication
features:

• StateMessage The option allows State Messages in the system;

“msg2”

“msg3”

“msg4”

“msg5”

“msg1”

“msg3”

“msg1” is con-
sumed by a task

New message “msg5”
is written by a task into
the Event MO

“msg2”

“msg3”

“msg4”

“msg2”

“msg4”

“msg5”

“msg6”

New message “msg6”
will overwrite “msg5” of
the Event MO

read
pointer

read
pointer

read
pointer

write
pointer

write
pointer

write
pointer

Figure 10–1 Operations with Event Messages

. . .

1 2 3

. . .
M68SOSEK Communication MOTOROLA

USER’S MANUAL 10—5

• StateMsgDefaultValue The option allows State Messages to have default
values;

• StateMsgTimeStamp The option allows State Messages to have a time
stamp;

• EventMessage The option allows Event Messages in the system;

• EventMsgTimeStamp The option allows Event Messages to have a time
stamp;

• EventMessageOneToN If the option turned on, 1:N Event Messages are
allowed;

• ActivateOnMsg If the option turned on task activation on message
arrival is supported;

• AlarmOnMsg If the option turned on an alarm can be linked to
message arrival;

• SetEventOnMsg If the option turned on event setting is allowed on
message arrival.

10.4.2 Identifiers

The following names are used in the OSEK Operating System for work with
messages:

• SymbolicName This is a unique name representing a message. It only
can be used in conjunction with calls of the message
service.
A SymbolicName need not be a data type. Variables or
constants of SymbolicName can be declared or used.

• AccessModeName This is a unique name defining access to a message
object. Legal names are Send, Receive and
SendReceive.

• CopyQualifierName This is a unique name defining whether local copies of
a state message will be created. Legal names are
WithCopy and WithoutCopy.

10.4.3 Message Definition

Each message in an application is generated by means of using statements like
the following:

DefineStateMessage(<MsgName>, <Type>, <Size>, <TStamp>
[, <DefaultValue>]);

DefineEventMessage(<MsgName>, <Type>, <Size>, <BufferSize>,
<NRec>, <OCheck>, <TStamp>);

ActivateOnMessage(<MsgName>, <TaskId>);
 MOTOROLA Communication M68SOSEK

10—6 USER’S MANUAL

SetEventOnMessage(<MsgName>, <TaskId>, <EventMask>);
DefineMessageAlarm(<MsgName>, <AlarmId>, <TimeOut> [, <Start>]);

The DefineStateMessage and DefineEventMessage statements defines State and
Event message correspondingly. The ActivateOnMessage statement is designed
to link activation of the specified task with message arrival. The
SetEventOnMessage is intended to link event setting for the specified task on
message arrival. The DefineMessageAlarm statement is designed to link an alarm
with message arrival - when the message arrives the alarm is restarted. In detail
message configuration statements is described in SECTION 12 System
Configuration.

To refer to a message the constructional elements should be used to declare
messages, State and Event ones correspondingly:

UsesStateMessage[AsParameter](SymbolicName <Msg>,
AccessModeName <Access>,
CopyQualifierName <Copy>);

UsesEventMessage[AsParameter](SymbolicName <Msg>,
AccessModeName <Access>);

This declaration is equivalent to the external declaration of variables. If the syntax
UsesStateMessageAsParameter or UsesEventMessageAsParameter is
used it means that a message is the function parameter. Such declaration
elements are used in function declarations, see example in 10.4.5 Usage of
Messages.

10.4.4 Run-time Services

OSEK OS grants a set of services for the user to manage tasks. Detailed
description of these services is provided in section 16.7 Communication
Management Services. Here only the brief list of them is presented.

Examples of the run-time services usage are provided in SECTION 16.

Table 10–2 Task Management Run-time Services

Service Name Description

SendStateMessage Updates the state message

ReceiveStateMessage Gets the state message

SendEventMessage Send the event message

ReceiveEventMessage Receives (consumes) the event message
M68SOSEK Communication MOTOROLA

USER’S MANUAL 10—7

10.4.5 Usage of Messages

Messages are identified via a symbolic name. This symbolic name is used as a
variable or a pointer name for the message within the user’s code. This identifier is
used for references to the message when the system service is used.

If the message is used with the WithCopy qualifier, then the variable is defined
within the user’s code by means of using the UsesStateMessage or
UsesEventMessage directives. The message item is referenced as Msg.

For example, if the user defines the message MsgA having the type int, and
user’s code contains the directive:

UsesStateMessage(MsgA,SendReceive,WithCopy)

then the user may access the message data by means of the following statements:

ReceiveStateMessage(MsgA, WithCopy);
if(MsgA == 2) { MsgA = 1; }
SendStateMessage(MsgA, WithCopy);

If the user defines the message MsgA with a timestamp and one field having the
type int, and the user’s code contains the directive:

typedef struct tagMYMSGA MYMSGA;
struct tagMYMSGA
{

TickType timeStamp;
int x;

};
UsesStateMessage(MsgA, SendReceive, WithCopy)

then the user may access the message item fields by means of the following
statements:

ReceiveStateMessage(MsgA, WithCopy);
if(MsgA.x == 2) { MsgA.x = 1; }
MsgA.timeStamp = 100;
SendStateMessage(MsgA, WithCopy);

If the message is used with the WithoutCopy qualifier, then the pointer is defined
within the user’s code by means of using the UsesStateMessage directive. The
message item is referenced as *Msg in this case.

For example, if the user defines the message MsgA having the type int, and
user’s code contains the directive:

UsesStateMessage(MsgA, SendReceive, WithoutCopy)
 MOTOROLA Communication M68SOSEK

10—8 USER’S MANUAL

then the user may access the message item fields by means of the following
statements:

ReceiveStateMessage(MsgA, WithoutCopy);
if(*MsgA == 2) { *MsgA = 1; }
SendStateMessage(MsgA, WithoutCopy);

If the user defines the message MsgA with a timestamp and one field having the
type int, and the user’s code contains the directive:

typedef struct tagMYMSGA MYMSGA;
struct tagMYMSGA
{

TickType timeStamp;
int x;

};
UsesStateMessage(MsgA, SendReceive, WithoutCopy)

then the user may access the message item fields by means of the following
statements:

ReceiveStateMessage(MsgA WithoutCopy);
if(MsgA->x == 2) { MsgA->x = 1; }
MsgA->timeStamp = 100;
SendStateMessage(MsgA, WithoutCopy);

In fact, the user’s code will always contain the identifier MsgA, which has the type
defined by the user in the system generation statements DefineStateMessage or
DefineEventMessage, or a pointer to the variable of this type, if the WithoutCopy
qualifier is used.

The following examples demonstrate the use of references to the messages for
external declarations and as a function parameter.

extern UsesStateMessage(MsgA, Send, WithCopy);
int Function1(UsesStateMessageAsParameter(MsgA, Receive,

 WithCopy));
TASK TaskA(void)
{ ...

MsgA = 1;
SendStateMessage(MsgA, WithCopy) ;
Function1(MsgA);
...

}

M68SOSEK Communication MOTOROLA

USER’S MANUAL 10—9

int Function1(UsesStateMessageAsParameter(MsgA, Receive,
WithCopy))

{ ...
ReceiveStateMessage(MsgA, WithCopy);
if(MsgA == 1) { ... }
...

}

 MOTOROLA Communication M68SOSEK

10—10 USER’S MANUAL

SECTION 11
ERROR HANDLING AND SPECIAL ROUTINES

The OSEK Operating System provides for the user tools for error handling and
simplest debugging at run time. These are special hook routines with names
specified by OSEK OS which are to be developed by the user. In this section error
handling at the system configuration stage does not consider, it is described in
SECTION 12 System Configuration.

11.1 Hook Routines

The OSEK Operating System supports system specific hook routines to allow
user-defined actions within the OS internal processing.

These hook routines are

• called by the operating system, in a special context provided by the operating
system, using a special interface;

• implemented by the user, not standardized in functionality;

• not allowed to use OSEK OS run-time services.

In the OSEK OS hook routines are intended for

• tracing or application dependent debugging purposes;

• user defined extensions of the context switch;

• error handling.

The OSEK OS provides the following hook routines - OSError, OSPreTask,
OSPostTask. The user must create the code of these routines, OSEK OS only
provides description of function prototypes.

• OSError - this hook is called by the Operating System at the end of a system
service which has a return value not equal to E_OK (see 11.2.1 Error
Interface). It is called before returning to the task level or the ISR level.

• OSPreTask - this hook is called before the operating system enters the
context of the task. This hook is called from the scheduler when it passes
control to the given task. It may be used by the application to trace the
sequences and timing of tasks’ execution. Also the routine can be used to
switch the hardware memory bank if needed.

• OSPostTask - This hook is called after the operating system leaves the
context of the task. This hook is called from the scheduler when it switches
from the current task to another. It may be used by the application to trace the
M68SOSEK Error Handling and Special Routines MOTOROLA

USER’S MANUAL 11—1

sequences and timing of tasks’ execution. Also the routine can be used to
switch the hardware memory bank if needed.

If an application supports the memory bank switching (the system property
HCBankCode, see 12.3 System Properties Definition) these routines can be
used to switch the desired memory bank before entering/leaving the task code.

Time stamps can be integrated individually into the application software with the
help of hook routines OSPreTask and OSPostTask. The user can set time stamps
enabling him to trace the program execution at the following locations before
calling operating system services:

• When activating or terminating tasks;

• At explicit points of rescheduling (ChainTask, Schedule);

The Operating System needs not include a time monitoring feature which ensures
that each or only, e.g. the lowest-priority task has been activated in any case after
a defined maximum time period. The user can optionally use the hook routines or
establish a watchdog task that takes “one-shot displays” of the operating system
status.

See examples of programming techniques using the hook routines in section 16.8
Error Handling and Debugging Services.

11.2 Error Handling

11.2.1 Error Interface

The hook routine OSError is provided to handle temporarily and permanently
occurring errors within the OSEK Operating System. Its basic framework is
predefined and has to be completed by the user. This gives the user a choice of
efficient centralized or decentralized error handling.

Three different kinds of errors are distinguished:

• mild errors - the Operating System achieved the requested service but has
some doubt on the correctness of the application. In this case centralized
error treatment is called. Additionally OSEK OS returns the error by the status
information for decentralized error treatment.

• severe errors - the Operating System could not achieve the requested
service, but assumes the correctness of its internal data. In this case
centralized error treatment is called. Additionally OSEK OS returns the error
by the status information for decentralized error treatment.

• fatal errors - the Operating System can no longer assume correctness of its
internal data. In this case OSEK OS calls the centralized system shutdown.
 MOTOROLA Error Handling and Special Routines M68SOSEK

11—2 USER’S MANUAL

The special system routine OSShutDown is intended to shut down the system in
case of the fatal error. This routine aborts the overall system by calling the standard
ANSI C function exit(). OSShutDown may be called both by the user and by the
system in case of a fatal error. This service routine is provided by the OSEK
Operating System in distinction to the OSError routine which should be written by
the user.

The OSEK OS error service is called with a parameter that specifies the error. It is
up to the user to decide what to do depending on which error has occurred. The
OSEK Operating System specifies the following errors:

Errors committed by the user in direct conjunction with the Operating System can
be intercepted to a large extent via the Extended Status of the Operating System,
and displayed. This results in an extended plausibility check on calling OS
services.

11.2.2 Extended Status

The OSEK Operating System version with Extended Status requires more
execution time and memory space than the run time version, due to the additional
plausibility checks it offers. However, many errors can be found in a test phase.
After they have all been eliminated, the system can be recompiled with the run time
version.

Table 11–1 OSEK OS Error codes

Error Name Value Description

Common Error Codes

E_OK 0 No error, successful completion

E_NOFUNC 1 The object is not used, the service is rejected

E_NOMSG 2 There is no message available

E_STATE 3
The state of the object is not correct for the required
service

E_ACCESS 4 Access to the service/object denied

E_CALLEVEL 5 Access to the service from the ISR is not permitted

E_ID 6 The object ID is invalid

E_LIMIT 7 The limit of services/objects exceeded

E_RESOURCE 8 The task still occupies the resource

E_VALUE 9 A value outside of the admissible limit

E_STACK 10 Internal stack overflow
M68SOSEK Error Handling and Special Routines MOTOROLA

USER’S MANUAL 11—3

The following example can illustrate Extended Status usage:

• If a task is activated in the run time, either “OK” or “Task already activated” is
returned. Moreover, in the Extended Status version, the additional status like
“Task not defined”, “Maximum number of tasks already activated” or “Stack
overflow”, etc. can be returned. These extended messages must no longer
occur in the target application at the time of execution, i.e., the corresponding
errors are not intercepted in the operating system’s run time version.

11.2.3 Possible Error Reasons

Errors in the application software are typically caused by:

• Errors on handling the operating system, i.e. incorrect configuration /
initialization / dimensioning of the operating system or non-observance of
restrictions regarding the OS service.

• Error in software design, i.e. unwise choice of task priorities, generation of
deadlocks, unprotected critical sections, incorrect dimensioning of time,
inefficient conceptual design of task organization, etc.

11.3 Start-up Routine

The special system routine StartUp is implemented in the OSEK Operating
System to allocate and initialize all dynamic system and application resources in
RAM. This routine is called from the main() function of the application and it is
never returned back to the caller (except start-up errors) but passes the control to
the scheduler to schedule the first task to be running. See APPENDIX A Sample
Application for details.

11.4 Programming Issues

11.4.1 Configuration Options

The following configuration options affect error handling and hook routines:

ErrorHandler If the option is turned on the user’s hook is called by the
system for error handling

ContextSwitchRoutine If the option is turned on the user’s hooks are called by
the system during context switching

11.4.2 Hook Routine Definition

OSEK OS hook routines have to be defined by the user in the system configuration
file. The special configuration statement is used for this purpose:

DefineHooks(OSError, OSPreTask, OSPostTask)
 MOTOROLA Error Handling and Special Routines M68SOSEK

11—4 USER’S MANUAL

If some name is absent in the definition, this routine will never be called in the
system. For details see SECTION 12 System Configuration.
M68SOSEK Error Handling and Special Routines MOTOROLA

USER’S MANUAL 11—5

 MOTOROLA Error Handling and Special Routines M68SOSEK

11—6 USER’S MANUAL

SECTION 12
SYSTEM CONFIGURATION

12.1 General

The OSEK Operating System is fully statically configured one. All system
properties, the number of system objects and their parameters (characteristics of
tasks, counters, alarms, messages, etc.), run time behavior are defined by the
user. Such approach allows the user to create various range of applications with
exactly defined characteristics. Different memory and performance requirements
can be easily satisfied with such modular approach.

All application parameters are defined in the special configuration file. This file
must conform some grammar rules. It is processed by the separate System
Generator utility (SG) 1. The System Generator analyzes statements in the
configuration file and build output C-language files needed to compile and link an
application with the specified features. During its execution SG reports to the user
about the errors. The System Generator produces header and source code files
that defines all properties and objects in terms of the C language. These files are
to be compiled and linked together with the user’s source code.

12.2 Application Configuration File

Application configuration file contains the statements which define the
system properties and objects. Such file can has any extension and the extension
“.def” is suggested by default. The file of this format is processed by the SG utility.

As a result of application configuration file processing SG produces three types of
standard C-language files as it is described in 13.2.1 Application Configuration.
SG produces two header files and one or several source files. These files provides
the code for all system tables, descriptors, arrays etc. both in ROM and RAM
according to the user specified application configuration.

The following command line options are intended to control SG:

1. Two versions of SG are delivered - the 16-bit version (“sg.exe”) and the 32-bit version (“sg32.exe”) for

Windows NT and Windows 95.
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—1

12.2.1 Configuration File Grammar

The application configuration files must conform some simple grammar rules to be
successfully processed. The rules are:

• All statements must be written without errors;

• Statements must be in the predefined order;

• It is recommended to avoid conflicting statements (e.g., the system property
TaskOwnStack is not set, but the own task stack is defined for a task) since it
leads to error or warning messages.

12.2.1.1 Statements Types

The definition file can contain the following types of statements:

• comments;

• section declaration;

• include statements;

• file name definition;

• system property definition statements;

• system object definition statements.

The source file may contain comments like used in C-language. Characters
enclosed between “/*” and “*/” or started after “//” to the end of line are considered
as comment lines and ignored by the System Generator.

The definition file is divided into sections. Each section begins with a section
declaration that is the section name enclosed in square brackets. The section must
be in the order which is presented below:

• [Property] Defines OS properties (includes statements like
<property name> = <property value>)

• [Scheduler] Defines the scheduler via the DefineScheduler

Table 12–1 System Generator command line options

Option Description Default value

-c* Defines * as the data file name Input file name with “.c”
extension

-h* Defines the header file name Input file name with “.h”
extension

-i* Defines the path for include files No

-p* Defines the property file name “osprop.h”
 MOTOROLA System Configuration M68SOSEK

12—2 USER’S MANUAL

statement

• [Interrupt management] Defines the interrupt masks and the interrupt stack
parameters via the DefineInterrupts statement

• [User’s hooks] Defines user hooks via DefineHooks

• [Tasks] Defines tasks via DefineTask and stack pools via
the DefineStackPool statements

• [Resources] Defines resources via the DefineResource
statement

• [Counters] Defines the counters presented in the system via
the DefineSystemTimer and DefineCounter
statements

• [Alarms] Defines alarms via the DefineAlarm statement

• [State Messages] Defines State messages via DefineStateMessage,
DefineMessageAlarm, ActivateOnMessage and
SetEventOnMessage

• [Event Messages] Defines Event messages via DefineEventMessage,
DefineMessageAlarm, ActivateOnMessage and
SetEventOnMessage

The configuration file must always contain sections [Property], [Scheduler], [Tasks]
and [Counters]. Other sections can be empty or omitted.

The configuration file can contain include statements according to ANSI C
language rules. Such statements may look like the following ones:

#include <file name>
#include "file name"
#include "path\file name"

For example:

[Tasks]
DefineTask(TaskB, BASIC|ACTIVATE|OWNSTACK,2, TaskBStart,,,,64);
#include <task.def>

[Resources]
#include "c:\app\src\resource.def"

Include files can be anywhere in the configuration file, but they must conform the
configuration file format. Statements from include files are processed as
statements of the main configuration file. The System Generator searches include
files either in the current directory or in the directories specified in the SG command
line.
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—3

12.2.2 Separate Output Files

The possibility to have separate C-language source files for different system
objects is important for the user. These files are intended to allocate RAM areas
and to initialize some parameters. Separate files allow the user to place different
data in different memory areas by means of separate compilation.

The initialization part of a different object may be written into different data files. To
create separate output files for some sections the first statement after the section
header must be the definition of the output file name. If file name is undefined then
the common data file will be used. The file name definition has the following form:

>><file name>;

The initialization part of a different object may be written into different data files.
The statements like

[Tasks]
>> c:\usr\srs\task.c;

are used to output the [Tasks] section into the separate file “task.c”. All other
sections will be output into the default file.

Statements for system property definition and system objects definition are
described in subsections below.

12.3 System Properties Definition

All property definitions are placed in the [Property] section of the configuration file.
Operating System version will be built according to the specified values (e.g., the
certain Conformance Class). The property definition must have the following form:

<Property name> = <Property value>;

Property definition statements can be placed in any order. There are two types of
property definitions:

• two state property - the property can have only the values ON or OFF which
defines whether this OS option is supported in this configuration or not. This
property could have a default value;

• list-of-values property - the property has a set of possible values that are
chosen by the user. This property could have a default value.

If a property is not defined, then the default value is used.

The list of properties is presented in the table which follows.
 MOTOROLA System Configuration M68SOSEK

12—4 USER’S MANUAL

Table 12–2 OSEK Operating System Properties

Property name Description

General properties

TargetMCU Specifies the CPU type. Now only HC08 is the valid value

HCBasePage Defines that the base memory page (0x00 - 0xFF) will be
used for system variables

HCLowPower Defines that Low Power Mode will be used instead of the
scheduler idle loop when there no active task

HCBankCode Defines that memory bank switching is supported by the
system

OS properties

ConformanceClass Defines the functionality of OSEK OS according to the
specified CC

SchedulerPolicy Defines the scheduling policy

SimpleScheduler The ON option defines that the simplified scheduler will be
used in the system. In this case each task must have its
unique priority.

ExtendedStatus Defines whether additional checks of system services
execution are performed by OS or not; extended return
codes are provided in case of Extended Status

UseMainStack If the option is turned ON, the same memory area is used for
the stack of the main() function, for ISR stack and for the
scheduler stack. It saves memory but the user should provide
enough RAM for the stack.

UseSameContext Defines whether the same run time context frame is used
both for non-preemptive and preemptive tasks (for
mixed-preemptive scheduling only)

MultiplyActivation The OFF option in Conformance Classes BCC3, ECC1,
ECC2 this option disables task multiply activation.

StackPool Defines whether stack pools are supported or not

PersistentNode Allows persistent task node allocation

PersistentStack Allows persistent task stack allocation

NodeStack Defines the presence of task node stacks in the system

TaskOwnStack Allows explicit task stack allocation
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—5

TaskIndexMethod
If the option is turned on then the intermediate vector of the
pointers to the tasks nodes is used (fast and
deterministic access to task nodes)

EntryExitISR
Defines whether system services to enter and exit ISRs are
implemented or not

InterruptMaskControl
Defines whether interrupt masks are controlled by the
Operating System or not

ErrorHandler
If the option is turned ON, the user’s hook is called by the
system for error handling

ContextSwitchRoutine
If the option is turned on the user’s hooks are called by the
system during context switching

InternalErrorHandler Defines whether the internal error handler is implemented

Resources Defines is resource management implemented or not

FastResource
The ON option accelerates work with resources; this option
is strongly recommended only for debugged applications

Events Defines are events implemented or not

Counters Defines whether counters are implemented or not

CounterSize Defines the counter size (byte, word or long word)

Alarms Defines whether alarms are implemented or not

AlarmList The option accelerates work with alarms

StateMessage Defines whether state messages are implemented or not

StateMsgDefaultValue Allows state messages to have a timestamp

StateMsgTimeStamp Allows state messages to have a default value

EventMessage Defines whether event messages are implemented or not

EventMsgTimeStamp Allows event messages to have a timestamp

EventMsgOneToN Allows 1:N communication for event messages

ActivateOnMsg Allows task activation on message arrival

AlarmOnMsg Allows alarm resetting on message arrival

SetEventOnMsg Allows event setting on message arrival

Table 12–2 OSEK Operating System Properties

Property name Description
 MOTOROLA System Configuration M68SOSEK

12—6 USER’S MANUAL

Properties to exclude particular OS services

ActivateTask
The OFF option excludes the service ActivareTask from the
OSEK OS code

TerminateTask
The OFF option excludes the service TerminateTask from
the OSEK OS code

ChainTask
The OFF option excludes the service ChainTask from the
OSEK OS code

ChainTaskItself
The option can be turned OFF if no tasks that chain itself. It
decreases the task control block size.

Schedule
The OFF option excludes the service Schedule from the
OSEK OS code

GetTaskId
The OFF option excludes the service GetTaskId from the
OSEK OS code

GetTaskState
The OFF option excludes the service GetTaskState from the
OSEK OS code

GetResource
The OFF option excludes the service GetResource from the
OSEK OS code

ReleaseResource
The OFF option excludes the service ReleaseResource from
the OSEK OS code

EnterISR
The OFF option excludes the service EnterISR from the
OSEK OS code

LeaveISR
The OFF option excludes the service LeaveISR from the
OSEK OS code

EnableInterrupt
The OFF option excludes the service EnableInterrupt from
the OSEK OS code

DisableInterrupt
The OFF option excludes the service DisableInterrupt from
the OSEK OS code

GetInterruptMask
Being turned off the option excludes the service
GetInterruptMask from the OSEK OS code

InitCounter
The OFF option excludes the service InitCounter from the
OSEK OS code

CounterTrigger
The OFF option excludes the service CounterTrigger from
the OSEK OS code

Table 12–2 OSEK Operating System Properties

Property name Description
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—7

Table 12–2 shows default values of system properties.

GetCounterValue
The OFF option excludes the service GetCounterValue from
the OSEK OS code

GetCounterInfo
The OFF option excludes the service GetCounterInfo from
the OSEK OS code

SetRelAlarm
The OFF option excludes the service SetRelAlarm from the
OSEK OS code

SetAbsAlarm
The OFF option excludes the service SetAbsAlarm from the
OSEK OS code

CancelAlarm
The OFF option excludes the service CancelAlarm from the
OSEK OS code

GetAlarm
The OFF option excludes the service GetAlarm from the
OSEK OS code

SetEvent
The OFF option excludes the service ActivareTask from the
OSEK OS code

ClearEvent
The OFF option excludes the service SetEvent from the
OSEK OS code

GetEvent
The OFF option excludes the service GetEvent from the
OSEK OS code

WaitEvent
The OFF option excludes the service WaitEvent from the
OSEK OS code

SendStateMessage
The OFF option excludes the service ActivareTask from the
OSEK OS code

ReceiveStateMessage
The OFF option excludes the service SendStateMessage
from the OSEK OS code

SendEventMessage
The OFF option excludes the service SendEventMessage
from the OSEK OS code

ReceiveEventMessage
The OFF option excludes the service ReceiveEventMessage
from the OSEK OS code

Table 12–2 OSEK Operating System Properties

Property name Description
 MOTOROLA System Configuration M68SOSEK

12—8 USER’S MANUAL

Table 12–3 OSEK Operating System properties default values

Property name Value set Default value

General properties

TargetMCU HC08 HC08

HCBasePage ON/OFF OFF

HCLowPower ON/OFF OFF

HCBankCode ON/OFF OFF

OS properties

ConformanceClass

BCC1
BCC2
BCC3
ECC1
ECC2

ECC2

SimpleScheduler ON/OFF OFF

SchedulerPolicy
NONPREEMPT
FULLPREEMPT
MIXPREEMPT

NONPREEMPT

ExtendedStatus ON/OFF OFF

UseMainStack ON/OFF OFF

UseSameContext ON/OFF OFF

MultiplyActivation ON/OFF ON

StackPool ON/OFF OFF

NodeStack ON/OFF ON

PersistentNode ON/OFF OFF

PersistentStack ON/OFF OFF

TaskOwnStack ON/OFF OFF

TaskIndexMethod ON/OFF OFF

EntryExitISR ON/OFF ON

InterruptMaskControl ON/OFF ON

ErrorHandler ON/OFF OFF
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—9

The examples of system properties definitions are:

TargetMCU = HC08;
ConformanceClass = ECC2;

ContextSwitchRoutine ON/OFF OFF

InternalErrorHandler ON/OFF OFF

Resources ON/OFF
ON
(OFF for BCC1,BCC2)

FastResource ON/OFF OFF

Events ON/OFF ON
(OFF for BCC1-BCC3)

Counters ON/OFF ON

CounterSize
8
16
32

32

Alarms ON/OFF ON

AlarmList ON/OFF OFF

StateMessage ON/OFF ON

StateMsgDefaultValue ON/OFF OFF

StateMsgTimeStamp ON/OFF OFF

EventMessage ON/OFF ON

EventMsgTimeStamp ON/OFF OFF

EventMsgOneToN ON/OFF OFF

ActivateOnMsg ON/OFF
ON
(OFF for BCC1,BCC2)

AlarmOnMsg ON/OFF
ON
(OFF for BCC1,BCC2)

SetEventOnMsg ON/OFF
ON
(OFF for BCC1-BCC3)

Properties to exclude particular OS services

Any such property (see
Table 12–2)

ON/OFF ON

Table 12–3 OSEK Operating System properties default values

Property name Value set Default value
 MOTOROLA System Configuration M68SOSEK

12—10 USER’S MANUAL

ExtendedStatus = ON;
TaskIndexMethod = OFF;
PersistentNode = OFF;
PersistentStack = OFF;
TaskOwnStack = OFF;
StackPool = OFF;
SchedulerPolicy = MIXPREEMPT;

12.4 System Objects Definition

All objects that are controlled by the Operating System - tasks, resources, alarms,
messages, counters, ISRs and even the scheduler - are considered as system
objects. Each of them has its unique characteristics defined by the user. To specify
parameters for each system object the special statements are used for each object.
All statements are described below in detail according the order in which they are
placed in the configuration file. Parameters are delimited by a comma. If some
parameters in the middle of the list are omitted the corresponded commas must
stay in place; the last parameters can be removed with their commas.

Some parameters represents memory addresses. They are defined either
automatically or by the user. If the user does not need to control memory address
such parameters should be omitted in definition statements. In this case SG
automatically creates the code to allocate memory areas. If the user explicitly
specifies the address then the symbolic name (e.g. MyTaskStack) should be
provided in the corresponded position. This name must be defined in a user’s file
(e.g. an array can be defined for memory area) and declared as external name
before the generated source files will be used. Such techniques is demonstrated in
sample application, see APPENDIX A Sample Application.

12.4.1 DefineScheduler

Syntax:

DefineScheduler(<NumberOfTasks>, <NumberOfPriorities>,
 [<SchedulerStackSize>], [<SchedulerStackAddress>],

[<TaskNodeStackSize>] ,[<TaskNodesStackAddress>]);

Description:

This statement is used to define scheduler parameters. Only one such statement
must be in the configuration file. The following parameters are used:

• <NumberOfTasks> specifies the maximum number of tasks in the
non-suspended state, available in the system. In fact, this parameter specifies
the number of task control blocks, allocated in the system;

• <NumberOfPriorities> specifies the number of priority classes in the system.
The priorities range from 0 to <NumberOfPriorities> minus 1. In fact, this
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—11

parameter specifies the number of elements in the scheduler queues. This
parameter is ignored if the system configuration option SimpleScheduler is
turned on, since in this case it must be equal the number of tasks;

• <SchedulerStackSize> specifies the size (in bytes) of the scheduler’s idle loop
stack. It should not be less than the interrupt stack frame. If the system
property UseMainStack is set this parameter (and <SchedulerStackAddress>
too) can be omitted;

• <SchedulerStackAddress> specifies the bottom of the scheduler stack. This
address is used explicitly to provide a way to optimize stacks allocation. This
parameter can be omitted;

• <TaskNodeStackSize> specifies the size of the stack (in bytes) per each task
node. The total size of the memory area for task nodes’ stacks is defined as
multiplication of this parameter by the <NumberOfTasks> parameter. This
parameter is ignored if the system configuration option NodeStack is turned
off;

• <TaskNodesStackAddress> specifies the bottom of task nodes’ stacks. This
address is used explicitly to provide a way to optimize stacks allocation. This
parameter is ignored if the system configuration option NodeStack is turned
off. This parameter can be omitted.

Example:

DefineScheduler(7, 5, 16, SchedStack);

This statement defines that there are 7 task nodes and 5 task priorities in the
system. Scheduler stack size equals 16 bytes and has the bottom at the address
referenced as SchedStack (SchedStack is defined as an array of 16 bytes size).
There are no task node stacks.

12.4.2 DefineInterrupts

Syntax:

DefineInterrupts(<DisableMask>, <EnableMask>, <TaskMask>,
 [<ISRStackSize>,] [<ISRStackAddress>]);

Description:

This statement is used to define interrupt management data. Only one such
statement must be in the configuration file. The following parameters are used:

• <DisableMask> specifies the value of the interrupt mask, which corresponds
to all interrupts disabled;

• <EnableMask> specifies the value of the interrupt mask, which corresponds
to all interrupts enabled;

• <TaskMask> specifies the value of the interrupt mask, which, typically,
 MOTOROLA System Configuration M68SOSEK

12—12 USER’S MANUAL

corresponds to the middle level of enabled interrupts in the system;

• <ISRStackSize> specifies the size (in bytes) of the ISR stack. If the system
property UseMainStack is set this parameter (and <ISRStackAddress> too)
can be omitted;

• <ISRStackAddress> specifies the bottom of the ISR stack. This address is
used explicitly to provide a way of optimizing stacks allocation. This
parameter can be omitted.

Example:

DefineInterrupts(0x8,0x0,0x0, 64);

Such statement defines masks for “I” bit of CPU08 and the ISR stack size. System
Generator produces the code to allocate memory for the ISR stack.

12.4.3 DefineHooks

Syntax:

DefineHooks(<Error handler>, <PreTask handler>,
 <PostTask handler>)

Description:

This statement is used to define user hooks entry points. Only one such statement
must be in the configuration file. Parameters are the following:

• <Error handler> is the entry point of the error handling hook routine;

• <PreTask handler> is the entry point of the hook routine executed before
entering the tasks code;

• <PostTask handler> is the entry point of the hook routine executed after
leaving the task code.

Example:

DefineHooks (OSError, OSPreTask, OSPostTask);

The statement declares user’s hook routines. SG creates needed references. The
routines should be provided by the user:

void OSError(StatusType Error)
{
...
}
void OSPreTask(TaskRefType TaskId, ...)
{
...
}

M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—13

void OSPostTask(TaskRefType TaskId, ...)
{
...
}

12.4.4 DefineTask

Syntax:

DefineTask(<TaskName>, <TaskProperties>, <TaskPriority>,
 <EntryPoint> [,<TaskBank>] [,<InterruptMask>]
 [,<TaskStack>] [,<TaskStackSize]);

Description:

This statement is used to define task data. Several statements can be in the
configuration file, each statement defines one task. The following parameters are
used:

• <TaskName> specifies the symbolic task’s name. This name is to be used by
the user’s code as symbolic reference to the task;

• <TaskProperties> specifies properties of the task. These properties are
written via the OR operator. Task properties are described in table Table 4–3 ;

• <TaskPriority> specifies the task’s priority. The highest priority has value 0;

• <EntryPoint> defines the starting address of the task. Typically this parameter
is the name of the function, which is the task body;

• <TaskBank> defines the memory bank for the task code. This parameter may
be omitted;

• <InterruptMask> defines the starting task’s interrupt mask. If this parameter is
omitted, then the default (middle) value defined in DefineInterrupts is used;

• <TaskStack> specifies task stack assignment. If the NodeStack task property
is set, this parameter is ignored or should be omitted. If the PoolStack system
property is set, then this parameter must be a symbolic name of the stack pool
(see section 4.6.4 Task Stack). If the OwnStack task property is set, then this
parameter may contain the address of the bottom of the stack explicitly
assigned for the task;

• <TaskStackSize> specifies the task stack size, if the OwnStack task property
is set. Otherwise the parameter should be omitted or it will be ignored.

Example:

DefineTask(TASKA, EXTENDED|PREEMPT|ASSIGNNODE|POOLSTACK|ACTIVATE,
 3, TaskA, , , POOL2);

DefineTask(TASKB, BASIC|ACTIVATE|OWNSTACK,2, TaskBStart,,,,64);

SG produces the code to allocate memory for the stack of TASKB.
 MOTOROLA System Configuration M68SOSEK

12—14 USER’S MANUAL

12.4.5 DefineStackPool

Syntax:

DefineStackPool(<StackPoolName>, <SizeOfStack>,
 <NumberOfStacks> [,<AddressOfStackArea>]);

Description:

This statement is used to define stack pool data. Several statements can be in the
configuration file, each statement defines one pool. The following parameters are
used:

• <StackPoolName> specifies the stack pool name. This name is to be used
during task generation to refer to the stack pool of the desired size;

• <SizeOfStack> specifies the size of stacks in the stack pool;

• <NumberOfStack> specifies the number of stack buffers;

• <AddressOfStackArea> specifies the name of the array where stacks are
located. This optional parameter serves for explicit memory allocation for the
task stack pool.

Example:

DefineStackPool(POOL1, 15, 24);

This statement defines the pool with 24 stack buffers of 15 bytes size.

12.4.6 DefineResource

Syntax:

DefineResource(<ResourceName>, <ResourcePriority>);

Description:

This statement is used to define a resource. Several statements can be in the
configuration file, each statement defines one resource. The following parameters
are used:

• <ResourceName> specifies the resource name for references to it;

• <ResourcePriority> specifies the priority assigned to the resource which is
used by resource management to support the priority ceiling protocol.

Example:

DefineResource(SCIRes, 1);

The name SCIRes have to be used to refer to this resource in the user’s code.
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—15

12.4.7 DefineSystemTimer

Syntax:

DefineSystemTimer(<CounterID>, <maxallowedvalue>,
 <ticksperbase>, <tickduration> [,<mincycle>]

 [, <HardwareType> [, <HardwareParams>]]);

Description:

This statement is used to declare the counter as a System Timer. An additional
parameter - duration of a tick in nanoseconds - is defined for the system timer. The
OSMAXALLOWEDVALUE, OSTICKPERTIME, OSTICKDURATION,
OSMINCYCLE constants are defined by this statement. This statement always
must be in the configuration file. The following parameters are defined for the
system timer:

• <CounterName> specifies the system counter name for references to it;

• <maxallowedvalue> specifies the maximum allowed system timer value (in
ticks);

• <ticksperbase> specifies the number of ticks required to reach 10
milliseconds. SG does not check correctness of this value;

• <tickduration> specifies duration of a system timer tick in nanoseconds. The
user has to calculate this parameter according to the tick source frequency;

• <mincycle> specifies the minimum allowed number of ticks for a cyclic alarm.
The parameter has a sense only for the system with the Extended Status
since it is checked only in Extended Status systems. The parameter can be
omitted;

• <HardwareType> is intended to select the hardware interrupt source for the
system counter (among the accessible MCU devices). See SECTION 14
Platform-Specific Features for details about possible meanings of this
parameters. This parameter can be omitted;

• <HardwareParams> is the list of parameters to tune the selected hardware
interrupt source. One or more parameters can be here in accordance to the
hardware features. For more details see SECTION 14 Platform-Specific
Features. This parameter(s) can be omitted.

If hardware related parameters are defined, the code to initialize the system timer
hardware and the interrupt handler are automatically provided for the user as a part
of OSEK OS. In that case the user does not have to care about handling of this
interrupt and he/she can not change the provided code. If the parameters are not
defined the user has to provide the code to initialize the hardware and handle the
interrupt.
 MOTOROLA System Configuration M68SOSEK

12—16 USER’S MANUAL

Example:

DefineSystemTimer(Watch, 24, 1, 5, PIT, 4, 128);

The name Watch have to be used to refer to the system counter in the user’s code.
The counter rolls over after it reaches value 24.

12.4.8 DefineCounter

Syntax:

DefineCounter(<CounterName>, <maxallowedvalue>, <ticksperbase>
 [,<mincycle>]);

Description:

This statement is used to define counter parameters. Several statements can be in
the configuration file, each statement defines one counter. The following
parameters are used:

• <CounterName> specifies the counter name for references to it;

• <maxallowedvalue> specifies the maximum allowed counter value;

• <ticksperbase> specifies the number of ticks required to reach a
counter-specific unit. The <tickperbase> usage is up to the user;

• <mincycle> specifies the minimum allowed number of ticks for a cyclic alarm.
If this parameter is omitted it has default value 0. The parameter has a sense
only for the system with the Extended Status since it is checked only in
Extended Status systems.

Example:

DefineCounter(ANGLE, 24, 1);

The name ANGLE have to be used to refer to this counter in the user’s code. The
counter rolls over after it reaches value 24.

12.4.9 DefineAlarm

Syntax:

DefineAlarm(<AlarmName>, <CounterName>, <TaskName>
[, <EventMask>]);

Description:

This statement is used to define alarm specific parameters. Several statements
can be in the configuration file, each statement defines one alarm. The referenced
counter and task must be already defined. The following parameters are used:

• <AlarmName> specifies the alarm name for references to it;
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—17

• <CounterName> specifies a reference to the assigned counter;

• <TaskName> specifies a reference to the task being notified when the alarm
expires;

• <EventMask> specifies the event mask to be set when the alarm expires (only
if events control is supported by the system). If the parameter is omitted then
the specified task is activated when the alarm expires. Otherwise, the
specified event is set and in this case the specified task must be Extended
one.

Example:

DefineAlarm(Alarm1, Watch, TaskA, 0x01);

This statement defines that the alarm Alarm1 is linked to the counter Watch and the
task TaskA is notified by the specified event setting.

12.4.10 DefineStateMessage

Syntax:

DefineStateMessage(<MsgName>, <Type>, <Size>, <TStamp>
[,<DefaultValue>]);

Description:

This statement is used to define the state message. Several statements can be in
the configuration file, each statement defines one State Message Object. The
following parameters are used:

• <MsgName> specifies the symbolic name of the message. This name is to be
used by the user’s code as symbolic reference to the message;

• <Type> is the C data type of the message item. It is the standard C type
identifier - char, int, float, double with any type modifiers (signed,
unsigned, short, long) and also structure or union specifier (starting struct
or union), enum specifier (starting enum), typedef name (any valid C-language
identifier). To use an array of standard C-language type the user must define
the new type via typedef operator. In case of user’s defined data types or
enumerations such definitions must be in the user’s code before using files
produced by SG;

• <Size> is the length of the message item in bytes. This value doesn’t include
the timestamp length;

• <TStamp> is a symbolic name for a timestamp qualifier. If the message
includes a timestamp, then this parameter must have the value
WithTimeStamp, otherwise it must have the value WithoutTimeStamp;

• <DefaultValue> is the address of the ROM-based variable, which holds the
default value of the message. This variable must have the type <Type>, and
 MOTOROLA System Configuration M68SOSEK

12—18 USER’S MANUAL

must be located in the user’s code. The parameter may be omitted.

NOTE:

If a message has a timestamp it always has the user defined data
type since the message with timestamp is represented by a structure
(struct). But the message size should reflect only the size of the
message body (without timestamp).

Example:

DefineStateMessage(MsgA, char, sizeof(char), WithoutTimeStamp);
DefineStateMessage(MsgB, MSGTYPE, sizeof(int),

 WithTimeStamp);

These statements defines two State Messages. The first one is the element of the
char type and it has a timestamp. The second message has the user defined type
and has no timestamp.

The second message MsgB has the following structure:

typedef struct tagMSG MSGTYPE;
struct tagMSG
{
 TickType timeStamp;
 int x;
};
MSGTYPE MsgB;

12.4.11 DefineEventMessage

Syntax:

DefineEventMessage(<MsgName>, <Type>, <Size>, <BufferSize>,
<NRec>, <OCheck>, <TStamp>);

Description:

This statement is used to define the event message. Several statements can be in
the configuration file, each statement defines one State Message Object. The
following parameters are used:

• <Msg> specifies the symbolic name of the message. This name is to be used
by the user’s code as symbolic reference to the message;

• <Type> is the C data type of the message item. This parameter is identical to
the corresponded parameter in DefineStateMessage, see 12.4.10;

• <Size> is a length of the message item in bytes. This value doesn’t include the
timestamp length;
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—19

• <BufferSize> is the capacity of the FIFO queue, i.e. the number of message
items into the FIFO queue;

• <NRec> is the number of local task-receivers of the message. If it has a value
greater than 1, then it is assumed, that several (<NRec>) tasks may receive
a message item from the Event Message queue;

• <OCheck> is a symbolic name to indicate the FIFO overflow. If an overflow
must be indicated, then this parameter must have the value
WithOverwriteCheck, otherwise it must have the value
WithoutOverwriteCheck;

• <TStamp> is a symbolic name for a timestamp qualifier. If the message
includes a timestamp, then this parameter must have the value
WithTimeStamp, otherwise it must have the value WithoutTimeStamp.

Example:

DefineEventMessage(MsgC, MSGCTYPE, sizeof(int),
6,3,WithOverwriteCheck, WithTimeStamp);

The statement defines the Event Message with 6 message items of the MSGCTYPE
type, where the message item include the message body of the int type and the
timestamp. The message is to be sent to 3 receivers with a timestamp and
overwrite indication.

12.4.12 DefineMessageAlarm

Syntax:

DefineMessageAlarm(<MsgName>, <AlarmName>, <TimeOut>
[,<Start>]);

Description:

This statement is used to define the alarm to be restarted when a message arrives.
The alarm is treated as the relative one and it will be restarted each time when
message arrives. Several statements can be in the configuration file, one alarm per
message. The following parameters are used:

• <MsgName> specifies a symbolic name of the message. This message must
be previously defined via the DefineStateMessage or DefineEventMessage
statements;

• <AlarmName> specifies the alarm attached to the message. This alarm must
be previously defined via the DefineAlarm statement;

• <TimeOut> is a value of the time-out to be used when the alarm restarted. This
parameter is specified in “ticks” of the counter linked with the alarm defined.
The value is used to set the number of counter ticks after that the alarm
expires (starting from the current counter value);
 MOTOROLA System Configuration M68SOSEK

12—20 USER’S MANUAL

• <Start> specifies whether the alarm must be restarted during system start-up.
This parameter may have the value Restart, if the alarm must be restarted
during start-up, or NoRestart, if no. Restarting of the alarm may be used to
trap the loss of the first message. If the parameter is omitted, then the
NoRestart value is used by default.

Example:

DefineMessageAlarm(MsgC, Alarm1, 13);

The statement attaches Alarm1 to MsgC. The alarm is triggered after 13 ticks of the
associated counter.

12.4.13 ActivateOnMessage

Syntax:

ActivateOnMessage(<MsgName>, <TaskName>);

Description:

This statement is used to define task activation when a message arrives. Several
statements can be in the configuration file, one statement per message. The
following parameters are used:

• <MsgName> specifies a symbolic name of the message. This message must
be previously defined via the DefineStateMessage or DefineEventMessage
statements;

• <TaskName> specifies the task attached to the message. This task is
activated when the message arrives, and it must be previously defined via the
DefineTask statement.

Example:

ActivateOnMessage(MsgA, TaskA);

12.4.14 SetEventOnMessage

Syntax:

SetEventOnMessage(<MsgName>, <TaskName>, <EventMask>);

Description:

This statement is used to define task event setting for a given task when a
message arrives. Several statements can be in the configuration file, one
statement per message. The following parameters are used:

• <MsgName> specifies a symbolic name of the message. This message must
be previously defined via the DefineStateMessage or DefineEventMessage
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—21

statements;

• <TaskName> specifies the task, attached to the message. This event for this
task is set when a message arrives. The task shall be previously defined via
the DefineTask statement;

• <EventMask> specifies the event mask to be set for the task when a message
arrives.

Example:

SetEventOnMessage(MsgD, TaskA, 0x100);

12.5 System Generator Warning and Error Messages

The system generator checks the compatibility of properties, parameters and limits
and reports about possible errors via error messages. The error messages are
divided into errors and warnings. The error code is presented by the following string
LNN##:

• L is equal to “E” for error and” W” for warning;

• NN presents the group number;

• ## presents the error number inside the group.

An error message includes the file name, the line number, the error code and a
short error (or warning) description. The error message has one of the following
formats:

• <filename>(<line number>) : error ENN## : <message>

• <filename>(<line number>) : warning WNN## : <message>

The generated messages are presented in table Table 12–4 :

Table 12–4 System Generator Error Messages

Code Message

General

E0001 syntax error

E0002 invalid token ’<token>’

E0003 unexpected end of file found in comment

E0010 not enough memory

E0011 cannot open source file: <name>

E0011 cannot open include file: <name>
 MOTOROLA System Configuration M68SOSEK

12—22 USER’S MANUAL

E0011 cannot open output file: <name>

E0012 cannot read file: <name>

E0013 cannot write file: <name>

E0014 too many include files : depth = <level>

E0030 ’identifier’ : system object redefinition

Command-line error

W0020 ignoring unknown option <flag>

E0020 <flag> requires an argument

E0021 no input file specified

E0022 too many include paths specified

Property

E0101 double property <name> definition (property <name> was defined in line ##)

E0102 undefined property definition

E0103 undefined value for property <name>

E0104 incorrect property <name> setting

E0105 method of task stack assignment is not defined

E0106 SimpleScheduler property can not be used with Resources property

Interrupt Management

E0110 interrupt masks shall be defined

E0111 interrupt stack shall be defined

W0110 UseMainStack property is turned on, parameter ignored

Error Handling

E0120 error hook shall be defined

E0121 context switch routines shall be defined

Scheduler

E0201 the number of task control blocks shall be greater than 0

E0202 number of priorities shall be greater than 0

Table 12–4 System Generator Error Messages

Code Message
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—23

E0203 size of scheduler stack shall be defined

E0204 size of task node stack shall be defined

E0205 number of task control blocks less than priority range

W0201 NodeStack property is turned off, parameter ignored

W0202 there are unused task control blocks

Task

E0301 task may be either basic or extended (more than one task type attribute)

W0301 task type shall be defined

E0302 only basic tasks are allowed in basic conformance classes

W0302 task type set to basic by default

W0303 task preemptive property shall be defined

E0303 task may be either preempt or nonpreempt (more than one task preemptive
property)

W0304 non-preemptive tasks are not supported by full-preemptive scheduler

W0304 preemptive tasks are not supported by non-preemptive scheduler

W0305 task preemptive property set to non-preempt

W0305 task preemptive property set to preempt

W0306 PersistentNode property is turned off, parameter ignored

W0307 PersistentStack property is turned off, parameter ignored

W0308 Persistent stack may be assigned only for task with persistent node,
parameter ignored (ASSIGNSTK must be used with ASSIGNNODE)

W0309 persistent stack shall be assigned from stack pool, parameter ignored

W0310 TaskOwnStack property is turned off, parameter ignored

W0311 StackPool property is turned off, parameter ignored

E0304 task priority exceeds the maximum limit

E0305 the number of task nodes is not enough to allocate persistent nodes

E0306 the stack pool parameter shall be defined

E0307 the <name> stack pool is undefined

Table 12–4 System Generator Error Messages

Code Message
 MOTOROLA System Configuration M68SOSEK

12—24 USER’S MANUAL

E0308 the basic task cannot be notified by event setting

E0309 at least one task shall be defined

E0310 more than one task stack attachment method

E0311 task has no stack

E0312 the stack size parameter shall be defined

Resource

E0401 resource priority exceeds the maximum limit

Counter

E0501 system timer is already defined

E0502 system timer is undefined

Alarm

E0601 assigned counter <name> for alarm <name> is undefined

E0602 assigned task <name> for alarm <name> is undefined

W0601 Events property is turned off, parameters ignored

Message

W0701 StateMsgDefaultValue property is turned off, parameter ignored

W0702 StateMsgTimeStamp property is turned off, parameter ignored

W0703 EventMsgTimeStamp property is turned off, parameter ignored

W0704 EventMsgOneToN property is turned off, parameter ignored

W0705 AlarmOnMsg property is turned off, definition ignored

W0706 message shall be defined before its alarm

W0707 message shall be defined before its notification

W0708 ActivateOnMsg property is turned off, definition ignored

W0709 SetEventOnMsg property is turned off, definition ignored

E0701 assigned alarm <name> for message <name> is undefined

E0702 alarm for message <name> was defined in line ##

E0703 notified task <name> for message <name> is undefined

Table 12–4 System Generator Error Messages

Code Message
M68SOSEK System Configuration MOTOROLA

USER’S MANUAL 12—25

More detailed description of System Generator error messages is provided in
APPENDIX D System Generation Error Messages

E0704 notification for message <name> was defined in line ##

E0705 message <name> : parameters are undefined

Table 12–4 System Generator Error Messages

Code Message
 MOTOROLA System Configuration M68SOSEK

12—26 USER’S MANUAL

SECTION 13
BUILDING OF APPLICATION

13.1 Application Structure

An application developed on the OSEK Operating System basis has a defined
structure. An application consists of the Operating System kernel and several
user’s tasks and ISRs, which interact with the kernel by means of system services
and internal mechanisms. ISRs receive control from hardware interrupt sources via
the vector table. Tasks are controlled by the scheduler. They may use all means
for intertask communications granted by OSEK OS to pass data and synchronize
each other.

Tasks and ISRs are considered as system objects. Resources, State and Event
messages, counters, alarms, hook routines are also considered as system objects,
because they are controlled by the Operating System. An application typically has
also configuration tables for different system objects, stack buffer pools and other
entities. To create an application the user should develop the desired application
structure with all needed objects and define interactions between them.

All global Operating System properties, system objects and their parameters are
defined by the user statically and cannot be redefined at run time. Special
application configuration file is designed to perform such definition and the special
tool that processes this file. See SECTION 12 System Configuration about this
file. After processing files with system object descriptors are created automatically.
These files provides the code for all required ROM and RAM structures, arrays,
tables, variables, etc. for all system objects defined in the configuration file.
Memory allocation is performed during start-up procedure.

13.2 Action Sequence to Build an Application

To build an application using the OSEK Operating System the user should perform
a set of actions. These actions are relatively simple since the most important
requirement is clearly understanding of application’s algorithm. The actions
includes creating of application configuration file, processing this file by the System
Generator, writing the user’s source code, compiling all files and linking the
application files together with the OSEK OS code. This process is shown in Figure
13–1 Application building process .
M68SOSEK Building of Application MOTOROLA

USER’S MANUAL 13—1

13.2.1 Application Configuration

Applications built using OSEK OS are configured statically via the special
configuration file. SECTION 12 System Configuration describes the structure of
such file and all possible statements in detail. This configuration file defines system
specific parameters as well as system objects. Such file can has any extension and
the extension “.def” is suggested by default.

The configuration file has to be processed by the special utility named System
Generator (SG). This utility is delivered as one of the part of the OSEK Operating

Figure 13–1 Application building process

Application

file
configuration

Executable file

OSEK
OS kernel

System
Generator

Compiler

Linker

User’s source
code

- user defined files

- OSEK Operating System
 components - development software

- files produced by SG

Files produced by SG
 MOTOROLA Building of Application M68SOSEK

13—2 USER’S MANUAL

System. This tool runs as a simple MS-DOS application and produces header and
source files. The command line options are described in 12.2 Application
Configuration File.

The SG utility produces three types of standard C-language files which are to be
compiled and linked together with OS kernel code and user’s source code:

1.The header file which describes the current configuration of the operating
system, in other word - system properties. This file contains the
preprocessor directives #define and #undef. This file is used at compile
time to build the OS kernel with the specified properties. The default
filename is “osprop.h” but the user can assign another name (see 13.2.2
Source Files).

2.The header file which contains definitions of data types and constants,
external declarations of variables which needed to describe system objects.
This file is used to compile application files. By default System Generator
uses the input file name for this output file with “.h” extension.

3.The source file which contains initialized data, memory allocation for system
objects. This file is compiled with “osprop.h” and other header files and then
linked together with other application and OS files. The user can specify
several files of this type to separately define different objects. By default
System Generator uses the input file name for this output file with “c”
extension.

The possibility to have separate C-language source files for different system
objects is important for the user. These files are intended to allocate RAM areas
and to initialize some parameters. Separate files allow the user to place different
data in different memory areas by means of separate compilation.

NOTE:

As a rule, the user is not allowed to edit files produced by the System
Generator. It may lead to data inconsistency, compilation errors or
unpredictable application behavior.

13.2.2 Source Files

OSEK Operating System is delivered to the user as a set of source files. Header
and source files of the Operating System are located in the predefined directories
after OSEK OS installation, as it is described in OSEK OS Release Guide. Paths
to these directories have to be provided by the user.

The OS source code is compiled and linked together with other application’s files.
The header file “osprop.h” describing system properties defines which functionality
will have the OS kernel in run time. This file must be included in all user’s and OS’
source files. Since the user can specify another name for this file the special macro
M68SOSEK Building of Application MOTOROLA

USER’S MANUAL 13—3

OSPROPH is designed to substitute the name. The following code can be used in
all user’s files (it is used in all OS source files):

#if !defined (OSPROPH)
#include <osprop.h>
#else /* !defined (OSPROPH) */
#include OSPROPH
#endif /* !defined (OSPROPH) */

The compiler command line (see 13.2.3 Compiling and Linking) in this case
should have the following option:

-dOSPROPH="<filename>".

<filename> is the name of the file with system properties definitions.

But the user is allowed to use some other method to include the property definition
header file in his/her source code.

The files produced by SG are considered as application source files as well as files
written by the user. The user can include produced files in his/her own source files.
In case of user defined data types or variables which are used in system objects
definitions such things have to be defined in user’s files before references to such
entities. It may be done either via external declarations in header files or in source
files. In the example below two variables and one data type are defined by the user
which are referenced in files generated by SG. Variables are defined in the user’s
file “user.c” and referenced in the produced file “task.c”. The data type is defined in
the user’s file “user.h” and referenced in the produced file “msg.c”. The user’s code
can be the following:

USER.H file:

typedef struct tagMSG MSGTYPE;
struct tagMSG
{
 TickType timeStamp;
 int x;
};
extern MSGTYPE MsgA;

USER.C file:

#include "user.h" /* include user defined data type */
...
int varA = 22; /* user defined variables */
int varB = 0;
...
 MOTOROLA Building of Application M68SOSEK

13—4 USER’S MANUAL

#include "task.c" /* references to variables are there */
#include "msg.c" /* references to the data type are there */

Other variants are also possible. The main rule is:

RULE:

If the user specifies some user defined variables or data types in the
application configuration file they are only referenced in the code
produced by SG. So all definitions and external declarations have to
be done by the user before these references.

The code of user’s tasks and functions should be developed according to common
rules of the C language. But some exceptions exist:

• The keyword TASK and ISR should be used to define a task and ISR
correspondingly;

• For objects controlled by the OSEK Operating System the data types defined
by the system must be used. The data types are described at the end of
previous sections and in SECTION 16 System Services.

13.2.3 Compiling and Linking

When all needed header and source files are created or produced by the System
Generator an application can be compiled and linked. The current version of the
OSEK Operating System uses the Cosmic Software Version 4.0p for Motorola
MC68HC08 as a development tool. The compiler options selected by the user
should provide proper compiling. In the sample application the following command
line for the Cosmic compiler is used:

cx6808 -l -m nowiden:nw -dOSPROPH=name.h -ao

If the user redefines the “osprop.h” name then the “-d“ option is mandatory for the
OSEK application, it defines macro OSPROPH. If the “osprop.h” name is used this
option is not needed.

Since the System Generator allows definition of different objects in separate
source files, during linking it is possible to allocate memory in the desired manner.
Linking process is controlled by the typical linker directive file for the Cosmic linker.

13.3 Sample Application

In APPENDIX A Sample Application the code of an OSEK OS based application
is provided. This code is simple demonstration of Operating System mechanisms.
It also demonstrates how to write the configuration file and source code.
M68SOSEK Building of Application MOTOROLA

USER’S MANUAL 13—5

 MOTOROLA Building of Application M68SOSEK

13—6 USER’S MANUAL

SECTION 14
PLATFORM-SPECIFIC FEATURES

14.1 HC08 features

14.1.1 Base Page Memory Usage

The system configuration option HCBasePage is of considerable importance for
the OSEK Operating System for HC08 MCU. The average size of the OSEK OS
kernel version with HCBasePage turned on is significantly smaller than the size of
the version with extended addressing (HCBasePage is turned off). Exact
characteristics are provided in APPENDIX C Memory Requirements. This feature
can be important for applications with exacting requirements for memory and
performance.

Also the task control blocks can be placed into the base page memory, if the
system configuration option TaskBasePage is turned on. In this case the user is
responsible for the needed amount of RAM in the base page for the desired
number of task control blocks (the Cosmic linker option to control the segment size
“-m##” can be used for this purpose). This system property increases the overall
system performance.

14.1.2 Compiler Issues

The OSEK Operating System is designed to be used with the Cosmic Software
Version 4.0p. In case of using other compiler versions some problems can arise.
Contact with developers in this case to resolve them (see 2.5 Technical Support
Information). For instance, using of assembler optimization can lead to errors,
since OSEK OS contains pieces of code written in assembler which cannot be
optimized properly.

It is recommended to add environment variables and paths to access Cosmic
compiler directories and OSEK directory. Installation procedure suggests the user
to set these variables automatically. If they was not set during installation the user
should do it manually. These variables are the following:

OSEKDIR = [path]\OSEK - path to the OSEK directory
CXPATH = [path]\H6808 - path to the Cosmic header files directory
CXLIB = [path]\LIB - path to the Cosmic library files directory

Also the path to the OSEK directory should be added into the PATH variable.

See the makefile in the \SAMPLE directory for additional information.
M68SOSEK Platform-Specific Features MOTOROLA

USER’S MANUAL 14—1

14.1.3 Interrupt Vector Table

The interrupt vector table is defined in the file “vector.c” which is delivered with the
OSEK Operating System and located in the \SRC directory. This file is the example
of the interrupt vector table coding (for two MCUs - MC68HC08AZ32 and
MC68HC08XL36). The user should copy this file into the project directory and there
modify it as needed. In addition, the file “vector.c” from the \SAMPLE directory may
be used as a sample of the vector table.

14.1.4 Recommendations on System Properties

14.1.4.1 UseMainStack property

It is recommended to turn ON this property. It reduces the needed amount of RAM
for stacks, since the same memory area is used during start-up (for main()
program), for the interrupt stack and for the scheduler stack. Moreover, the size of
the OS code is also reduced (ROM for the Operating System).

However, the user is responsible for allocation appropriate stack in the linker
directive file.

14.1.4.2 UseSameContext property

It is recommended to turn ON this property to use only preemptive context for all
tasks. It is important for CPU08 so the code to process the non-preemptive context
is quite big, and it leads to additional ROM and RAM consuming and reduces
system performance. When this property is ON, task switching is performed faster
and the required ROM amount is reduced. Use of different contexts (preemptive
and non-preemptive) have a sense for CPUs with many registers if some of them
are not included into the non-preemptive context.

14.1.4.3 InterruptMaskControl property

It is better to keep this property turned OFF, if it is not absolutely necessary to
control “I” bit of the Condition Code Register. Using of this property increases the
amount of ROM for the OS code and requires additional time for all system
services. Generally, this property is intended for CPUs with several interrupt
priority levels, e.g. CPU16.

14.1.4.4 CounterSize property

CPU08 is a 8-bit one, and its best performance is achieved when operands are
byte-sized. Therefore, it is recommended to use 8-bit counters (CounterSize = 8)
to increase overall performance and reduce the needed amount of RAM. Of
course, it is possible to use 16-bit and 32-bit counters, but it leads to additional
RAM and time consuming, especially in case of 32-bit counters !
 MOTOROLA Platform-Specific Features M68SOSEK

14—2 USER’S MANUAL

Moreover, the user is responsible to preserve the value of the compiler variable
”c_lreg” within the ISR, if a counter is triggered from the ISR. ???

14.1.4.5 Unused services

To reduce ROM consuming it is recommended to exclude OS services which are
not used in the application from the OS code with the help of “excluding” system
properties (see Table 12–2 OSEK Operating System Properties). It helps to
save memory.

14.1.5 System Timer Hardware

In the system definition statement DefineSystemTimer it is required to define
hardware interrupt source for this counter and its desired parameters. In the table
below all possible values to define these parameters are listed. This table
comprises HC08ABxx, HC08AZxx families and HC08XL36.

Thus, the system definition statement DefineSystemTimer for the OSEK Operating
System for HC08 MCU family has the following form:

DefineSystemTimer(<CounterID>, <maxallowedvalue>,
 <ticksperbase>, <tickduration>, [<mincycle>,]

Table 14–1 Parameters to define System Timer hardware

HardwareType HardwarePrescaler HardwareModulo Vector Address

HC08AZ0, HC08AB16, HC08AZ24, HC08AZ32

TIMATOI 0...7 0...65535 $FFEC

TIMBTOI 0...7 0...65535 $FFE6

TIMAOC0 0...7 0...65535 $FFF4

TIMAOC1 0...7 0...65535 $FFF2

TIMAOC2 0...7 0...65535 $FFF0

TIMAOC3 0...7 0...65535 $FFEE

TIMBOC0 0...7 0...65535 $FFEA

TIMBOC1 0...7 0...65535 $FFE8

PIT 0...7 0...65535 $FFF6

HC08XL36

TIMTOI 0...7 0...65535 $FFEC

TIMOC0 0...7 0...65535 $FFF4

TIMOC1 0...7 0...65535 $FFF2

TIMOC2 0...7 0...65535 $FFF0

TIMOC3 0...7 0...65535 $FFEE
M68SOSEK Platform-Specific Features MOTOROLA

USER’S MANUAL 14—3

 <HardwareType>, <HardwarePrescaler>,
 <HardwareModulo>);

For example, the system timer is based on the Timer A Overflow interrupt, with
Prescaler value equals 2 and Modulo Counter value equals 256. In this case the
definition statement can be the following:

DefineSystemTimer(SYS_TIMER, 100, 40, 256000, , TIMATOI, 2, 256);

NOTE:

The system timer will not be triggered if the EntryExitISR property is
turned OFF!

14.1.6 Scheduler Architecture

In an application does not use resources, it is strongly recommended to use
simplified scheduler (the property SimpleScheduler must be turned ON). In this
case all tasks running concurrently must have different priorities.That is, two tasks
may have the same priority if they are never both in ready state and they maust
have different priorities otherwise. The simple scheduler uses prioritized table of
task nodes and works faster. It requires less amount of ROM and RAM than the
standard scheduler.

In an application uses resources or claims to have more than one ready task per
priority, the SimpleScheduler option should be turned off. In this case the
POSIX-like scheduler is used. To reduce RAM consuming the number of priorities
should be kept as small as possible.
 MOTOROLA Platform-Specific Features M68SOSEK

14—4 USER’S MANUAL

SECTION 15
APPLICATION TROUBLESHOOTING

In this section some advises are given which may be useful for developers working
with the OSEK Operating System.

15.1 System Generation

The System Generator is used to generate the code for the OSEK Operating
System kernel and all application objects (tasks, messages, etc.). This tool
processed the configuration file created by the user and reports about
inconsistencies and errors in it. Most of possible mistakes in application
configuration process can be eliminated with the help of SG. See SECTION 12
System Configuration and SECTION 13 Building of Application about system
generation process.

If an undocumented problem arises please provide us with the detailed description
of it and we will help to resolve the problem. See 2.5 Technical Support
Information for contact information.

15.2 Using OS Extended Status for Debugging

It is strongly recommended to use Operating System Extended Status when you
develop an application to analyze return codes of system services. Such method
is more memory and time consuming but it allows the user to save time for errors
eliminating. Error codes returned by the OSEK OS services covers most of
possible errors that can arise during development. Therefore it is useful to check
these codes after a service call to avoid error that can lead to the system crash. For
example, a task can perform the TerminateTask service while it is still occupying a
resource. This service will not be performed and the task will remain active
(running). In case of Extended Status the E_RESOURCE error code is returned
and it is possible to detect this situation. But in the system without Extended Status
there is no additional check and this error is not indicated and the application
behavior will be unpredictable!

When all errors in an application will be eliminated you may turn off the Extended
Status and remove additional status checks from the application to get the reliable
application of the smaller size.
M68SOSEK Application Troubleshooting MOTOROLA

USER’S MANUAL 15—1

15.3 Context Switch Routines

Breakpoints, traces and time stamps can be integrated individually into the
application software with the help of context switch hook routines OSPreTask and
OSPostTask.

Example: The user can set time stamps enabling him to trace the program
execution at the following locations before calling operating system services:

• When activating or terminating tasks;

• When setting or clearing events in the case of Extended Tasks;

• At explicit points of the schedule (ChainTask, Schedule);

• At the beginning or the end of ISR;

• When occupying and releasing resources or at critical locations.

The Operating System needs not include a time monitoring feature which ensures
that each or only, e.g. the lowest-priority task has been activated in any case after
a defined maximum time period.

The user can optionally use hook routines or establish a watchdog task that takes
“one-shot displays” of the operating system status.

15.4 Stack Errors

Stack errors may be due to the stack pointer being incorrect or to stack contents
being incorrect. Stack content problems are possible when using pointers into
stack variables, but stack pointer problems seem to be more common. The
symptom of either problem is usually a task or ISR executing normally, but then
when a return is performed, the program executes at some incorrect address.

NOTE

Problems with a program running wild may sometimes be caught by
always filling the unused program memory with $00, which the HC08
‘test’ opcode does, and setting a breakpoint at the illegal opcode
vector address.

ISRs using OS services or reenabling interrupts should begin with the EnterISR
service and end via the LeaveISR service (see SECTION 6 Interrupt
Processing). If the number of EnterISR and LeaveISR invocations do not match
(e.g., in case of nested interrupts), the stack will be incorrect. See also 6.5 Local
Variables Considerations about using local variables in ISRs.

Tasks should have enough stack for their execution, therefore it is recommended
to pay attention on task definition statements to provide each task with a needed
amount of stack.
 MOTOROLA Application Troubleshooting M68SOSEK

15—2 USER’S MANUAL

Generally, the recommended minimal task stack size equals:

• 24 bytes for extended tasks if no task activation, messages, and there are no
interrupts in the system;

• 32 bytes for extended tasks if no task activation, messages and interrupts are
supported in the system;

• 48 bytes for other cases.

15.5 Known Problems

None.
M68SOSEK Application Troubleshooting MOTOROLA

USER’S MANUAL 15—3

 MOTOROLA Application Troubleshooting M68SOSEK

15—4 USER’S MANUAL

SECTION 16
SYSTEM SERVICES

16.1 General

This section provides detailed description of all OSEK OS run-time services
including hook routines. Also declarations of system objects - the constructional
elements - are described here. The services are arranged in logical groups - for the
task management, the interrupt management, etc.

Examples of code are also provided for every logical group. These examples have
no practical meaning, they only show how it is possible to use OS calls in an
application.

The following scheme is used for service description:

Declaration element:

Syntax: Interface in ANSI-C syntax.
Input: List of all input parameters.
Description: Explanation of the constructional element.
Particularities: Explanation of restrictions relating to the utilization.
Conformance: Specifies the lowest Conformance Class where the

declaration element is provided.

Service description:

Syntax: Interface in ANSI-C syntax. The return value of the service is
always of data type StatusType.

Input: List of all input parameters.
Output: List of all output parameters. Transfers via the memory use

the memory reference as input parameter and the memory
contents as output parameter. To clarify the description, the
reference is already specified among the output parameters.

Description: Explanation of the functionality of the operating system
service.

Particularities: Explanations of restrictions relating to the utilization of the
service.

Status: List of possible return values.
Standard: List of return values provided in the operating system’s

standard version. Special case - service does not return.
Extended: List of additional return values in the operating system’s

extended version.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—1

Conformance: Specifies the lowest Conformance Class where the
service is provided.

The specification of operating system services uses the following naming
conventions for data types:

...Type: describes the values of individual data.

...RefType: describes the identifier referencing an object1.

It is also possible to see all predefined OSEK OS data types in system header files.

1. E.g., a pointer or an index
 MOTOROLA System Services M68SOSEK

16—2 USER’S MANUAL

16.2 Task Management Services

16.2.1 Data types

The OSEK Operating System establishes the following data types for the task
management:

• TaskRefType The abstract data type for task identification;

• TaskStateType The data type for variables to store the state of a task;

• TaskStateRefType The data type to refer variables of the TaskStateType
data type.

16.2.2 Constants

The following constants are used within the OSEK Operating System to indicate
task states:

• RUNNING Constant of data type TaskStateRefType for task state
running

• WAITING Constant of data type TaskStateRefType for task state
waiting

• READY Constant of data type TaskStateRefType for task state
ready

• SUSPENDED Constant of data type TaskStateRefType for task state
suspended

16.2.3 Conventions

Within the application a task should be defined according to the following pattern:

TASK task_start(void)
{
...
}

The keyword TASK is evaluated by the system generation to clearly distinguish
between functions and tasks in the source code.

The only data types must be used for operations with tasks.

16.2.4 Task Declaration

To refer to a task the constructional element should be used to declare the task
before references to it:
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—3

Syntax:

DeclareTask(TaskRefType <TaskName>)

Input:

• <TaskName> - a reference to the task

Description:

DeclareTask serves as an external declaration of a task. The function and use of
this service are similar to that of the external declaration of variables.

Particularities: none

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—4 USER’S MANUAL

16.2.5 ActivateTask

Syntax:

StatusType ActivateTask(TaskRefType <TaskName>);

Input:

• <TaskName> - a reference to the task.

Output:

• None.

Description:

The specified task TaskName is transferred from the suspended state into the
ready state. All needed actions for task initialization are accomplished by the
system according to information from the task configuration table (e.g., dynamic
stack and node allocation).

Particularities:

The service may be called both on the task level (from a task) and the interrupt level
(from ISR).

In the case “call from ISR”, the operating system will reschedule tasks only after
the ISR completion.

If the system configuration option ActivareTask is turned off the service is excluded
from the OSEK OS code.

Status:

• Standard:

— E_OK - no error;

— E_STATE - the task has already been activated and multiple
 requests are not allowed.

• Extended:

— E_ID - the task identifier TaskName is invalid;

— E_LIMIT - too many task activations of the specified task or
there is no enough resources to activate the task.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—5

16.2.6 TerminateTask

Syntax:

StatusType TerminateTask(void);

Input:

• None.

Output:

• None.

Description:

This service causes the termination of the calling task. The calling task is
transferred from the running state into the suspended state and releases all
occupied system resources (that is, the stack, the task node, etc.).

Particularities:

The resources occupied by the task must have been released before.

If the call was successful, TerminateTask does not return to the call level and the
status can not be evaluated. If the service TerminateTask is called successfully, it
enforces a rescheduling.

If the system with extended status is used, the service returns in case of error, and
provides a status which can be evaluated in the application.

If the system configuration option TerminateTask is turned off the service is
excluded from the OSEK OS code.

Status:

• Standard:

— No return to the caller.

• Extended:

— E_RESOURCE - the task still occupies resources;

— E_CALLEVEL - a call at the interrupt level.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—6 USER’S MANUAL

16.2.7 ChainTask

Syntax:

StatusType ChainTask(TaskRefType <TaskName>);

Input:

• <TaskName> - a reference to the sequential succeeding task to be
activated.

Output:

• None.

Description:

This service causes the termination of the calling task. After termination of the
calling task a succeeding task <TaskName> is activated sequentially. Using this
service, it ensures that the succeeding task only starts to run after the calling task
has been terminated.

Particularities:

If the succeeding task is identical with the current task, this does not result in
multiple requests. In this case the task will be terminated and after that activated
again. It can be used, e.g. if multiple activation is disabled but it is needed to restart
a task. If it is not needed to have such tricks the system property ChainTaskItself
can be turned off to decrease the task control block size.

The resources occupied by the calling task must have been released before.

If called successfully, ChainTask does not return to the call level and the status can
not be evaluated. In this case a rescheduling is enforced.

If the version with Extended Status is used, the service returns in case of error to
the calling task, and provides a status which can be evaluated by the application.

If the system configuration option ChainTask is turned off the service is excluded
from the OSEK OS code.

Status:

• Standard:

— No return to the caller.

• Extended:

— E_ID - the task identifier is invalid;

— E_STATE - the succeeding task has already been activated and
multiple requests are not allowed;
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—7

— E_RESOURCE - the calling task still occupies resources;

— E_CALLEVEL - a call at the interrupt level;

— E_LIMIT - too many activations of <TaskName> or there is no
enough resources to activate the task.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—8 USER’S MANUAL

16.2.8 Schedule

Syntax:

StatusType Schedule(void);

Input:

• None.

Output:

• None.

Description:

If a higher-priority task is ready, the current task is put into the ready state and a
higher-priority task is executed. Otherwise the calling task is continued without
delay. By means of using this service the task explicitly yields control to a
higher-priority ready task (if any exists).

Particularities:

In not full-preemptive systems Schedule enables a processor assignment to other
tasks in application-specific locations.

If the system configuration option Schedule is turned off the service is excluded
from the OSEK OS code.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_CALLEVEL - a call at the interrupt level.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—9

16.2.9 GetTaskId

Syntax:

StatusType GetTaskId(TaskRefType <TaskName>);

Input:

• None.

Output:

• <TaskName> - a reference to the task which is currently active. The system
saves the task reference into the variable <TaskName>.

Description:

This system service returns the name (<TaskName>) of the task which is currently
active.

Particularities:

This service is useful, for instance, in the case if two or more tasks shares the same
piece of code and in some point of the code the coming actions depend on which
task is executed in the moment.

If the system configuration option GetTaskId is turned off the service is excluded
from the OSEK OS code.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_CALLEVEL - a call at the interrupt level.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—10 USER’S MANUAL

16.2.10 GetTaskState

Syntax:

StatusType GetTaskState(TaskRefType <TaskName>,
 TaskStateRefType <State>);

Input:

• <TaskName> - a reference to the task.

Output:

• <State> - a reference to the state of task <TaskName>.

Description:

Returns the state of the specified task <TaskName> (running, ready, waiting,
suspended) at the time of calling GetTaskState.

Particularities:

The service may be called both on the task level (from a task) and the interrupt level
(from ISR).

Within a full-preemptive system, calling this operating system service only provides
a meaningful result if the task runs in an interrupt disabling state at the time of
calling. When a call is made from a task in a full-preemptive system, the result may
already be incorrect at the time of evaluation.

If the system configuration option GetTaskState is turned off the service is
excluded from the OSEK OS code.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the task identifier is invalid.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—11

16.2.11 Examples for Task Management Services

The example below assumes three tasks TaskA, TaskB and TaskC. These tasks use
all OSEK OS task management services to coordinate each other.

The following definitions can be made in the definition file:

...
[Tasks]
DefineTask(TaskA, BASIC|ACTIVATE|OWNSTACK,1, task_a,,,,64);
DefineTask(TaskB, EXTENDED|POOLSTACK,2, task_b,,,,POOL1);
DefineTask(TaskC, EXTENDED|ACTIVATE|NODESTACK,3, task_c,,,,);
...

The C-language file:

DeclareTask(TaskA)
DeclareTask(TaskB)
DeclareTask(TaskC)

TASK task_a(void)
{
TaskRefType task;
... /* any user’s code */

ActivateTask(TaskB); /* activate TaskB */
Schedule(); /* yields CPU to a higher-priority task */
GetTaskId(task);
if(task == TaskA) ActivateTask(TaskC);
else ChainTask(TaskB);
... /* any user’s code */
TerminateTask();
}

TASK task_b(void)
{
TaskStateType state;
EventMaskType cc = 0x4;
... /* any user’s code */

GetTaskState(TaskC, &state); /* check the state of TaskC */
switch(state) /* and perform appropriate actions */
 {
 case READY: break;
 case WAITING: SetEvent(TaskC, cc);

 break;
 MOTOROLA System Services M68SOSEK

16—12 USER’S MANUAL

 case SUSPENDED: ChainTask(TaskC);
 break;

 }
... /* any user’s code */
}

TASK task_c(void)
{
TaskStateType stateA, stateB;
... /* any user’s code */

while(1)
{
 GetTaskState(TaskA, &stateA);
 GetTaskState(TaskB, &stateB);
 if(stateA == READY && stateB == SUSPENDED) ChainTask(TaskB);
 if(stateB == READY && stateA == SUSPENDED) ChainTask(TaskA);
 if(stateA == READY && stateB == READY) Schedule();
 ... /* any user’s code */
}
}

M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—13

16.3 ISR Management Services

16.3.1 Data Types

The OSEK Operating System establishes the following data types for the task
management:

• IntMaskType the data type for interrupt masks

• IntMaskRefType the data type for reference to interrupt mask.

16.3.2 Conventions

Within the application an Interrupt Service Routine should be defined according to
the following pattern:

ISR IsrStart(void)
{
...
}

The keyword ISR is the macro for compiler specific interrupt function modifier,
which is used to generate valid code to enter and exit ISR.
 MOTOROLA System Services M68SOSEK

16—14 USER’S MANUAL

16.3.3 EnterISR

Syntax:

StatusType EnterISR(void);

Input:

• None.

Output:

• None.

Description:

EnterISR establishes conditions needed to request OS services within an interrupt
service routine. Inside EnterISR the following activities are executed if needed:

• Registration of the switching to the interrupt level inside the operating system;

• A switch of the current context (to the ISR stack).

This function is called from the begin of the interrupt service routine, when
hardware registers are pushed onto the current stack either by hardware or by
compiler generated code. This way, the context of the running task, or ISR, or
scheduler idle loop is known on the function entry. This context is named interrupt
stack frame.

If the task is interrupted, then the pointer to the interrupt stack frame is stored in the
stack pointer field of the running task. After that the top of the ISR stack is loaded
into the CPU stack pointer, and value of the nested interrupts counter is
incremented.

If the ISR is interrupted, then the value of the system counter of nested interrupts
is advanced by one, and function returns to the caller.

If the scheduler idle loop is interrupted, then interrupt stack frame is ignored,
because LeaveISR function returns directly to the scheduler idle loop. The top of
the ISR stack is loaded into the CPU stack pointer, and value of the system counter
of nested interrupts is changed to one.

Particularities:

EnterISR establishes the possibility to use operating system services in an ISR. It
is necessary to place EnterISR before the first call of an operating system service.

See description of interrupt categories in section 6.3 ISR Categories.

This service is not implemented if the system configuration option EntryExitISR or
EnterISR are turned off in the configuration file.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—15

Status:

• Standard:

— None.

• Extended:

— None.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—16 USER’S MANUAL

16.3.4 LeaveISR

Syntax:

StatusType LeaveISR(void);

Input:

• None.

Output:

• None.

Description:

LeaveISR is the counterpart of EnterISR and resets the conditions to request
operating system services in an ISR. Inside LeaveISR the following functions are
executed if needed:

• Registration of the switching back from the interrupt level inside the operating
system;

• A switch of the current context (for example a switch from the ISR stack back
to the OS context or to the context of the task running before).

In case of an error the function returns to the call level.

This function is called in the end of the interrupt service routine.

If the ISR was interrupted by the corresponding EnterISR, then the value of the
system counter of nested interrupts is decremented by one, and the function
returns to the caller, because the current ISR is considered as nested one.

If the caller is the outermost ISR (task or scheduler idle loop was interrupted), then
the function calls the scheduler to update the pointer to the running task. After this
call the function loads the task stack pointer into the CPU stack pointer in
assumption, that task stack pointer contains the address of valid interrupt stack
frame. If there is no running task, then functions goes directly to the scheduler idle
loop. In any case the value of the nested interrupts counter is decremented by one.

Particularities:

LeaveISR eliminates the possibility of using OS services in an ISR. It is highly
recommended to place LeaveISR at the end of the ISR.

See description of interrupt categories in section 6.3 ISR Categories.

This service is not implemented if the system configuration option EntryExitISR or
LeaveISR are turned off in the configuration file.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—17

Status:

• Standard:

— No return to call level.

• Extended:

— E_CALLEVEL - a call not at the interrupt level.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—18 USER’S MANUAL

16.3.5 EnableInterrupt

Syntax:

StatusType EnableInterrupt(IntMaskType <Mask>);

Input:

• <Mask> - a mask of interrupts to be enabled.

Output:

• None.

Description:

This service enables interrupts specified by <Mask>. In the case if several
interrupts can be controlled simultaneously, this service allows enabling of several
interrupts.

Particularities:

The service may be called from an ISR and from the task level.

For HC08 this service is intended to control only the “I” bit in the Condition Code
Register.

This service should only be used with care. It destroys the contents of CCR
according to C language conventions. In case of use it is highly recommended to
know the reaction upon system behavior!

To save the current state of interrupts the application must use GetInterruptMask
before.

This service is executed also in case of return of the state E_NOFUNC.

This service is not implemented if the system configuration option EntryExitISR or
EnableInterrupt are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_NOFUNC - at least one of the interrupts was not disabled.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—19

16.3.6 DisableInterrupt

Syntax:

StatusType DisableInterrupt(IntMaskType <Mask>);

Input:

• <Mask> - a mask of interrupts to be disabled.

Output:

• None.

Description:

This service disables interrupts specified by <Mask>. In the case if several
interrupts can be controlled simultaneously, this service allows disabling of several
interrupts.

Particularities:

The service may be called from an ISR and from the task level.

For HC08 this service is intended to control only the “I” bit in the Condition Code
Register.

This service should only be used with care. It destroys the contents of CCR
according to C language conventions. In case of use it is highly recommended to
know the reaction upon system behavior!

To save the current state of interrupts the application must use GetInterruptMask
before.

This service is executed also in case of return of the state E_NOFUNC.

This service is not implemented if the system configuration option EntryExitISR or
DisableInterrupt are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_NOFUNC - at least one of the interrupts was not enabled.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—20 USER’S MANUAL

16.3.7 GetInterruptMask

Syntax:

StatusType GetInterruptMask(IntMaskRefType <Mask>);

Input:

• None.

Output:

• <Mask> - a reference to the interrupt mask to be filled.

Description:

Query of interrupt status and returns the current CPU interrupt mask.

Particularities:

The service may be called from an ISR and from the task level.

For HC08 this service is intended to get only the value of the “I” bit in the Condition
Code Register.

This service is not implemented if the system configuration option EntryExitISR or
GetInterruptMask are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— None.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—21

16.3.8 Examples for Interrupt Management Services

Below examples for ISR category 1, 2 and 3 are presented.

The following definitions can be made in the definition file:

[Interrupt management]
DefineInterrupts(0x8,0x0,0x0, 64);
...
[Tasks]
DefineTask(TaskB, EXTENDED|POOLSTACK,1, task_b,,,,POOL1);
DefineTask(IndTask, BASIC|ACTIVATE|OWNSTACK,2, ind_tsk,,,,64);
...
[Counters]
DefineCounter(Ctr1, 24, 1);
...
[State Messages]
DefineStateMessage(Temp, char, sizeof(char), WithoutTimeStamp);
[Event Messages]
DefineEventMessage(Wrn, MSGCTYPE, sizeof(int),

6,3,WithOverwriteCheck, WithoutTimeStamp);

The C-language code can be the following:

ISR category 1:

char CREG, DREG;
char data1;
...

ISR ISR_handler
{
if(CREG != 0xC0) CREG |= 0x40;
else CREG |= 0x03;
DREG = data1;
}

ISR category 2:

TaskStateType stateB;
DeclareCounter(Ctr1)
DeclareTask(TaskB)
...
ISR ISR_handler
{
EnterISR();
CounterTrigger(Ctr1);
GetTaskState(TaskB, &stateB);
 MOTOROLA System Services M68SOSEK

16—22 USER’S MANUAL

if(stateB == SUSPENDED) ActivateTask(TaskB);
LeaveISR();
}

ISR category 3:

DeclareTask(IndTask);
UsesStateMessage(Temp, Send, WithCopy)
UsesEventMessage(Wrn, Send);
int temp;

ISR ISR_handler
{

/* normal temperature, do nothing */
if((temp >= LIMIT_L) && (temp <= LIMIT_H)) goto exit;
 /* temperature is below critical value: */
if(LIMIT_L >= temp)
 { EnterISR();
 SendStateMessage(Temp, WithCopy); /* send msg to notify */
 goto leave;
 }
 /* temperature is higher critical value: */
if((temp >= LIMIT_H))
 { EnterISR();
 SendEventMessage(Wrn); /* send alarm message */
 ActivateTask(IndTask);
leave: LeaveISR();
 }
exit: ;
}

M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—23

16.4 Resource Management Services

16.4.1 Data types

The OSEK Operating System establishes the following data type for the resource
management:

• ResourceRefType - the abstract data type for referencing a resource;

The only data type must be used for operations with tasks.

16.4.2 Resource Declaration

To refer to a resource the constructional element should be used to declare the
resource before its using:

Syntax:

DeclareResource(ResourceRefType <ResName>)

Input:

• <ResName> - a reference to the resource.

Description:

DeclareResource serves as an external declaration of a resource. The function
and use of this service are similar to that of the external declaration of variables.

Particularities: none

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—24 USER’S MANUAL

16.4.3 GetResource

Syntax:

StatusType GetResource(ResourceRefType <ResName>);

Input:

• <ResName> - a reference to the resource.

Output:

• None.

Description:

This call serves to enter a critical section in the code that is assigned to the
referenced resource. A critical section must always be left using ReleaseResource.

The E_LIMIT error code is not processed yet.

Particularities:

This function is fully supported only beginning from the Conformance Class BCC3.
In Conformance Classes BCC1 and BCC2 only the standard resource scheduler
can be occupied via the constant RES_SCHEDULER.

Corresponding calls to GetResource and ReleaseResource should appear within
the same function on the same function level. Generally, critical sections should be
short. Nested resource occupation is only allowed if the inner critical sections are
executed completely within the surrounding critical section.

Regarding Extended Tasks, please note that WaitEvent within a critical section is
prohibited.

This service is not implemented if the system configuration option Resources or
GetResource are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the resource identifier is invalid;

— E_ACCESS - the inadmissible access to resource;

— E_CALLEVEL - a call at the interrupt level is not allowed;

— E_LIMIT - too many resources are occupied in parallel.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—25

16.4.4 ReleaseResource

Syntax:

StatusType ReleaseResource(ResourceRefType <ResName>);

Input:

• <ResName> - a reference to the resource.

Output:

• None.

Description:

This call serves to leave the critical section in the code that is assigned to the
referenced resource. An ReleaseResource call is a counterpart of an GetResource
service call.

The E_ID error code is generated in the following cases:

• the resource signature is invalid - this object is not resource;

• the resource is occupied by another task, the resource is not released in this
case;

• the resource is not the last occupied resource (a nesting processing error), the
resource is released (unlinked from the list) in this case.

Particularities:

This function is fully supported only beginning from the Conformance Class BCC3.
In Conformance Classes BCC1 and BCC2 only the standard resource scheduler
can be released via the constant RES_SCHEDULER.

For information on nesting conditions, see particularities of GetResource.
This service is not implemented if the system configuration option Resources or
ReleaseResource are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the resource identifier is invalid;

— E_NOFUNC - an attempt to release a resource which is not
occupied;

— E_CALLEVEL - a call at the interrupt level is not allowed.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—26 USER’S MANUAL

16.4.5 Examples of using resources

The example below presents resource management directives.

The following definitions can be made in the definition file:

[Tasks]
DefineTask(TASK_A, EXTENDED|POOLSTACK,1, task_a,,,,POOL1);
DefineTask(TASK_B, BASIC|ACTIVATE|OWNSTACK,2, task_b,,,,64);
DefineTask(SCI_TASK, BASIC|ACTIVATE|NODESTACK,3, taskSCI,,,,);
[Resources]
DefineResource(SCI_res, 2);
...

The C-language code can be the following:

DeclareTask(SCI_TASK)
DeclareResource(SCI_res)

TASK taskSCI
{
...
GetResource(SCI_res); /* occupy the SCI resource */
... /* user’s code */
ActivateTask(TASK_B);
GetResource(RES_SCHEDULER); /* occupy the scheduler resource */
... /* user’s code */
ReleaseResource(RES_SCHEDULER); /* release the scheduler */
ReleaseResource(SCI_res); /* release the SCI resource */

TerminateTask();
}

M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—27

16.5 Counters and Alarms Management Services

16.5.1 Data Types and Identifiers

The following data types are established by OSEK OS to work with counters and
alarms:

• CtrRefType - the data type references a counter

• TickType - the data type represent count value in system ticks

• TickRefType - the data type references data corresponding to the data type
 TickType

• CtrInfoType - the data type represents a structure for storage of counter
 characteristics. This structure has the following elements:

• maxallowedvalue - maximum possible allowed counter value;

• tickperbase - number of ticks required to reach a counter-specific
 significant unit;

• mincycle - minimum allowed number of ticks for a cyclic alarm
(only for system with Extended Status).

 All elements have the data type TickType, and the structure looks like the
 following:
 typedef CtrInfoType tagCIT;
 struct tagCIT
 {

TickType maxallowedvalue;
TickType tickperbase;
TickType mincycle;

 };

• CtrInfoRefType- the data type references data corresponding to the data
 type CtrInfoType

• AlarmRefType - the data type represents the reference to an alarm element.

16.5.2 Constants

For system counter, which is always a time counter, the special constants are
provided by the operating system:

• OSMAXALLOWEDVALUE - maximum possible allowed value of the system
timer in ticks;

• OSTICKSPERTIME - number of ticks that are required to reach 10
milliseconds in the system counter;

• OSTICKDURATION - duration of a tick of the system counter in nanoseconds;
 MOTOROLA System Services M68SOSEK

16—28 USER’S MANUAL

• OSMINCYCLE - minimum allowed number of ticks for a cyclic alarm (only for
system with Extended Status).

16.5.3 Counter and Alarm Declaration

To refer to a counter or alarm the declaration statements should be used to declare
the element (counter or alarm) before their using:

16.5.3.1 Counter Declaration

Syntax:

DeclareCounter(CtrRefType <CounterName>)

Input:

• <CounterName>- a reference to the counter

Description:

DeclareCounter serves as an external declaration of a counter. The function and
use of this service are similar to that of the external declaration of variables.

Particularities: none

Conformance: BCC1

16.5.3.2 Alarm Declaration

Syntax:

DeclareAlarm(AlarmRefType <AlarmName>)

Input:

• <AlarmName> - a reference to the alarm

Description:

DeclareAlarm serves as an external declaration of an alarm. The function and use
of this service are similar to that of the external declaration of variables.

Particularities: none

Conformance: BCC1

These declarations are equivalent to the external declaration of variables.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—29

16.5.4 InitCounter

Syntax:

StatusType InitCounter(CtrRefType <CounterName>,
 TickType <Ticks>);

Input:

• <CounterName>- a reference to the counter;

• <Ticks> - a counter initialization value in ticks.

Output:

• None.

Description:

Sets the initial value of the counter with the value <Ticks>. After this call the counter
will advance this initial value by one via the following call of CounterTrigger. If there
are running attached alarms, then these alarms are checked whether they have
expired at this tick value and the appropriate actions are performed, else their state
stays unchanged.

Particularities:

This service is not implemented if the system configuration option Counters or
InitCounter are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the counter identifier is invalid;

— E_VALUE - the counter initialization value exceeds the
maximum admissible value;

— E_CALLEVEL - a call at interrupt level (not allowed).

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—30 USER’S MANUAL

16.5.5 CounterTrigger

Syntax:

StatusType CounterTrigger(CtrRefType <CounterName>);

Input:

• <CounterName>- a reference to the counter;

Output:

• None.

Description:

Increments the current value of the counter. If the counter reaches the value
maxallowedvalue (see 16.5.1), it is reset to "zero".

If alarms are linked to the counter, the system checks whether they expired after
this tick and performs appropriate actions (task activation and event setting).

Particularities:

Call admissible both from interrupt and task levels.

Depending on the underlying hardware it is possible that parts of the functionality
of CounterTrigger may by done by the hardware. In this case the remaining
functionality of CounterTrigger has to be adapted.

This service is not implemented if the system configuration option Counters or
CounterTrigger are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the counter identifier is invalid.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—31

16.5.6 GetCounterValue

Syntax:

StatusType GetCounterValue(CtrRefType <CounterName>,
TickRefType <Ticks>);

Input:

• <CounterName>- a reference to the counter;

Output:

• <Ticks> - a counter value in ticks.

A reference to the return counter value in ticks.

Description:

The system service provides the current value of the counter <CounterName> in
ticks.

Particularities:

This service is not implemented if the system configuration option Counters or
GetCounterValue are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the counter identifier is invalid;

— E_CALLEVEL - a call at interrupt level (not allowed).

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—32 USER’S MANUAL

16.5.7 GetCounterInfo

Syntax:

StatusType GetCounterInfo(CtrRefType <CounterName>,
CtrInfoRefType <Info>);

Input:

• <CounterName>- a reference to the counter;

Output:

• <Info> - a reference to the structure with constants of the counter.

Description:

Returns the counter characteristics into the <Info> structure. For a system counter
special constants may be used instead of this service. The return value <Info> is a
structure in which the information of data type CtrInfoType is stored.

Particularities:

The structure consists of two elements in case of the “Standard Status”, and of
three elements in case of the “Extended Status”.

This service is not implemented if the system configuration option Counters or
GetCounterInfo are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the counter identifier is invalid;

— E_CALLEVEL - a call at interrupt level (not allowed).

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—33

16.5.8 SetRelAlarm

Syntax:

StatusType SetRelAlarm(AlarmRefType <AlarmName>,
 TickType <Increment>,

 TickType <Cycle>);

Input:

• <AlarmName> - a reference to the alarm;

• <Increment> - a relative value in ticks;

• <Cycle> - an alarm cycle value in ticks in case of cyclic alarm. In case
of single alarms, the value cycle has to be equal zero.

Output:

• None.

Description:

The system service occupies the alarm <AlarmName> element. After this service
call the counter will count <Increment> ticks starting from the current counter value
at the moment of the call. After <Increment> ticks have elapsed from that moment,
the task assigned to the alarm <AlarmName> is activated or the assigned event
(only for Extended Tasks) is set.

If <Cycle> is unequal 0, the alarm element is logged on again immediately after
expiry with the relative value <Cycle>. Otherwise, the alarm triggers only once.

Particularities:

If the relative value <Increment> is very small, the alarm may immediately expire,
and the task may become ready. It is because the certain time is needed for system
activities to return to the calling task after the <Increment> ticks for the counter
have been set.

The alarm <AlarmName> must not already be in use. To change values of alarms
already in use the alarm has to be cancelled first.

This service is not implemented if the system configuration option Alarms or
SetRelAlarm are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error;

— E_STATE - the alarm is already in use.
 MOTOROLA System Services M68SOSEK

16—34 USER’S MANUAL

• Extended:

— E_ID - the alarm identifier is invalid;

— E_VALUE - the alarm initialization value or cycle value is greater
than the maximum allowed value of the counter, or the
cycle value is less than the minimum cycle value of the
counter;

— E_CALLEVEL - a call at the interrupt level is not allowed.

Conformance:

• BCC1;

• Event:ECC1.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—35

16.5.9 SetAbsAlarm

Syntax:

StatusType SetAbsAlarm(AlarmRefType <AlarmName>,
 TickType <Start>,
 TickType <Cycle>);

Input:

• <AlarmName> - a reference to the alarm;

• <Start> - an absolute value in ticks;

• <Cycle> - an alarm cycle value in ticks in case of cyclic alarm. In case
of single alarms, cycle has to be equal zero.

Output:

None.

Description:

The system service occupies the alarm <AlarmName> element. The counter will
count <Start> ticks starting from zero counter value. When <Start> ticks are
reached, the task assigned to the alarm <AlarmName> is activated or the assigned
event (only for Extended Tasks) is set.

If <Cycle> is unequal 0, the alarm element is logged on again immediately after
expiry with the relative value <Cycle>. Otherwise, the alarm triggers only once.

Particularities:

Since the current counter value at the moment of the service call is most likely not
equal zero, there exist the some period of time while the counter reaches its
maximum allowed value and will be logged on again (its value will become 0). Only
starting from zero <Start> ticks will be counted.

If the absolute value <Start> is very close to the current counter value, the alarm
may immediately expire, and the task may become ready. (E.g., the current
counter value at the moment of service call equals 253, the maximum allowed
counter value equals 255 and the <Start> value is 2.)

The alarm <AlarmName> must not already be in use.

To change values of alarms already in use the alarm has to be cancelled first.

This service is not implemented if the system configuration option Alarms or
SetAbsAlarm are turned off in the configuration file.
 MOTOROLA System Services M68SOSEK

16—36 USER’S MANUAL

Status:

• Standard:

— E_OK - no error;

— E_STATE - the alarm is already in use.

• Extended:

— E_ID - the alarm identifier is invalid;

— E_VALUE - the alarm initialization value or cycle value is greater
than the maximum allowed value of the counter, or the
cycle value is less than the minimum cycle value of the
counter;

— E_CALLEVEL - a call at the interrupt level is not allowed.

Conformance:

• BCC1;

• Event:ECC1.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—37

16.5.10 CancelAlarm

Syntax:

StatusType CancelAlarm(AlarmRefType <AlarmName>);

Input:

• <AlarmName> - a reference to the Alarm.

Output:

None.

Description:

The service cancels the alarm (transfers it into the stop state).

Particularities:

This service is not implemented if the system configuration option Alarms or
CancelAlarm are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error;

— E_NOFUNC - the alarm is not in use.

• Extended:

— E_ID - the alarm identifier is invalid;

— E_CALLEVEL - a call at interrupt level (not allowed).

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—38 USER’S MANUAL

16.5.11 GetAlarm

Syntax:

StatusType GetAlarm(AlarmRefType <AlarmName>,
 TickRefType <Ticks>);

Input:

• <AlarmName> - a reference to the Alarm;

Output

• <Ticks> - a relative value in ticks before the alarm expires.

Description:

This service calculates the time in ticks before the alarm expires. If the alarm is not
started the E_NOFUNC error code is generated.

Particularities:

It is up to the application to decide whether for example an alarm may still be useful
or not.

If <AlarmName> is not in use <Ticks> is 0.

This service is not implemented if the system configuration option Alarms or
GetAlarm are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error;

— E_NOFUNC - the alarm is not in use.

• Extended:

— E_ID - the alarm identifier is invalid;

— E_CALLEVEL - a call at interrupt level (not allowed).

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—39

16.5.12 Examples for Counter and Alarm Management

The example shows how counters and alarms can be used.

The following definitions are made in the definition file:

[Tasks]
DefineTask(TaskTime, EXTENDED|POOLSTACK,1, task_time,,,,POOL1);
DefineTask(TASK_B, BASIC|ACTIVATE|OWNSTACK,2, task_b,,,,64);
DefineTask(TASK_X, BASIC|ACTIVATE|NODESTACK,3, task_x,,,,);
...
[Counters]
DefineCounter(TimeCnt, 127, 1);
DefineCounter(DgrCnt, 36, 1);
[Alarms]
DefineAlarm(TimeAlm, TimeCnt, TASK_X);
DefineAlarm(DgrAlm, DgrCnt, TASK_B, 0x01);
...
[Event Messages]
DefineEventMessage(Norm, int, sizeof(int),

6,3,WithOverwriteCheck, WithoutTimeStamp);

The alarm TimeAlm activates the task TASK_X when the counter TimeCnt expires.
The alarm DgrAlm sets the specified event for the task TASK_B when the counter
DgrCnt expires.

The C-language code can be the following:

DeclareTask(TASK_B)
DeclareTask(TaskTime)
DeclareTask(TASK_X)
DeclareCounter(TimeCnt)
DeclareCounter(DgrCnt)
DeclareAlarm(TimeAlm)
DeclareAlarm(DgrAlm)
UsesEventMessage(Norm, SendReceive)

TASK task_time(void)
{
TickType curTime;
OSBYTE i=0;

InitCounter(TimeCnt, 0); /* init time counter with 0 value */
while (i != 1) {
 GetCounterValue(TimeCnt, &curTime); /* read TimeCnt value */
 if(curTime == CONST)
 MOTOROLA System Services M68SOSEK

16—40 USER’S MANUAL

{ /* if desired value, activate TaskB */
ActivateTask(TaskB);
SetRelAlarm(TimeAlm, 10, 0);

/* activate TaskX when TimeCnt reaches 10 */
}

 if(curTime > CONST)TerminateTask();
/* if more than desired value, terminate the task */

 }
}

TASK task_b(void)
{
UsesEventMessage(Norm, SendReceive);
EventMaskType evMask;

evMask = 0x01;
InitCounter(DgrCnt, 0); /* init degree counter with 0 value */
SetAbsAlarm(DgrAlm, 75, 15); /* set cyclic alarm */
WaitEvent(evMask);

/* wait for event which must be set by the alarm */
Norm = 1; /* wake up and send the message that all is OK */
SendEventMesssage(Norm);
TerminateTask();
}

ISR Timer_Isr(void)
{
... /* reset the hardware */
EnterISR();
CounterTrigger(TimeCnt); /* increment the counter */
LeaveISR();
}

ISR Dgr_Isr(void)
{
... /* reset the hardware */
EnterISR();
CounterTrigger(DgrCnt); /* increment the counter */
LeaveISR();
}

M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—41

16.6 Event Management Services

16.6.1 Data Types

The OSEK Operating System establishes the following data types for the event
management:

• EventMaskType The data type of the event mask;

• EventMaskRefType The data type to refer to an event mask.

The only data types must be used for operations with events.
 MOTOROLA System Services M68SOSEK

16—42 USER’S MANUAL

16.6.2 SetEvent

Syntax:

StatusType SetEvent(TaskRefType <TaskName>,
 EventMaskType <Mask>);

Input:

• <TaskName> - a reference to the task (the task’s name).

• <Mask> - an event mask to be set.

Output:

• None

Description:

This service is used to set one or several events of the desired task according to
the event mask. If the task was waiting for at least one of the specified events, then
it is transferred into the ready state. The events not specified by the mask remain
unchanged. Only an extended task may be referenced to set an event.

Particularities:

Any events not set in the event mask remain unchanged.

It is possible to set events for the running task (task-caller).

This service is not implemented if the system configuration option Events or
GetResource is turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the task identifier is invalid;

— E_ACCESS - the referenced task is not an Extended Task;

— E_STATE - the referenced task is in the suspended state;

— E_CALLEVEL - a call at the interrupt level is not allowed.

Conformance: ECC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—43

16.6.3 ClearEvent

Syntax:

StatusType ClearEvent(EventMaskType <Mask>);

Input:

• <Mask> - an event mask to be cleared.

Output:

• None.

Description:

The task which calls this service defines the event which has to be cleared.

Particularities:

The system service ClearEvent is restricted to Extended Tasks.

This service is not implemented if the system configuration option Events or
ClearEvent are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ACCESS - the calling task is not an Extended Task;

— E_CALLEVEL - a call at the interrupt level is not allowed.

Conformance: ECC1
 MOTOROLA System Services M68SOSEK

16—44 USER’S MANUAL

16.6.4 GetEvent

Syntax:

StatusType GetEvent(TaskRefType <TaskName>,
 EventMaskRefType <Event>);

Input:

• <TaskName> - a reference to the task.

Output:

• <Event> - a pointer to the event mask to be filled.

Description:

The event mask which is referenced to in the call is filled according to the current
state of the events of the desired task.

It is possible to get event mask of the running task (task-caller).

Particularities:

The referenced task must be an extended task.

This service is not implemented if the system configuration option Events or
GetEvent are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - the task identifier is invalid;

— E_ACCESS - the referenced task is not an Extended Task;

— E_STATE - the referenced task is in the suspended state;

— E_CALLEVEL - a call at the interrupt level is not allowed.

Conformance: ECC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—45

16.6.5 WaitEvent

Syntax:

StatusType WaitEvent(EventMaskType <Mask>);

Input:

• <Mask> - an event mask to wait for.

Output:

• None.

Description:

The calling task is transferred into the waiting state until at least one of the events
specified by the mask is set.

Particularities:

This call enforces the rescheduling, if the wait condition occurs.

This service is not implemented if the system configuration option Events or
WaitEvent are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ACCESS - the calling task is not an Extended Task;

— E_RESOURCE - the calling task occupies resources;

— E_CALLEVEL - a call at the interrupt level is not allowed.

Conformance: ECC1
 MOTOROLA System Services M68SOSEK

16—46 USER’S MANUAL

16.6.6 Examples of using events

The example below shows how events can be used in the OSEK Operating
System.

The following definitions can be made in the definition file:

[Tasks]
DefineTask(TASK_A, EXTENDED|ACTIVATE|OWNSTACK,1, taskA_e,,,,64);
DefineTask(TASK_B, EXTENDED|POOLSTACK,1, taskB_e,,,,POOL1);
DefineTask(TASK_C, BASIC|ACTIVATE|NODESTACK,3, taskC_bas,,,,);
...
[Counters]
DefineCounter(DgrCnt, 150, 1);
[Alarms]
DefineAlarm(AWAKE, DgrCnt, TASK_B, 0x01);

The C-language file:

#define X_FLG 0x80 /* define masks for internal flags */
#define Y_FLG 0x40
#define Z1_FLG 0x20
#define Z2_FLG 0x10

DeclareTask(TASK_A) /* the extended tasks */
DeclareTask(TASK_B)
DeclareTask(TASK_C) /* the basic task */

TASK taskA_e (void) /* Extended task TASK_A */
{
EventMaskType aa = 3; /* ‘external’ events */
EventMaskType x, z1 = Z1_FLG, /* ‘internal’ events (flags) */
 z2 = Z2_FLG;
int speed;

...
/* Check the variable and set internal flag if needed */
if (speed == LIMIT)

{
 x = X_FLG;
 SetEvent(TASK_A, x);
}

...

GetEventMask(TASK_A, &x); /* check internal flag */
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—47

/* Perform some actions in accordance with internal flag status */
if ((x & X_FLG) != 0) ClearEvent(z1);
else SetEvent(TASK_A, z2);
if ((x & Y_FLG) == 0) ChainTask(TASK_C);
...

 WaitEvent(aa); /* the task is stopped until one of three
 ‘external’ events is set by another task */

 ClearEvent(aa); /* clear all ‘external’ events after
 awakening */

 ...
}

#define EVMASK1 0x01 /* event mask definitions */
#define EVMASK2 0x02
#define EVMASK3 0x04

TASK taskB_e (void) /* Extended task TASK_B */
{
EventMaskType b_ev, a_ev;
b_ev = EVMASK1 | EVMASK3;
InitCounter(DgrCnt, 10); /* initialize the counter */
...
SetRelAlarm(AWAKE, 20); /* this alarm will awake the task */
WaitEvent(b_ev); /* waiting for one of two events */

/* The task will be ready again when one of two events are set. One
of them - EVMASK1 will be set by the alarm AWAKE after 20 ticks of
the counter DgrCnt. Thus, the task can delay itself. */

ClearEvent(b_ev); /* clear all events */
GetEvent(TASK_A, &a_ev); /* get events of TASK_A */
if ((a_ev & EVMASK2) == 0)

{
 a_ev = EVMASK2;
 SetEvent(TASK_A, a_ev);
} /* set the event for TASK_A */

...
}

 MOTOROLA System Services M68SOSEK

16—48 USER’S MANUAL

TASK taskC_bas /* Basic task TASK_C */
{
EventMaskType bb, set;
set = EVMASK3;
...
GetEventMask(TASK_B, &bb); /* if the event is clear, set it */
if ((bb & EVMASK3) == 0) SetEvent(TASK_B, set);
...
}

M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—49

16.7 Communication Management Services

16.7.1 Data Types and Identifiers

The following names are used in the OSEK Operating System for work with
messages:

• SymbolicName This is a unique name representing a message. It only
can be used in conjunction with calls of the message
service.
A SymbolicName need not be a data type. Variables or
constants of SymbolicName can be declared or used.

• AccessModeName This is a unique name defining access to a message
object. Legal names are Send, Receive and
SendReceive.

• CopyQualifierName This is a unique name defining whether local copies of
a state message will be created. Legal names are
WithCopy and WithoutCopy.

16.7.2 Message Declaration

Messages must be declared before their using. The message can be declared
either within the function (or task) where it is referenced, or outside the function
where it is referenced (global message declarations). In the latter case the user is
responsible for consistency of this message. It means that during operations with
the global message special precautions should be taken so the task cannot be
preempted by another task which can change the message data.

Declaration is made by the special statements placed in the beginning of the
function.

16.7.2.1 State Message Declaration

Syntax:

UsesStateMessage[AsParameter](SymbolicName <Msg>,
 AccessModeName <Access>,

 CopyQualifierName <Copy>);

Input:

• <Msg> - symbolic name of a message

• <Access> - symbolic name for access mode to the message object

• <Copy> - symbolic name for copy qualifier
 MOTOROLA System Services M68SOSEK

16—50 USER’S MANUAL

Description:

UsesStateMessage serves as an external declaration of a State Message. The
function and use of this service are similar to that of the external declaration of
variables. The qualifier <Access> specifies whether the function Send, Receive or
SendReceive access to this message.

The parameter <Copy> indicates whether local copies of the message are created.
This parameter must be consistent for the operations SendStateMessage and
ReceiveStateMessage. The <Copy> and <Access> parameters can have different
values for the same message in different declarations (e.g., one task declares a
message for send only and the other task for receive only).

Particularities:

The using task or function can only call SendStateMessage and assign values to
the variable Msg when Send or SendReceive access is declared. The using task
or function can only call ReceiveStateMessage for the variable <Msg> when
Receive or SendReceive access is declared.

Conformance: BCC1

16.7.2.2 Event Message Declaration

Syntax:

UsesEventMessage[AsParameter](SymbolicName <Msg>,
 AccessModeName <Access>);

Input:

• <Msg> - symbolic name of a message

• <Access> - symbolic name for access mode to the message object

Description:

UsesEventMessage serves as an external declaration of an Event Message. The
function and use of this service are similar to that of the external declaration of
variables. The qualifier <Access> specifies whether the function Send, Receive or
SendReceive access to this message.

The <Access> parameters can have different values for the same message in
different declarations (e.g., one task declares a message for send only and the
other task for receive only).

Particularities:

The using task or function can only call SendEventMessage and assign values to
the variable <Msg> when Send or SendReceive access is declared. The using task
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—51

or function can only call ReceiveEventMessage for the variable <Msg> when
Receive or SendReceive access is declared.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—52 USER’S MANUAL

16.7.3 SendStateMessage

Syntax:

StatusType SendStateMessage(SymbolicName <Msg>,
 CopyQualifierName <Copy>);

Input:

• <Msg> - a symbolic name of the message;

• <Copy> - a symbolic name for the copy qualifier.

Output:

• None.

Description:

Call admissible both from ISR and task levels. This service updates the message
<Msg>. If the operation is performed with the WithCopy qualifier, then the contents
of the message item is copied from the task data space into the message area. If
WithoutCopy is specified, then no copying is performed, because the task data
space is updated directly by the user code by means of de-referencing the pointer
<Msg>.

In the Extended Status version the service indicates the receiver that the message
is valid.

The operating system can restart an alarm, activate a task, or set an event for a
task, if signalling is defined for the message. If any of these operations changes the
state of the scheduler’s queues, then rescheduling is performed.

Particularities:

Multiple calls of SendStateMessage are permissible. In such cases, the message
data is updated more frequently.

If message alarm for the state message <Msg> is defined (as part of the system
definition), each call of the SendStateMessage routine restarts the alarm.

Task activation or event settings is performed, if it is defined for the State Message
<Msg> (see 12.4.14 SetEventOnMessage and 12.4.13 ActivateOnMessage).

This service is not implemented if the system configuration option StateMessage
or SendStateMessage are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—53

• Extended:

— E_ID - <Msg> is invalid.

Conformance:

• BCC1;

• Multiple activation: BCC3;

• Event setting: ECC1.
 MOTOROLA System Services M68SOSEK

16—54 USER’S MANUAL

16.7.4 ReceiveStateMessage

Syntax:

StatusType ReceiveStateMessage(SymbolicName <Msg>,
CopyQualifierName <Copy>);

Input:

• <Msg> - a symbolic name of the message;

• <Copy> - a symbolic name for the copy qualifier.

Output:

• None.

Description:

This service reads the message <Msg>. If the operation is performed with the
WithCopy qualifier, then the contents of the message item are copied into the task
data space. If WithoutCopy is specified, then no copying is performed, because
the task data space is updated directly by the user code by means of
de-referencing the pointer <Msg>.

Before copying the message the service checks the status of the message (if the
Extended Status is used). If the message has no value, E_ID is returned.

A ReceiveStateMessage call is normally located at the beginning of a task or a
function, to ensure that <Msg> has a valid value before the first use.

Particularities:

This service is not implemented if the system configuration option StateMessage
or ReceiveStateMessage are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.

• Extended:

— E_ID - <Msg> is invalid or hasn’t value.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—55

16.7.5 SendEventMessage

Syntax:

StatusType SendEventMessage(SymbolicName <Msg>);

Input:

• <Msg> - a symbolic name of the message

Output:

• None.

Description:

Call admissible both from ISR and task levels. This service sends the Event
Message <Msg>, i. e. the local copy is stored in the message FIFO queue.

The sent message is copied from the task data space into the free location of the
message FIFO area. If there is no free space left for the message, then an overflow
is detected, and the oldest message item is overwritten by a new message item. In
the extended status versions the overflow is indicated to the user by means of
returning the E_LIMIT value.

The operating system can restart an alarm, activate a task, or set an event for the
task, if signalling is defined for the message. If any of these operations changes the
state of the scheduler’s queues, then rescheduling is performed.

The operation is always performed with copy.

Particularities:

If the message alarm for the Event Message <Msg> is defined (as part of the
system definition), each call of the SendEventMessage restarts the alarm.

Task activation or event setting is performed, if it is defined for the Event Message
Msg.

In the case of a FIFO overflow, the oldest message is overwritten and in Extended
Mode E_LIMIT is returned.

This service is not implemented if the system configuration option EventMessage
or SendEventMessage are turned off in the configuration file.

Status:

• Standard:

— E_OK - no error.
 MOTOROLA System Services M68SOSEK

16—56 USER’S MANUAL

• Extended:

— E_ID - <Msg> is invalid;

— E_LIMIT - FIFO overflow.

Conformance:

• BCC1;

• Multiple activation: BCC3;

• Event:ECC1.
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—57

16.7.6 ReceiveEventMessage

Syntax:

StatusType ReceiveEventMessage(SymbolicName <Msg>);

Input:

• <Msg> - a symbolic name of the message

Output:

• None.

Description:

This service receives the message <Msg> from the message FIFO queue. The
contents of the message item is copied from the message FIFO area into the task
data space.

If there is no messages into the FIFO queue, then the E_NOMSG status is
returned, otherwise the oldest message in the FIFO area is copied.

In the Extended Status version the overflow, occurred during the last send
operation is indicated to the user by means of returning the E_LIMIT value.

If the message has only one receiver, then the message is consumed (removed
from the FIFO queue) by this operation. If the message has N receivers, the
message is consumed only when the last receiver gets the message. The receiver
which has already got the message cannot read it twice - in case the second
attempt to get the same message the E_NOMSG status is returned.

When the message is consumed (either by a single or the last receiver), the
received message is removed from the FIFO area, and the allocated space may
be used in a send operation.

The operation is always performed with copy.

The call to this service is normally located at the beginning of a task or a function,
to ensure that <Msg> has a valid value before the first use.

Particularities:

This service is not implemented if the system configuration option EventMessage
or ReceiveEventMessage are turned off in the configuration file.
 MOTOROLA System Services M68SOSEK

16—58 USER’S MANUAL

Status:

• Standard:

— E_OK - no error;

— E_NOMSG - no message is available: FIFO empty, or the
message was already received by the running task.

• Extended:

— E_ID - <Msg> is invalid;

— E_LIMIT - at least one message within the event message
object has been overwritten during a
SendEventMessage operation since the last call to
ReceiveEventMessage.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—59

16.7.7 Examples of using messages

Examples below present the usage of system services for communication. The
State Message MsgBAst has a timestamp and it is defined as a message of the
MSGTS type.

The following definitions can be made in the definition file:

[Tasks]
DefineTask(TASK_A, EXTENDED|POOLSTACK,1, task_a,,,,POOL1);
DefineTask(TASK_B, BASIC|ACTIVATE|OWNSTACK,2, task_b,,,,64);
DefineTask(TASK_X, BASIC|ACTIVATE|NODESTACK,3, task_x,,,,);
...
[Counters]
DefineCounter(Post, 24, 1);
...
[State Messages]
DefineStateMessage(msgAAst, int, sizeof(int), WithoutTimeStamp);
DefineStateMessage(msgBAst, MSGTS, sizeof(int), WithTimeStamp);
DefineStateMessage(msgCBst, int, sizeof(int), WithoutTimeStamp);
[Event Messages]
DefineEventMessage(msgDBev, int, sizeof(int),

6,3,WithOverwriteCheck, WithoutTimeStamp);

The C-language code can be the following:

DeclareTask(TASK_A)
DeclareTask(TASK_B)
DeclareTask(TASK_X)

UsesStateMessage(msgAAst, SendReceive,WithoutCopy)
UsesStateMessage(msgBAst, SendReceive, WithCopy)
UsesStateMessage(msgCBst, SendReceive, WithCopy)
UsesEventMessage(msgDBev, SendReceive)

DeclareCounter(Post);

typedef struct tagMSGTS MSGTS;
 struct tagMSGTS
 {
 TickType ts;
 int x;
 };

void Func(UsesEventMessageAsParameter(msgDBev, Receive));
{ /* The function uses the Event Message as a parameter -
 receives and processes it */
 MOTOROLA System Services M68SOSEK

16—60 USER’S MANUAL

ReceiveEventMessage(msgDBev);
...
}

TASK task_a
{
...
ReceiveStateMessage(msgCBst, WithCopy); /* get the message */
if(msgCBst == 2) *msgAAst = 1;
else *msgAAst = 33;
SendStateMessage(msgAAst, WithoutCopy);
...
msgBAst.x = 60;
GetCounterValue(Post, &(msgBAst.ts));
SendStateMessage(msgBAst, WithCopy);
...

Func(msgDBev);
...
}

TASK task_b
{
TickType cur_time;
...
msgCBst = 15;
SendStateMessage(msgCBst, WithCopy);
...
ReceiveStateMessage(msgAAst, WithoutCopy);
if(*msgAAst == 1) ActivateTask(TASK_X);

ReceiveStateMessage(msgBAst, WithCopy);
msgBAst.ts = 60;
GetCounterValue(Post, &cur_time);
if((cur_time - msgBAst.ts) > 15) SetEvent(TASK_X, 1);
...

SendEventMessage(msgEBev);
...
}

M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—61

16.8 Error Handling and Debugging Services

16.8.1 OSShutdown

Syntax:

void OSShutdown(StatusType <Error>);

Input:

• <Error> - a code of the error occurred.

Output:

• None.

Description:

The user can call this system service to abort the overall system (e.g. emergency
off). The operating system also calls this function internally, if it has reached an
undefined state and is no longer ready to run.

The meaning of <Error> if it is supplied by the application is user-defined. If the
operating system calls OSError (see 16.8.2.1) the error parameters listed in 11.2.1
Error Interface may be transferred.

Particularities:

OSShutdown never returns to the location where it was called.

OSShutdown is application specific, since standardized error treatment is not
possible.

OSShutdown runs in connection with the currently active context, which may be
unknown to the user. Thus, no API functions are admitted within the OSShutdown
routine.

This service is not implemented if the system configuration option ErrorHandler is
turned off in the configuration file.

Status:

• Standard:

— No return to call level.

• Extended:

— No return to call level.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—62 USER’S MANUAL

16.8.2 Hook Routines

16.8.2.1 OSError

Syntax:

void OSError(StatusType <Error>,...);

Input:

• <Error> - a code of the error occurred.

Output:

• None.

Description:

This hook is called by the operating system at the end of a system service which
has a return value not equal to E_OK. It is called before returning to the call level.

For error parameters to be transferred see 16.8.1 OSShutdown.

Particularities:

See 11.1 Hook Routines for general description of hook routines.

This service is not implemented if the system configuration option HookRoutines is
turned off in the configuration file.

Status:

• None.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—63

16.8.2.2 OSPreTask

Syntax:

void OSPreTask(TaskRefType <TaskName>, ...);

Input:

• <TaskName> - a task identifier of the current task.

Output:

• None.

Description:

This hook is called before the operating system enters the context of the task. This
hook is called from the scheduler when it passes control to the given task. It may
be used by the application to trace the sequences and timing of tasks’ execution.

Particularities:

See 11.1 Hook Routines for general description of hook routines.

This service is not implemented if the system configuration option HookRoutines is
turned off in the configuration file.

Status:

None.

Conformance: BCC1
 MOTOROLA System Services M68SOSEK

16—64 USER’S MANUAL

16.8.2.3 OSPostTask

Syntax:

void OSPostTask(TaskRefType <TaskName>);

Input:

• <TaskName> - a task identifier of the current task.

Output:

• None.

Description:

This hook is called after the operating system leaves the context of the task. This
hook is called from the scheduler when it switches from the current task to another.
It may be used by the application to trace the sequences and timing of tasks’
execution.

Particularities:

See 11.1 Hook Routines for general description of hook routines.

Status:

None.

Conformance: BCC1
M68SOSEK System Services MOTOROLA

USER’S MANUAL 16—65

 MOTOROLA System Services M68SOSEK

16—66 USER’S MANUAL

APPENDIX A
SAMPLE APPLICATION

A.1 Description

The Sample application delivered with the OSEK Operating System should help to
learn how to use OSEK OS. The Sample’s source files are located in the SAMPLE
directory - it contains all files needed to create an executable file.

The Sample is not a real application and it does not perform any useful work. But
it has a certain algorithm so it is possible to track the execution. It uses most of
OSEK OS mechanisms and allows the user to have the first look inside the OSEK
OS.

The Sample consists of four tasks. It uses two counters (one of them is the
standard OSEK OS timer), three alarms, one resource, one state and one event
message. Timer interrupt is handled by the ISR.

Generally, Sample tasks are divided into two pairs. TASKSND and TASKRCV compose
the first pair and TASKPROD, TASKCONS are the second pair. This two pairs interacts
with the help of the event mechanism.

The task TASKSND is activated by the StartUp routine. It gets the resource to provide
exclusive access to the state message MsgA, modifies the message and sends it to
TASKRCV. After that the resource is released and the task terminates itself. MsgA
consists of two parts (it has the user defined type) and only one part (‘value’ is
changed by TASKSND). The message is used without copying. Arrival of the
message activates the task TASKRCV.

TASKRCV receives the message MsgA and analyzes it. If the ‘value’ is greater than
the certain limit, the second part of MsgA is increased and the event is set for the
task TASKPROD (producer). In the end the task releases the resource and terminates
itself.

The task TASKPROD is activated by the StartUp routine. Just after the activation the
task activates the system counter (timer) and the counter for messages and sets
two alarms. To prevent rescheduling at this moment the scheduler is got by the
tasks as a standard resource. One alarm is the relative cyclic alarm based on the
system timer, it will be used to “awake” the task, and the second alarm is the
absolute alarm based on the message counter. The message counter is intended
to count the number of items in the event message MsgB. After all initialization
activities TASKPROD calls the WaitEvent service and, thus, the task delays itself.
M68SOSEK Sample Application MOTOROLA

USER’S MANUAL A—1

When TASKPROD becomes running again, it sends the event message MsgB. The
message contents depends on the event which has caused task awakening. The
message has a timestamp which is filled by the current value of the system timer.
After sending MsgB the message counter is triggered.

The task TASKCONS (consumer) has the lowest priority. But this is non-preemptive
task so it cannot be preempted by other tasks. TASKCONS is activated by the alarm
when the message counter reaches the predefined number. The task reads
(consumes) event message MsgB items and analyzes them. In case of the “S_OK”
message the message timestamp is saved in the variable “normal”. In case of the
“S_LIMIT” message the period of time elapsed between the “S_OK” and “S_LIMIT”
messages is saved in the variable “period”.

The user can watch the “normal” and “period” variables, the message contents and
so on.

A.2 Configuration File

The file contains all needed definitions for the Sample application. If some
properties are missed it means that their default values are used by the System
Generator (see SECTION 12 System Configuration).

[Property]
TargetMCU = HC08;
ConformanceClass =ECC1;
SimpleScheduler = OFF;
ExtendedStatus = ON;
HookRoutines = ON;
ErrorHandler = ON;
ContextSwitchRoutine = ON;
InterruptMaskControl = OFF;
TaskIndexMethod = OFF;
PersistentNode = OFF;
TaskOwnStack = ON;
TaskBasePage = ON;
StackPool = ON;
SchedulerPolicy = MIXPREEMPT;
CounterSize = 16;
Alarms = ON;
AlarmList = ON;
Resources = ON;
FastResource = OFF;
Events = ON;
StateMessage = ON;
StateMsgDefaultValue = ON;
StateMsgTimeStamp = ON;
 MOTOROLA Sample Application M68SOSEK

A—2 USER’S MANUAL

EventMessage = ON;
EventMsgTimeStamp = ON;
EventMsgOneToN = OFF;
ActivateOnMsg = ON; /* Message signalling mechanism */
AlarmOnMsg = ON;
SetEventOnMsg = ON;

[Scheduler]
DefineScheduler(4, 5, 128, , 64) ;

[Interrupt management]
DefineInterrupts(0x8, 0, 0, 64);

[User’s hook]
DefineHooks (OSError, OSPreTask, OSPostTask);

[Tasks]
DefineTask (TASKSND, BASIC|PREEMPT|ACTIVATE, 3, TaskSND);
DefineTask (TASKRCV, PREEMPT| BASIC|OWNSTACK, 1,

 TaskRCV,,, TaskStack, TASKSTACKSIZE);
DefineTask (TASKPROD, PREEMPT| EXTENDED|ACTIVATE|POOLSTACK, 2,

 TaskProd,,, POOL);
DefineTask (TASKCONS, NONPREEMPT|BASIC|POOLSTACK, 4,

 TaskCons,,, POOL);
DefineStackPool(POOL, 70, 2);

[Resources]
DefineResource(MSGACCESS, 1);

[Counters]
DefineSystemTimer(SYSTEMTIMER, -1, 10, 1000000);
DefineCounter(MSGCOUNTER, 6, 1);

[Alarms]
DefineAlarm(MSGALARM, SYSTEMTIMER, TASKSND);
DefineAlarm(PRODALARM, SYSTEMTIMER, TASKPROD, TIMEVENT);
DefineAlarm(EVMSGALARM, MSGCOUNTER, TASKCONS);

[State Messages]
DefineStateMessage(MsgA, MSGATYPE, sizeof(MSGATYPE),

 WithoutTimeStamp);
ActivateOnMessage(MsgA, TASKRCV);
DefineMessageAlarm(MsgA, MSGALARM, 100);
M68SOSEK Sample Application MOTOROLA

USER’S MANUAL A—3

[Event Messages]
DefineEventMessage(MsgB, MSGBTYPE, sizeof(int), 5, 1,

 WithOverwriteCheck, WithTimeStamp);

A.3 Source Files

Source files for the Sample application are the following:

• “ossample.c” - the application code

• “cfg.def” - the configuration file

• “makefile” - command files to build the executable file

• “vector.c” - interrupt vector table definition

To build the executable file the user should make sure that OSEK OS components
are properly installed on the disk and pathes for the OSEK directory and Cosmic
software are known. Run the MAKE utility for the makefile. The makefile was
written for Microsoft Visual C++ 4.2. When all produced filed are ready, the
executable file can be load into the MMDS08 and run.

Makefile uses the system environment variables CXPATH, CXLIB and OSEKDIR
to get Cosmic and OSEK components. See 14.1.2 Compiler Issues.
 MOTOROLA Sample Application M68SOSEK

A—4 USER’S MANUAL

APPENDIX B
SYSTEM SERVICE TIMING

B.1 General Notes

The following notation is used to define four main states for run-time services:

• Immediate Response (IR) - The service completes immediately without any
tasking changes.

• Stop Task (ST) - The service transfers the task from the running state into an-
other state (ready, waiting or suspended). Task switching will take place.

• Task Waiting (TW) - The service called transfer another task into the ready
state (from waiting or suspended states). This task has the same or lower pri-
ority than the task calling the service, or preemption is disabled, therefore task
switching will not take place.

• Task Waiting and Context Switching (TWCS) - The service called transfer
another task into the running state (from ready, waiting or suspended states).
This task has the higher priority than the calling task, therefore task switching
is performed.

Results in Table B–1 below was got on the basis of the certain OS configuration.
The list of systetm properties is shown below, and this configuration is called in the
table as “Initial”. Properties that are not listed have their default values. In the
column “Condition” the differences from the given list (“Initial“) are indicated. For
each configuration the corresponded numbers are provided in the table.

[Property]
TargetMCU= HC08;
ConformanceClass = BCC3;
SchedulerPolicy = FULLPREEMPT;

/* Task properties */
TaskIndexMethod = OFF;
StackPool = OFF;
PersistentNode = ON;
PersistentStack = OFF;
TaskOwnStack = ON;
EntryExitISR = ON;
InterruptMaskControl = ON;
/* Debuging and error handling */
ExtendedStatus = ON;
M68SOSEK System Service Timing MOTOROLA

USER’S MANUAL B—1

HookRoutines = ON;
ErrorHandler = ON;
ContextSwitchRoutine = ON;
InternalErrorHandler = ON;
Resources = OFF;
FastResource = OFF;
Events = OFF;
StateMessage = ON;
StateMsgDefaultValue = ON;
StateMsgTimeStamp = ON;
EventMessage = ON;
EventMsgTimeStamp = ON;
EventMsgOneToN = ON;
ActivateOnMsg = OFF;
AlarmOnMsg = OFF;
SetEventOnMsg = OFF;
Counters = ON;
Alarms = ON;
AlarmList = ON;
CounterSize = 32;

All numbers in the table are the number of MCU system ticks counted by reading
the free running counter. Therefore, to calculate these numbers in microseconds,
these numbers must be multiplied by the period of MCU clock. For instance, for
HC08AZ32 with 16Mhz oscillator, the bus frequency equals 4Mhz and the clock
period equals 0.25 microseconds the duration of GetResource service (for “Initial”
system configuration) is 39.75 microseconds (159 * 2.7*10-7 = 39.75*10-6).

It is possible that some real numbers can slightly differ from the presented values
due to some last changes in OSEK OS.
 MOTOROLA System Service Timing M68SOSEK

B—2 USER’S MANUAL

B.2 Data Sheet

Table B–1 OSEK OS Run-time Services Timing Characteristics

Conditions IR ST TW TWCS

ActivateTask

BCC1, NONPREEMPT, Extended-
Status=OFF, Counters=OFF,
Alarms=OFF, StateMessages=OFF,
EventMessages=OFF, no hook rou-
tines, no interrupts

- - 960 963

NONPREEMPT - - 1098 1101

Initial - - 1253 1687

TerminateTask

BCC1, NONPREEMPT, Extended-
Status=OFF, Counters=OFF,
Alarms=OFF, StateMessages=OFF,
EventMessages=OFF, no hook rou-
tines, no interrupts

- 577 - -

NONPREEMPT - 970 - -

Initial - 902 - -

ChainTask

BCC1, NONPREEMPT, Extended-
Status=OFF, Counters=OFF,
Alarms=OFF, StateMessages=OFF,
EventMessages=OFF, no hook rou-
tines, no interrupts

- - - 1486

NONPREEMPT - - -
1486 min
2010 max

Initial - - -
1214 min
1964 max

Schedule

BCC1, NONPREEMPT, Extended-
Status=OFF, Counters=OFF,
Alarms=OFF, StateMessages=OFF,
EventMessages=OFF

116 - - 297

NONPREEMPT 187 - - 652

 Initial 198 - - -

GetTaskId

Initial 87 - - -
M68SOSEK System Service Timing MOTOROLA

USER’S MANUAL B—3

GetTaskState

Initial: running task
 ready task
 suspended task

132
400
462

- - -

EnterISR

Resources=ON, FastResource=ON 117 - - -

LeaveISR

Resources=ON, FastResource=ON 186 - - -

EnableInterrupt

Resources=ON, FastResource=ON 32 - - -

DisableInterrupt

Resources=ON, FastResource=ON 34 - - -

GetInterruptMask

Resources=ON, FastResource=ON 52 - - -

GetResource

Resources=ON, FastResource=ON 159 - - -

ReleaseResource

Resources=ON, FastResource=ON 239 - - 884

SetEvent

ECC1, NONPREEMPT 455 - 642 655

ECC1 455 - 720 1194

ClearEvent

ECC1, NONPREEMPT 75 - - -

ECC1 75 - - -

GetEvent

ECC1, NONPREEMPT 515 - - -

ECC1 512 - - -

WaitEvent

ECC1, NONPREEMPT 158 996 - -

ECC1 158 894 - -

Table B–1 OSEK OS Run-time Services Timing Characteristics

Conditions IR ST TW TWCS
 MOTOROLA System Service Timing M68SOSEK

B—4 USER’S MANUAL

SendStateMessage

BCC1, a message with copy, without
timestamp

685 - - -

ReceiveStateMessage

BCC1, a message with copy, without
timestamp

680 - - -

SendEventMessage

BCC1, 1 receiver, with overwrite
check

839 - - -

ReceiveEventMessage

BCC1, 1 receiver, with overwrite
check

915 - - -

InitCounter

Resources=ON, FastResource=ON 442 - - -

CounterTrigger

Resources=ON, FastResource=ON 400 - 1871 2281

GetCounterValue

Resources=ON, FastResource=ON 256 - - -

GetCounterInfo

Resources=ON, FastResource=ON 807 - - -

SetRelAlarm

Resources=ON, FastResource=ON 3463 - 4534 4941

SetAbsAlarm

Resources=ON, FastResource=ON 712 - 1764 2171

CancelAlarm

Resources=ON, FastResource=ON 229 - - -

GetAlarm

Resources=ON, FastResource=ON 457 - - -

Table B–1 OSEK OS Run-time Services Timing Characteristics

Conditions IR ST TW TWCS
M68SOSEK System Service Timing MOTOROLA

USER’S MANUAL B—5

 MOTOROLA System Service Timing M68SOSEK

B—6 USER’S MANUAL

APPENDIX C
MEMORY REQUIREMENTS

C.1 Memory for the OSEK Operating System

The table below contains the data about ROM and RAM needed for the OSEK
Operating System kernel and system objects. The amount of memory depends on
the system configuration and on the number of certain objects (e.g., tasks,
counters, etc.). The table does not reflects all possible configurations so the overall
number of them is too big (more than 2000). Therefore, only some most important
configurations are presented.

The following initial system property settings were used to determine memory
requirements:

HCBasePage = ON;
HCLowPower = OFF;
HCBankCode = OFF;
SimpleScheduler = ON;
SchedulerPolicy = FULLPREEMPT;
ExtendedStatus = OFF;
UseMainStack = OFF;
UseSameContext = ON;
TaskBasePage = ON;
MultiplyActivation = OFF;
StackPool = OFF;
NodeStack = OFF;
PersistentNode = OFF;
PersistentStack = OFF;
TaskOwnStack = ON;
TaskIndexMethod = OFF;
EntryExitISR = OFF;
InterruptMaskControl = OFF;
ErrorHandler = OFF;
ContextSwitchRoutine = OFF;
InternalErrorHandler = OFF;
Resources = OFF;
FastResource = OFF;
Events = OFF;
Counters = OFF;
CounterSize = 8;
Alarms = OFF;
M68SOSEK Memory Requirements MOTOROLA

USER’S MANUAL C—1

AlarmList = OFF;
StateMessage = OFF;
StateMsgDefaultValue = OFF;
StateMsgTimeStamp = OFF;
EventMessage = OFF;
EventMsgTimeStamp = OFF;
EventMsgOneToN = OFF;
ActivateOnMsg = OFF;
AlarmOnMsg = OFF;
SetEventOnMsg = OFF;

This initial property list was used for the first row in the table. It conforms to the
BCC1 Conformance Class without any additional mechanisms and this is the
minimal OSEK OS configuration. The rows below reflects memory requirements
for the next Conformance Classes. System properties are shown in the rows which
are turned on for the corresponded Conformance Class. For BCC2, BCC3, ECC1,
ECC2 the scheduler policy is full-preemptive one.

All other rows below the first one (“Initial”) has a title “Initial” or “Changed:” and one
or more options turned ON or OFF. If a row has a title “Initial” it means that for such
OS configuration the Initial property list is used with particular options changed as
shown. If a row has a title “Changed:” it means that for such OS configuration the
setting list as for the previous row is used with particular options changed as
shown. Thus, the system functionality grows up.

Under the title “Extensions” the additions are shown for each additional system
property (or group of them). These numbers are got on the base of ECC2
configuration. For example, the row “Counters = ON” presents the additional
memory requirements for this mechanism. It allows the user to evaluate the
amount of memory needed to support some particular mechanisms and features.
Differences between the amount of memory required to support these features for
various Conformance Classes are comparatively small. Therefore, the data is
provided only for ECC2. Thus, since each next row includes all functionality of the
previous ones, the last row presents the memory requirements for the system with
full functionality.

Since each system object (a task, a message, an alarm, etc.) requires some ROM
and RAM the total amount of memory depends on the number of objects.
Therefore, the formulas should be used to calculate the exact memory amount for
each case. These formulas are provided in the table.
 MOTOROLA Memory Requirements M68SOSEK

C—2 USER’S MANUAL

NOTE ABOUT FORMULAS:

In the formulas in the table the following symbols are used:

• Ts is the number of tasks in non-suspended state;

• Tt is the total number of tasks;

• C is the number of counters;

• A is the number of alarms;

• S is the number of state messages;

• E is the number of event messages;

• P is the number of tasks’ priorities;

• R is the number of resources;

• Sp is the number of stack pools;

• Sb is the number of stack buffers.

It is possible that some real numbers can slightly differ from the presented values
due to some last changes in OSEK OS.
M68SOSEK Memory Requirements MOTOROLA

USER’S MANUAL C—3

C.2 Data Sheet

Table C–1 OSEK OS Memory Requirements

System Properties
(configuration)

Confor-
mance
Class

ROM RAM Base Page
RAM

Initial

BCC1

1185+6*Tt - 15+7*Ts

Initial
SchedulerPolicy = NOPREEMPT

1169+6*Tt - 15+9*Ts

Initial
SchedulerPolicy= MIXPREEMPT

1185+6*Tt - 15+7*Ts

Initial
SchedulerPolicy= MIXPREEMPT
UseSameContext = OFF

1312+6*Tt - 15+9*Ts

Initial
HCBasePage = OFF
TaskBasePage = OFF

1520+6*Tt 12+7*Ts 7

Changed:
ExtendedStatus = ON

1661+7*Tt 10+7*Ts 7

Changed:
ErrorHandler = ON

1858+7*Tt 12+7*Ts 7

Changed:
ExtendedStatus = OFF
ErrorHandler = OFF
EntryExitISR = ON

1741+6*Tt 15+7*Ts 7

Changed:
InterruptMaskControl = ON

1918+7*Tt 17+7*Ts 7

Initial
SimpleScheduler = OFF

BCC2

1298+6*Tt 18+9*Ts

Changed:
HCBasePage = OFF
TaskBasePage = OFF

1789+6*Tt 17+10*Ts 7
 MOTOROLA Memory Requirements M68SOSEK

C—4 USER’S MANUAL

Initial
SimpleScheduler = OFF
MultiplyActivation = ON

BCC3

1331+6*Tt - 18+10*Ts

Changed:
HCBasePage = OFF
TaskBasePage = OFF

1826+6*Tt 17+11*Ts 7

Changed:
ExtendedStatus = ON

1963+7*Tt 15+11*Ts 7

Changed:
ErrorHandler = ON

2156+7*Tt 17+11*Ts 7

Initial
SimpleScheduler = OFF
MultiplyActivation = ON
Events = ON

ECC1

1537+6*Tt - 18+12*Ts

Changed:
HCBasePage = OFF
TaskBasePage = OFF

2105+6*Tt 17+13*Ts 7

Changed:
ExtendedStatus = ON

2361+7*Tt 15+13*Ts 7

Changed:
ErrorHandler = ON

2721+7*Tt 17+13*Ts 7

Changed:
ExtendedStatus = OFF
ErrorHandler = OFF
EntryExitISR = ON

2335+6*Tt 20+13*Ts 7

Changed:
InterruptMaskControl = ON

2557+7*Tt 22+13*Ts 7

Initial
SimpleScheduler = OFF
MultiplyActivation = ON
Events = ON

ECC2 1508+6*Tt - 18+12*Ts

Table C–1 OSEK OS Memory Requirements

System Properties
(configuration)

Confor-
mance
Class

ROM RAM Base Page
RAM
M68SOSEK Memory Requirements MOTOROLA

USER’S MANUAL C—5

Extensions (based on the configuration for ECC2)

Changed:
Resources = ON

ECC2

1706+6*Tt+3*R 2*R 18+14*Ts

Changed:
FastResource = ON

1672+6*Tt - 20+12*Ts

Changed:
Counters = ON

1863+6*Tt+4*C 1*C 20+12*Ts

Changed:
CounterSize = 16

1914+6*Tt+6*C 2*C 20+12*Ts

Changed:
CounterSize = 32

2183+6*Tt+
10*C

4*C 20+12*Ts

Changed:
Alarms = ON
CounterSize = 8

2967+6*Tt+6*C
+7*A

2*C+8*A 20+12*Ts

Changed:
AlarmList = ON

3164+6*Tt+4*C
+7*A

3*C+11*A 20+12*Ts

Changed:
StateMessages = ON

3450+6*Tt+4*C
+7*A+4*S

3*C+11*A+
2*S

20+12*Ts

Changed:
StateMsgDefaultValue = ON

3492+6*Tt+4*C
+7*A+6*S

3*C+11*A+
2*S

20+12*Ts

Changed:
EventMessages = ON

4037+6*Tt+4*C
+7*A+6*S+9*E

3*C+11*A+
2*S+8*E

20+12*Ts

Changed:
EventMsgOneToN = ON

4224+6*Tt+4*C
+7*A+6*S+12*E

3*C+11*A+
2*S+8*E

20+12*Ts

Changed:
ActivateOnMessage = ON

4307+6*Tt+4*C
+7*A+9*S+15*E

3*C+11*A+
2*S+8*E

20+12*Ts

Changed:
SetEventOnMessage = ON

4329+6*Tt+4*C
+7*A+9*S+15*E

3*C+11*A+
2*S+8*E

20+12*Ts

Changed:
AlarmOnMessage = ON

4691+6*Tt+4*C
+7*A+12*S+
18*E

3*C+11*A+
2*S+8*E

20+12*Ts

Changed:
StackPool = ON

5072+6*Tt+7*S
p+4*C+7*A+
12*S+18*E

3*Sp+3*C+
11*A+2*S+
8*E

20+14*Ts

Table C–1 OSEK OS Memory Requirements

System Properties
(configuration)

Confor-
mance
Class

ROM RAM Base Page
RAM
 MOTOROLA Memory Requirements M68SOSEK

C—6 USER’S MANUAL

Changed:
NodeStack = ON

5157+6*Tt+7*S
p+4*C+7*A+
12*S+18*E

3*Sp+3*C+
11*A+2*S+
8*E

20+16*Ts

Changed:
PersistentNode = ON

5260+7*Tt+7*S
p+4*C+7*A+
12*S+18*E

3*Sp+3*C+
11*A+2*S+
8*E

20+16*Ts

Changed:
PersistentStack = ON

ECC2

5355+7*Tt+7*S
p+4*C+7*A+12*
S+18*E

3*Sp+3*C+
11*A+2*S+
8*E

20+16*Ts

Changed:
HCBasePage = OFF
TaskBasePage = OFF

6070+8*Tt+7*S
p+4*C+7*A+12*
S+18*E

19+17*Ts+3
*Sp+3*C+
11*A+2*S+
8*E

7

Changed:
ExtendedStatus = ON

6934+9*Tt+7*S
p+6*C+7*A+12*
S+18*E

17+17*Ts+3
*Sp+3*C+1
2*A+4*S+9*
E

7

Changed:
ErrorHandler = ON

7600+9*Tt+7*S
p+6*C+7*A+12*
S+18*E

19+17*Ts+
+3*Sp+3*C
+12*A+4*S
+9*E

7

Changed:
EntryExitISR = ON

8469+9*Tt+7*S
p+6*C+7*A+12*
S+18*E

22+17*Ts+
+3*Sp+3*C
+12*A+4*S
+9*E

7

Changed:
InterruptMaskControl = ON

8827+10*Tt+7*
Sp+6*C+7*A+1
2*S+18*E

24+17*Ts+
+3*Sp+3*C
+12*A+4*S
+9*E

7

Table C–1 OSEK OS Memory Requirements

System Properties
(configuration)

Confor-
mance
Class

ROM RAM Base Page
RAM
M68SOSEK Memory Requirements MOTOROLA

USER’S MANUAL C—7

 MOTOROLA Memory Requirements M68SOSEK

C—8 USER’S MANUAL

APPENDIX D
SYSTEM GENERATION ERROR MESSAGES

D.1 Error Message Description Format

Below all System Generator error messages are described in the following format
(see 12.5 System Generator Warning and Error Messages about the error
message format):

message text

Description

The description includes possible reasons of an error and recommended methods
to eliminate it.

D.2 Error Messages

E0001: syntax error

A syntax error was found in the input stream.

E0001: invalid token ’<token>’

An invalid (unrecognizable) token was found in the input stream.

E0003: unexpected end of file found in comment

The compiler found the end of a file while scanning a comment.

A comment cannot be split across source files.

This error can also be caused by a comment on the last line of a source file that is
not followed by the ‘CR’ symbol as in the example:

int i; // error: last line not terminated by newline

To eliminate this error, go to the end of the line and add a new line.

E0010: not enough memory

There is not enough memory for source file processing.
M68SOSEK System Generation Error Messages MOTOROLA

USER’S MANUAL D—1

E0011: cannot open source file: <name>
 cannot open include file: <name>
 cannot open output file: <name>)

This file either did not exist, could not be opened, or was not found.

E0012: cannot read file: <name>

System generator encountered an error when trying to read a file.

This error can be caused by a disk error or by a file-sharing conflict.

E0013: cannot write file: <name>

An error occurred while SG was trying to write into the file. One possible reason of
this error is insufficient disk space.

E0014: too many include files: depth = <level>

The nesting depth of #include directives is too great.

W0020: ignoring unknown option <flag>

The <flag> in the command-line option is not valid; the option is ignored.

W0020: <flag> requires an argument

A command-line option requires an argument, but nothing is specified.

E0021: no input file specified

The input file is not specified in the command line.

E0021: too many include paths specified

The number of specified paths for include files in the command line is greater than
a limit.

E0030: ’identifier’: system object redefinition

The given identifier has already been used for a system object of the corresponded
type.

E0101: double property <name> definition

The property <name> has been previously defined and cannot be re-defined.
 MOTOROLA System Generation Error Messages M68SOSEK

D—2 USER’S MANUAL

W0101: undefined property definition

The specified property name is not supported by the OSEK System Generator. The
statement which has caused this warning is ignored by SG.

E0103: undefined value for property <name>

The desired value for the property <name> is not supported by the OSEK System
Generator.

E0102: incorrect property <name> setting

The setting of the property <name> is incompatible with other current settings.

For example, if Events property is turned off and SetEventOnMsg property is
turned on, the SetEventOnMsg property setting is incorrect.

E0105: method of task stack assignment is not defined

At least one of task stack assignment methods shall be defined, either NodeStack
or StackPool or TaskOwnStack.

E0106: SimpleScheduler property can not be used with Resources property

If SimpleScheduler is used then the resources can not be used.

E0110: interrupt masks shall be defined

The InterruptMaskControl property is turned on, but the interrupt masks are not
defined.

E0111: interrupt stack shall be defined

The EntryExitISR property is turned on, but the interrupt stack is not defined.

E0120: error hook shall be defined

The ErrorHandler property is turned on, but the error hook is not defined.

E0121: context switch routines shall be defined

The ContextSwitchRoutine property is turned on, but the context switch routines
are not defined.

E0201: the number of task control blocks shall be greater than 0

The <NumberOfTasks> parameter of the DefineScheduler statement equals 0.
M68SOSEK System Generation Error Messages MOTOROLA

USER’S MANUAL D—3

E0202: number of priorities shall be greater than 0

The <NumberOfPriorities> parameter of the DefineScheduler statement equals 0.

E0203: size of scheduler stack shall be defined

The UseMainStack property is turned off, but the <SchedulerStackAddress>
parameter is not defined in the DefineScheduler statement.

E0204: size of task node stack shall be defined

The NodeStack property is turned on, but the <TaskNodeStackSize> parameter is
not defined in the DefineScheduler statement.

E0205: number of task control blocks less than priority range

The number of task control blocks are less than maximum of task priority, it is not
enough in case of SimpleScheduler.

W0201: NodeStack property is turned off, parameter ignored

If the NodeStack property is turned off then the node stacks are not supported and
parameters defining this stack are ignored.

W0202: there are unused task control blocks

The number of task control blocks are greater than maximum defined priority of a
task, therefore in case of SimpleScheduler the unused control blocks exist.

E0301: task may be either basic or extended (more than one task type attribute)

More than one task type attribute (BASIC and EXTENDED) was applied to a task,
as in the following example:

DefineTask(TaskA, BASIC|EXTENDED|NONPREEMPT, 3, u, tAStart,,);

W0301: task type shall be defined

The task type is not defined, neither BASIC nor EXTENDED flags are defined for
a task.

E0302: only basic tasks are allowed in basic conformance classes

The OS Conformance Class is defined as one of the BCC classes, but a task has
the EXTENDED type.
 MOTOROLA System Generation Error Messages M68SOSEK

D—4 USER’S MANUAL

W0302: task type set to basic by default

Due to one of reasons (E0301, W0301, E0302) the task type shall be redefined.

W0303: task preemptive property shall be defined

Task preemptive property is not defined, neither PREEMPT nor NONPREEMPT
flags are defined for a task.

E0303: task may be either preempt or nonpreempt (more than one task preemptive
property)

Both NONPREEMPT and PREEMPT flags are defined for a task.

W0304: non-preemptive tasks are not supported by full-preemptive scheduler (pre-
emptive tasks are not supported by non-preemptive scheduler)

The defined task preemptive property is incompatible with defined scheduling
policy.

W0305: task preemptive property set to preempt (task preemptive property set to
non-preempt)

Due to some reasons (W0303, E0303, W0304) task preemptive property shall be
redefined.

W0306: PersistentNode property is turned off, parameter ignored

A task has the defined ASSIGNNODE flag, but the PersistentNode property is
turned off.

W0307: PersistentStack property is turned off, parameter ignored

A task has the defined ASSIGNSTACK flag, but the PersistentStack property is
turned off.

W0308: persistent stack may be assigned only for task with persistent node, param-
eter ignored (ASSIGNSTK must be used with ASSIGNNODE)

A task has the defined ASSIGNSTACK flag, but the ASSIGNNODE flag is not
defined. The ASSIGNSTACK flag is ignored in this case.

W0309: persistent stack shall be assigned from stack pool, parameter ignored

A task has the defined ASSIGNSTACK flag, but the POOLSTACK flag is not
defined. The ASSIGNSTACK flag is ignored in this case.
M68SOSEK System Generation Error Messages MOTOROLA

USER’S MANUAL D—5

W0310: TaskOwnStack property is turned off, parameter ignored

A task has the defined OWNSTACK flag, but the TaskOwnStack property is turned
off.

W0311: StackPool property is turned off, parameter ignored

A task has the defined POOLSTACK flag, but the StackPool property is turned off.

E0304: task priority exceeds the maximum limit

The <TaskPriority> parameter of the DefineTask statement is greater than
<NumberOfPriorities> which has been defined by the DefineScheduler statement.

E0305: the number of task nodes is not enough to allocate persistent nodes

The number of tasks with persistent node are greater than the number of nodes.
Also this error is caused when the number of tasks with persistent node is equal to
number of nodes and there are at least one more tasks.

E0306: the stack pool parameter shall be defined

A task has the defined POOLSTACK flag, but the <TaskStack> parameter of the
DefineTask statement has not been defined.

E0307: the <name> stack pool is undefined

The <TaskStack> parameter of the DefineTask statement contains the name of a
stack pool which has not been defined.

E0308: the basic task cannot be notified by event setting

The basic task is referenced in DefineAlarm or SetEventOnMsg statements to be
notified by event setting.

E0309: at least one task shall be defined

At least one task shall be defined in the system.

E0310: more than one task stack attachment method

Only one stack attachment method shall be defined for a task.

E0311: task has no stack

This error may arise due to one of the following reasons:

• an undefined stack attachment method is used;

• the NodeStack property turned off and it is not defined other method for a task.
 MOTOROLA System Generation Error Messages M68SOSEK

D—6 USER’S MANUAL

E0312: the stack size parameter shall be defined

A task has the defined OWNSTACK flag, but the <TaskStackSize> parameter of
the DefineTask statement has not been defined.

E0401: resource priority exceeds the maximum limit

The <ResourcePriority> parameter of the DefineResource statement is greater
then <NumberOfPriorities> has been defined by the DefineScheduler statement.

E0501: system timer is already defined

The DefineSystemTimer statement shall be defined only once in the definition file.

E0502: system timer is undefined

The DefineSystemTimer statement shall always be in the configuration file.

E0601: assigned counter <name> for alarm <name> is undefined

The <CounterName> parameter of the DefineAlarm statement contains the name
of a counter which has not been defined.

E0602: assigned task <name> for alarm <name> is undefined

The <TaskName> parameter of the DefineAlarm contains the name of a counter
which has not been defined.

W0601: Events property is turned off, parameters ignored

The specified method of task notification is not supported.

W0701: StateMsgDefaultValue property is turned off, parameter ignored

The <DefaulValue> parameter of DefineStateMessage statement is defined, but
StateMsgDefaultValue property is turned off.

W0701: StateMsgTimeStamp property is turned off, parameter ignored

The <TStamp> parameter of DefineStateMessage statement is defined as
WithTimeStamp, but StateMsgTimeStamp property is turned off.

W0703: EventMsgTimeStamp property is turned off, parameter ignored

The <TStamp> parameter of DefineEventMessage statement is defined as
WithTimeStamp, but EventMsgTimeStamp property is turned off.

W0704: EventMsgOneToN property is turned off, parameter ignored

The number of receivers is greater than one, but EventMsgOneToN is turned off.
M68SOSEK System Generation Error Messages MOTOROLA

USER’S MANUAL D—7

W0705: AlarmOnMsg property is turned off, definition ignored

The DefineMesssageAlarm statement is detected, but AlarmOnMsg property is
turned off.

W0706: message shall be defined before its alarm

The DefineMessageAlarm statement has been found before the corresponded
DefineStateMessage or DefineEventMessage statement.

W0707: message shall be defined before its notification

Either ActivateOnMessage or SetEventOnMessage statement has been found
before the corresponded DefineStateMessage or DefineEventMessage statement.

W0708: ActivateOnMsg property is turned off, definition ignored

The ActivateOnMessage statement has been found, while the ActivateOnMsg
property is turned off.

W0709: SetEventOnMsg property is turned off, definition ignored

The SetEventOnMessage statement has been found, while the SetEventOnMsg
property is turned off.

E0701: assigned alarm <name> for message <name> is undefined

The <AlarmName> parameter of the DefineMessageAlarm statement contains the
name of alarm which has not been defined.

E0702: alarm for message <name> was defined in line ##

The message shall have only one assigned alarm.

E0703: notified task <name> for message <name> is undefined

The <TaskName> parameter of the ActivateOnMessage or SetEventOnMessage
statement contains the name of a task which has not been defined.

E0704: notification for message <name> was defined in line ##

The message shall have only one notification method.

E0705: message <name>: parameters are undefined

Either ActivateOnMessage, or SetEventOnMessage, or DefineMessageAlarm
statement has been processed without the corresponded DefineStateMessage or
DefineEventMessage statement (see W0706 and W0707).
 MOTOROLA System Generation Error Messages M68SOSEK

D—8 USER’S MANUAL

APPENDIX E
SYSTEM SERVICES QUICK REFERENCE

The brief list of all OSEK Operating System run-time services is provided here.
Input and output parameters, syntax and ability to use in ISR are shown.

Service Input Output ISR

ActivateTask
Task name - Yes

syntax: StatusType ActivateTask(TaskRefType <TaskName>);

TerminateTask
- - No

syntax: StatusType TerminateTask(void);

ChainTask
Task name - No

syntax: StatusType ChainTask(TaskRefType <TaskName>);

Schedule
- - No

syntax: StatusType Schedule(void);

GetTaskId
- Task name No

syntax: StatusType GetTaskId(TaskRefType <TaskName>);

GetTaskState
Task name Task state Yes

syntax: StatusType GetTaskState(TaskRefType <TaskName>,
 TaskStateRefType <State>);

EnterISR
- - Yes

syntax: StatusType EnterISR(void);

LeaveISR
- - Yes

syntax: StatusType LeaveISR(void);

EnableInterrupt
Interrupt mask - Yes

syntax: StatusType EnableInterrupt(IntMaskType <Mask>);

DisableInterrupt
Interrupt mask - Yes

syntax: StatusType DisableInterrupt(IntMaskType <Mask>);

GetInterruptMask
- Interrupt mask Yes

syntax: StatusType GetInterruptMask(IntMaskRefType <Mask>);

GetResource
Resource name - No

syntax: StatusType GetResource(ResourceRefType <ResName>);

ReleaseResource:
Resource name - No

syntax: StatusType ReleaseResource(ResourceRefType <ResName>);

SetEvent
Task name, Event mask - No

syntax: StatusType SetEvent (TaskRefType <TaskName>,
 EventMaskType <Mask>);

ClearEvent
Event mask - No

syntax: StatusType ClearEvent(EventMaskType <Mask>);
M68SOSEK System Services Quick Reference MOTOROLA

USER’S MANUAL E—1

GetEvent
Task name Event mask No

syntax: StatusType GetEvent(TaskRefType <TaskName>,
 EventMaskRefType <Mask>);

WaitEvent
Event mask - No

syntax: StatusType WaitEvent(EventMaskType <Mask>);

SendStateMessage
Message name, copy qualifier - Yes
syntax: StatusType SendStateMessage(<MessageName>,
 <CopyQualifier>);

ReceiveStateMessage
Message name, copy qualifier - No
syntax: StatusType ReceiveStateMessage(<MessageName>,
 <CopyQualifier>);

SendEventMessage
Message name - Yes

syntax: StatusType SendEventMessage(<MessageName>);

ReceiveEventMessage
Message name - No

syntax: StatusType ReceiveEventMessage(<MessageName>);

InitCounter
Counter name, initial value - No

syntax: StatusType InitCounter(CtrRefType <CtrName>,
 TickType <Ticks>);

CounterTrigger
Counter name - Yes

syntax: StatusType CounterTrigger(CtrRefType <CtrName>);

GetCounterValue
Counter name Counter value No

syntax: StatusType GetCounterValue(CtrRefType <CtrName>,
 TickRefType <Ticks>);

GetCounterInfo
Counter name Counter constants No

syntax: StatusType GetCounterInfo(CtrRefType <CtrName>,
 CtrInfoRefType <Info>);

SetRelAlarm

Alarm name, Counter relative
value, Cycle value

- No

syntax: StatusType SetRelAlarm (AlarmRefType <AlarmName>,
 TickType <Increment>, TickType <Cycle>);

SetAbsAlarm

Alarm name, Counter abso-
lute value, Cycle value

- No

syntax: StatusType SetAbsAlarm (AlarmRefType <AlarmName>,
 TickType <Start>, TickType <Cycle>);

CancelAlarm
Alarm name - No

syntax: StatusType CancelAlarm(AlarmRefType <AlarmName>);

GetAlarm
Alarm name

Relative value in ticks be-
fore the alarm expires

No

syntax: StatusType GetAlarm(AlarmRefType <AlarmName>,
 TickRefType <Ticks>);

Service Input Output ISR
 MOTOROLA System Services Quick Reference M68SOSEK

E—2 USER’S MANUAL

Index

PageIndex
Entry Number

 PageIndex
Entry Number
A
alarm... 8—3
Application configuration file 12—1

B
Basic Task3—1, 4—4
BCC1 .. 3—2
BCC2 .. 3—2
BCC3 .. 3—2

C
Ceiling Priority................................. 7—2
compiler options............................ 13—5
Conformance Class 3—1
conversion constant 8—1
counter initial value 8—1

E
ECC1 .. 3—2
ECC2 .. 3—2
environment variables................... 14—1
event ... 9—1
Event Messages 10—1
Extended Status....... 3—5, 11—3, 15—1
Extended Task3—1, 4—2

F
fatal errors..................................... 11—2

H
hook routines 11—1

I
Interrupt Service Routine (ISR)....... 6—1
interrupt stack frame 6—2
ISR frame.. 6—1

M
maximum allowed counter value..... 8—1
Message Objects (MO)................. 10—1

mild errors 11—2
multiple activation3—2, 4—5

O
Operating System Properties........ 12—4
OS Error codes 11—3
OSEK.. 1—1
OSShutDown 11—3

P
Priority Ceiling Protocol................... 7—2

R
ready state 4—2
run time context 4—2
running state 4—2

S
scheduler4—1, 5—1
severe errors................................. 11—2
simplified scheduler 5—1
single activation 4—5
Stack Errors 15—2
Start-up Routine............................ 11—4
State Messages 10—1
suspended state.............................. 4—2
System Generator........................... 3—4
System Generator utility (SG) 12—1
System Generator Warning and Error

Messages......................... 12—21
system timer.................................... 8—2

T
task configuration table 4—2
task control block 4—10
task node .. 4—2
timestamp 10—2

W
waiting state3—1, 9—1
M68SProductName MOTOROLA

USER’S MANUAL IND—1

Index

PageIndex
Entry Number

 PageIndex
Entry Number
 MOTOROLA M68SProductName

IND—2 USER’S MANUAL

	SECTION 1 Overview
	SECTION 2 Notation
	2.1 Manual Structure
	2.2 Typographical Conventions
	2.3 Definitions, Acronyms and Abbreviations
	2.4 Installation Instructions
	2.4.1 Required Environment
	2.4.2 Installation

	2.5 Technical Support Information

	SECTION 3 Operating System Architecture
	3.1 Processing Levels
	3.2 Conformance Classes
	3.3 OSEK OS Overall Architecture
	3.4 Application Program Interface

	SECTION 4 Task Management
	4.1 Task Concept
	4.2 Task State Model
	4.2.1 Extended Tasks
	4.2.2 Basic Tasks

	4.3 Task Activation and Termination
	4.4 Task Properties
	4.5 Task Priorities
	4.6 Task Related Resources
	4.6.1 Task Configuration Table
	4.6.2 Task Control Block
	4.6.2.1 Persistent Node Assignment

	4.6.3 Task Link Table
	4.6.4 Task Stack
	4.6.4.1 Stack allocation
	4.6.4.2 Allocation of fixed stack linked with the ...
	4.6.4.3 Dynamic stack allocation from the stack po...
	4.6.4.4 Persistent stack allocation from the stack...
	4.6.4.5 Explicit stack allocation
	4.6.4.6 Stack size

	4.7 Programming Issues
	4.7.1 Configuration Options
	4.7.2 Data types
	4.7.3 Task Definition
	4.7.4 Run-time Services
	4.7.5 Constants
	4.7.6 Conventions

	SECTION 5 Scheduler
	5.1 General
	5.1.1 Simple Scheduler

	5.2 Scheduling Policy
	5.2.1 Non-preemptive Scheduling
	5.2.2 Full-preemptive Scheduling
	5.2.3 Mixed-preemptive Scheduling

	5.3 Programming Issues
	5.3.1 Configuration Options
	5.3.2 Run-time Services
	5.3.3 Scheduler Definition

	SECTION 6 Interrupt Processing
	6.1 General
	6.2 ISR stack
	6.3 ISR Categories
	6.3.1 ISR category 1
	6.3.2 ISR category 2
	6.3.3 ISR category 3

	6.4 Interrupt Flag Manipulation
	6.5 Local Variables Considerations
	6.6 Programming Issues
	6.6.1 Configuration Options
	6.6.2 Data Types
	6.6.3 Run-time Services
	6.6.4 Conventions
	6.6.5 ISR definition

	SECTION 7 Resource Management
	7.1 General
	7.2 Access to Resources
	7.2.1 Priority Ceiling Protocol
	7.2.2 Scheduler as a Resource

	7.3 Programming Issues
	7.3.1 Configuration Options
	7.3.2 Data types
	7.3.3 Run-time Services
	7.3.4 Resource Definition

	SECTION 8 Counters and Alarms
	8.1 Counters
	8.2 Alarms
	8.3 Programming Issues
	8.3.1 Configuration Options
	8.3.2 Data Types
	8.3.3 Counters and Alarm Generation
	8.3.4 Run-time Services
	8.3.5 Constants

	SECTION 9 Events
	9.1 General
	9.2 Events and Scheduling
	9.3 Programming Issues
	9.3.1 Configuration Options
	9.3.2 Data Types
	9.3.3 Events Definition
	9.3.4 Run-time Services
	9.3.5 Additional usage

	SECTION 10 Communication
	10.1 Message Concept
	10.2 State Messages
	10.3 Event Messages
	10.4 Programming Issues
	10.4.1 Configuration Options
	10.4.2 Identifiers
	10.4.3 Message Definition
	10.4.4 Run-time Services
	10.4.5 Usage of Messages

	SECTION 11 Error Handling and Special Routines
	11.1 Hook Routines
	11.2 Error Handling
	11.2.1 Error Interface
	11.2.2 Extended Status
	11.2.3 Possible Error Reasons

	11.3 Start-up Routine
	11.4 Programming Issues
	11.4.1 Configuration Options
	11.4.2 Hook Routine Definition

	SECTION 12 System Configuration
	12.1 General
	12.2 Application Configuration File
	12.2.1 Configuration File Grammar
	12.2.1.1 Statements Types

	12.2.2 Separate Output Files

	12.3 System Properties Definition
	12.4 System Objects Definition
	12.4.1 DefineScheduler
	12.4.2 DefineInterrupts
	12.4.3 DefineHooks
	12.4.4 DefineTask
	12.4.5 DefineStackPool
	12.4.6 DefineResource
	12.4.7 DefineSystemTimer
	12.4.8 DefineCounter
	12.4.9 DefineAlarm
	12.4.10 DefineStateMessage
	12.4.11 DefineEventMessage
	12.4.12 DefineMessageAlarm
	12.4.13 ActivateOnMessage
	12.4.14 SetEventOnMessage

	12.5 System Generator Warning and Error Messages

	SECTION 13 Building of Application
	13.1 Application Structure
	13.2 Action Sequence to Build an Application
	13.2.1 Application Configuration
	13.2.2 Source Files
	13.2.3 Compiling and Linking

	13.3 Sample Application

	SECTION 14 Platform-Specific Features
	14.1 HC08 features
	14.1.1 Base Page Memory Usage
	14.1.2 Compiler Issues
	14.1.3 Interrupt Vector Table
	14.1.4 Recommendations on System Properties
	14.1.4.1 UseMainStack property
	14.1.4.2 UseSameContext property
	14.1.4.3 InterruptMaskControl property
	14.1.4.4 CounterSize property
	14.1.4.5 Unused services

	14.1.5 System Timer Hardware
	14.1.6 Scheduler Architecture

	SECTION 15 Application Troubleshooting
	15.1 System Generation
	15.2 Using OS Extended Status for Debugging
	15.3 Context Switch Routines
	15.4 Stack Errors
	15.5 Known Problems

	SECTION 16 System Services
	16.1 General
	16.2 Task Management Services
	16.2.1 Data types
	16.2.2 Constants
	16.2.3 Conventions
	16.2.4 Task Declaration
	16.2.5 ActivateTask
	16.2.6 TerminateTask
	16.2.7 ChainTask
	16.2.8 Schedule
	16.2.9 GetTaskId
	16.2.10 GetTaskState
	16.2.11 Examples for Task Management Services

	16.3 ISR Management Services
	16.3.1 Data Types
	16.3.2 Conventions
	16.3.3 EnterISR
	16.3.4 LeaveISR
	16.3.5 EnableInterrupt
	16.3.6 DisableInterrupt
	16.3.7 GetInterruptMask
	16.3.8 Examples for Interrupt Management Services

	16.4 Resource Management Services
	16.4.1 Data types
	16.4.2 Resource Declaration
	16.4.3 GetResource
	16.4.4 ReleaseResource
	16.4.5 Examples of using resources

	16.5 Counters and Alarms Management Services
	16.5.1 Data Types and Identifiers
	16.5.2 Constants
	16.5.3 Counter and Alarm Declaration
	16.5.3.1 Counter Declaration
	16.5.3.2 Alarm Declaration

	16.5.4 InitCounter
	16.5.5 CounterTrigger
	16.5.6 GetCounterValue
	16.5.7 GetCounterInfo
	16.5.8 SetRelAlarm
	16.5.9 SetAbsAlarm
	16.5.10 CancelAlarm
	16.5.11 GetAlarm
	16.5.12 Examples for Counter and Alarm Management

	16.6 Event Management Services
	16.6.1 Data Types
	16.6.2 SetEvent
	16.6.3 ClearEvent
	16.6.4 GetEvent
	16.6.5 WaitEvent
	16.6.6 Examples of using events

	16.7 Communication Management Services
	16.7.1 Data Types and Identifiers
	16.7.2 Message Declaration
	16.7.2.1 State Message Declaration
	16.7.2.2 Event Message Declaration

	16.7.3 SendStateMessage
	16.7.4 ReceiveStateMessage
	16.7.5 SendEventMessage
	16.7.6 ReceiveEventMessage
	16.7.7 Examples of using messages

	16.8 Error Handling and Debugging Services
	16.8.1 OSShutdown
	16.8.2 Hook Routines
	16.8.2.1 OSError
	16.8.2.2 OSPreTask
	16.8.2.3 OSPostTask

	APPENDIX A Sample Application
	A.1 Description
	A.2 Configuration File
	A.3 Source Files

	APPENDIX B System Service Timing
	B.1 General Notes
	B.2 Data Sheet

	APPENDIX C Memory Requirements
	C.1 Memory for the OSEK Operating System
	C.2 Data Sheet

	APPENDIX D System Generation Error Messages
	D.1 Error Message Description Format
	D.2 Error Messages

	APPENDIX E System Services Quick Reference

