

# ANAG VISION

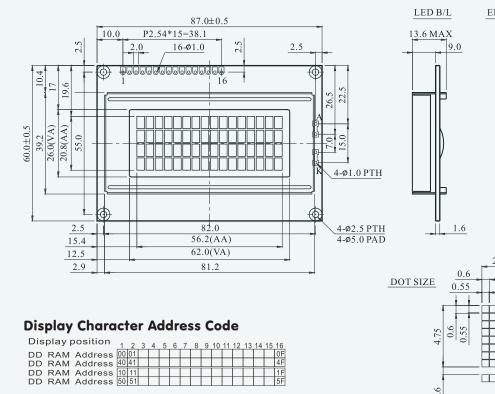
#### Feature

- 1.5x7 dots with cursor separated
- 2. Built- in controller (KS 0066 or Equivalent)
- 3. +5V power supply (Also available for +3V)
- 4.1/16 duty cycle
- 5. B/L to be driven by pin1,pin2, or pin15,pin16 or A.K 6. N.V. optional

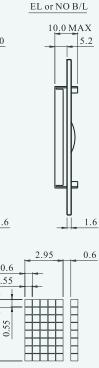
| Pin<br>NO. | Symbol | Function                             |
|------------|--------|--------------------------------------|
| 1          | Vss    | GND                                  |
| 2          | Vdd    | +3V or +5V                           |
| 3          | Vo     | Contrast Adjustment                  |
| 4          | RS     | H/L Register select signal           |
| 5          | R/W    | H/L Read / write signal              |
| 6          | Е      | H→L Enable signal                    |
| 7          | DB0    | H/L Data bus line                    |
| 8          | DB1    | H/L Data bus line                    |
| 9          | DB2    | H/L Data bus line                    |
| 10         | DB3    | H/L Data bus line                    |
| 11         | DB4    | H/L Data bus line                    |
| 12         | DB5    | H/L Data bus line                    |
| 13         | DB6    | H/L Data bus line                    |
| 14         | DB7    | H/L Data bus line                    |
| 15         | A/Vee  | 4.2v for LED/Negative Voltage output |
| 16         | К      | Power supply for B/L(0V)             |

#### **Mechanical Data**

| Item             | Standard Value | Unit |
|------------------|----------------|------|
| Module Dimension | 87.0x60.0      | mm   |
| Viewing Area     | 62.0x26.0      | mm   |
| Dot Size         | 0.55x0.55      | mm   |
| Character Size   | 2.95x4.75      | mm   |


#### **Absolute Maximum Rating**

| 14.0.00           | Symbol     | Stan | Unit |      |        |
|-------------------|------------|------|------|------|--------|
| ltem              | Symbol     | min. | typ. | max. | Unit   |
| Power Supply      | VDD-VSS    | -0.3 |      | 7.0  | $\vee$ |
| Input Voltage     | VI         | -0.3 |      | VDD  | $\vee$ |
| NULL INGO ONGU NO | 5 6 1 4 14 |      |      |      |        |


Note : VSS=0 Volt, VDD=5.0 Volt.

#### **Electronical Characteristics**

| Item                     | Sumbol | Condition        | Stan |      |      |      |  |
|--------------------------|--------|------------------|------|------|------|------|--|
| Item                     | Symbol | Condition        | min. | typ. | max. | Unit |  |
| Innut Valtaga            | VDD    | VDD=+5V          | 4.7  | 5.0  | 5.3  | V    |  |
| Input Voltage            | VDD    | VDD=+3V          | 2.7  | 3.0  | 5.3  | V    |  |
| Supply Current           | IDD    | VDD=5V           |      | 1.6  | 3.0  | mA   |  |
|                          |        | -20°C            |      |      |      |      |  |
| Recommended LC Driving   | VDD-V0 | 0°C              | 4.6  | 4.8  | 5.2  |      |  |
| Voltage for Normal Temp. |        | 25°C             | 4.1  | 4.5  | 4.7  |      |  |
| Version module           |        | 50°C             | 3.9  | 4.2  | 4.5  |      |  |
|                          |        | 70°C             |      |      |      |      |  |
| LED Forward Voltage      | VF     | 25°C             |      | 4.2  | 4.6  | V    |  |
| LED Forward Current      | IF     | 25°C             |      | 220  | 330  | mA   |  |
| EL Power Supply Current  | IEL    | Vel=110VAC;400Hz |      |      | 5.0  | mA   |  |



3



0.6

1F 5F

# Datenblatt für LCD-Module

# Best.-Nr.: 17 80 04

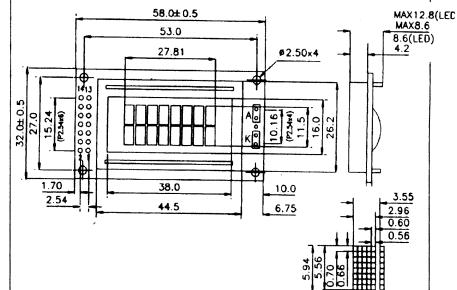




# Beschreibung der LCD Module und deren Ansteuerung

| Character M                                                                                                    | lodule                                |             |                  |                                                                                                                |          |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|------------------|----------------------------------------------------------------------------------------------------------------|----------|
| Best-Nr                                                                                                        | Zeichen x Zeilen                      | Beleuchtung | Datenblatt Seite | Contre                                                                                                         | olier    |
| 18 33 69                                                                                                       | 8x2                                   |             | 3                | HD44780 *)                                                                                                     | Seite 15 |
| 18 35 12                                                                                                       | 8x2                                   | LED         | 3                | HD44780 *)                                                                                                     | Seite 15 |
| 18 32 61                                                                                                       | 16x1                                  | -           | 4                | HD44780 *)                                                                                                     |          |
| 18 40 71                                                                                                       | 16x1                                  | LED         | A                | the second s | Seite 15 |
| 18 33 42                                                                                                       | 16x2                                  |             |                  | HD44780 *)                                                                                                     | Seite 15 |
| 18 45 94                                                                                                       | 16x2                                  | LED         | 4                | HD44780 *)                                                                                                     | Seite 15 |
| 18 33 34                                                                                                       | 16x4                                  | LEU         | 4                | HD44780 *)                                                                                                     | Seite 15 |
| 18 46 91                                                                                                       | 16x4                                  |             | 5                | HD44780 *)                                                                                                     | Seite 15 |
| 18 33 50                                                                                                       |                                       | LED         |                  | HD44780 *)                                                                                                     | Seite 15 |
| 18 47 48                                                                                                       | 20x2                                  | · · · · ·   | 7                | HD44780 *)                                                                                                     | Seite 15 |
| The second s | 20x2                                  | LED         | 7                | HD44780 *)                                                                                                     | Seite 15 |
| 18 72 67                                                                                                       | 20x4                                  |             | 8                | HD44780 *)                                                                                                     | Seite 15 |
| 18 72 75                                                                                                       | 20x4                                  | LED         | 8                | HD44780 *)                                                                                                     | Seite 15 |
| 18 72 83                                                                                                       | 40x2                                  |             | 9                | HD44780 *)                                                                                                     | Seite 15 |
| 18 72 91                                                                                                       | 40x2                                  | LED         | 9                | HD44780 *)                                                                                                     | Seite 15 |
| 18 73 64                                                                                                       | 40x4                                  |             | 10               | HD44780 *)                                                                                                     |          |
| 18 73 72                                                                                                       | 40x4                                  | LED         | 10               | 1 · K                                                                                                          | Seite 15 |
|                                                                                                                | · · · · · · · · · · · · · · · · · · · |             |                  | HD44780 *)                                                                                                     | Seite 15 |
|                                                                                                                |                                       |             |                  | *) oder Baugleich                                                                                              | KS0066   |

# Grafikmodule


| Best-Nr             | Auflösung Pixel | Beleuchtung |    | Controller       |
|---------------------|-----------------|-------------|----|------------------|
| 18 73 99            | 122x32          | LED         | 11 | SED1520 Seite 24 |
| 18 74 29            | 128 <b>x</b> 64 | LED         | 12 | KS0108 Seite 29  |
| 18 85 81            | 240x64          | CFL         | 13 | T6963C Seite 31  |
| 18 74 45            | 240x128         | CFL         | 14 | T6963C Seite 31  |
| <b>CFL</b> Inverter | Тур             |             | 15 | Eingangspannung  |
| 18 35 71            | CXA-L10L        |             | -  | 12V              |

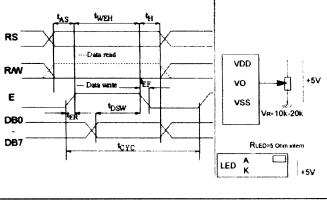
# NLC-08x2x06

# LCD Character

# **Features**

- = 8 Zeichen x 2 Zeilen
- **STN Technologie**
- Hoher Kontrast
- Arbeitstemp. 0 ~ 50°C
- Controller HD44780
- Backlight LED
- Yellow Mode
- Blickwinkel 6:00 Uhr
- Modul-Abmessungen /mm 58 x 32 x 8,6
- Effektive Displayfläche /mm 38 x 16




#### Elektrische und optische Spezifikation (Ta=25°C, Vdd=5,0V)

| Beschreibung          | Symbol  | Min.   | Тур. | Max.   | Einheit | Testbedingung                                       |
|-----------------------|---------|--------|------|--------|---------|-----------------------------------------------------|
| Power supply Logik    | VDD-VSS | 4,5    | 5    | 5,5    | V       |                                                     |
| Input Voltage         | ViH     | 0,8VDD | -    | VDO    | v       | H-Level                                             |
| Input Voltage         | VIL.    | 0      | •    | 0,2VDD | V       | L-Level                                             |
| Power supply current  | loo     | - 1    | -    | 2,0    | mA      | VDD=5V                                              |
| LED Forward Voltage   | VLED    |        | 4,2  | - T    | v       |                                                     |
| LC driving Voltage    | VDD-VO  | 3,8    | 4,5  | 5,1    | v       | · · · · · · · · · · · · · · · · · · ·               |
| Viewing angle         | 0       | 50     | -    | -      | deg     | Cr ≥2,0                                             |
| Viewing angle         | •       | - 1    | •    | +/- 40 | deg     | Cr ≥2,0                                             |
| Contrast ratio        | Cr      | 4      | -    | T -    |         | ♦=0°, 0=0°                                          |
| Response time (rise)  | Tr      | -      | 172  | 230    | ms      | φ=0°, θ=0°                                          |
| Response time (fall)  | Tr      | -      | 150  | 202    | ms      | ¢=0°, θ=0°                                          |
| Arbeitstemperatur     | Тор     | 0      | -    | 50     | °C      |                                                     |
| Lagertemperatur       | Tst     | -20    | •    | 70     | °C      |                                                     |
| Enable cycle time     | teve    | 667    | •    | •      | ns      |                                                     |
| Enable pulse width    | Рмен    | 280    | -    | Γ.     | ns      |                                                     |
| Enable rise/fall time | ten tar | -      | -    | 25     | ns      |                                                     |
| RS R/W set up time    | LAS     | 140    | -    | 1.     | ns      | · · · · · · · · · · · · · · · · · · ·               |
| Data delay time       | TOOR    | -      | -    | 220    | ns      | · · · · · · · · · · · · · · · · · · ·               |
| Data setup time       | losw    | 180    | -    |        | ns      |                                                     |
| Hold time             | b⊣      | 20     | -    | ŀ      | ns      | Manan Manana chandin ann. Thag paran chuid ngapag g |

**Internal Pin Connection** Pin Symbol Funktion Vss OV Power supply, GND 2 Voo Power Supply for Logic +5V 3 Vo Power Supply for LC-Driving Instruction code input RS = "L" Data input RS = "H" 4 RS Data write to LCD Data read from LCD Enable "H" to "L" 5 R/W R/W = "L" R/W = "H" E 6 7 DBO Data Input / Output 8 DB1 Data Input / Output Data Input / Output 9 DB2 10 DB3 Data Input / Output DB4 Data Input / Output 11 12 DB5 Data Input / Output 13 DB6 Data Input / Output 14 D87 Data Input / Output

Interface timing

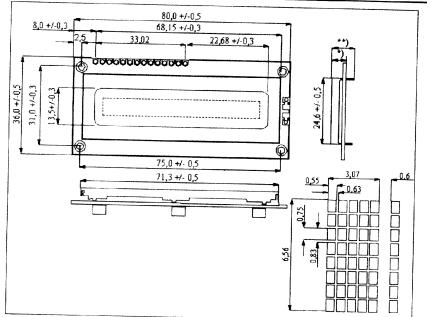
Power supply



#### 构成"有关"和专用或指认为这就能得到自己分析的方法。

| Beschreibung                | Bestellnummer |  |  |  |  |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|--|--|--|--|
| LCD-Modul,yellow,6 o'clock, |               |  |  |  |  |  |  |  |  |
| reflektiv                   | 18 33 69      |  |  |  |  |  |  |  |  |
| LCD-Modul,yellow,6 o'clock  |               |  |  |  |  |  |  |  |  |
| transfelektiv LED Backlight | 18 35 12      |  |  |  |  |  |  |  |  |

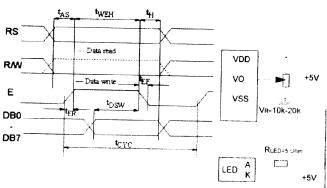
- · ·

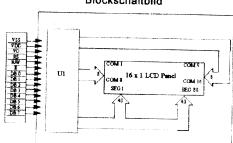



# NLC-16x1x07

# LCD Character

### **Features**


- 16 Zeichen x 1 Zeile
- STN Technologie
- Hoher Kontrast
- Arbeitstemp. 0 ~ 50°C (optional -20 ~ +70°C)
- Zeichenhöhe 6,56 mm
- Controller KS0066
- Backlight LED, ohne
- Gray- und yellow Mode
- 6:00 (standard) , 12:00
- Module Abmessungen /mm 80 x 36 x 9,5 (14,5LED)
- Effektive Displayfläche /mm 63,7 x 13,5




Internal Pin Connection

# Elektrische und optische Spezifikation (Ta=25°C. Vdd=5,0V)

| Beschreibung         | Symbol   | Min.   | Typ.  | Max.      | Einheit | Testbedingung              | Pin             | Symbol | Fundation .                                                 |
|----------------------|----------|--------|-------|-----------|---------|----------------------------|-----------------|--------|-------------------------------------------------------------|
| Power supply Logik   | VDD-VSS  | 4.5    | 5     | 5.5       | v       |                            | F 81            | -      | Funktion                                                    |
| Input Voltage        | VIH      | 0.8VDD |       | VDD       | v       | H-Level                    | 1               | Vss    | 0V Power supply, GND                                        |
| Input Voltage        | VIL      | 0      | • •   | 0.2VDD    | v v     | L-Level                    | 2               | Voo    | Power Supply for Logic +5V                                  |
| Power supply current | IDD      | ·      | · .   | 2.8       | mA      | VDD=5V                     | 3               | Vo     | Power Supply for LC-Driving                                 |
| LED Current          | ILED     | -      | 175   |           | mA      | VLED=5V                    | 4               | RS     | Instruction code input RS = "L"<br>Data input RS = "H"      |
| LC driving Voltage   | VDD-VO   | 3.26   | 4,4   | 4,57      | v       | RLED=50hm                  | 5               | R/W    | Data write to LCD R/W = "L"<br>Data read from LCD R/W = "H" |
| 16                   |          |        |       |           | •       |                            | 6               | Ε      | Enable "H" to "L"                                           |
| Viewing angle        | θ.       | 50     | -     | -         | deg     | Cr ≥2,0                    | 7               | DBC    | Data Input / Output                                         |
| Viewing angle        | φ,       | •      | •     | +/- 40    | deg     | Cr ≥2,0                    | 8               | DB1    | Data Input / Output                                         |
| Contrast ratio       | Cr       | 4      | -     | -         |         | <b>φ=0°</b> , θ <b>=0°</b> | 9               | DB2    | Data Input / Output                                         |
| Response time (rise) | Tr       | •      | 158   | 210       | ms      | φ=0°, θ=0°                 | 10              | DB3    | Data Input / Output                                         |
| Response time (fall) | Tr       |        | 160   | 222       | ms      | φ=0°, θ=0°                 | 11              | DB4    | Data Input / Output                                         |
| Irbeitstemperatur    | Top      | 0      | -     | 50        | °C      | optional -20~70°C          | 12              | DB5    | Data Input / Output                                         |
| agertemperatur       | Tst      |        |       | · · · · · |         |                            | 13              | DB6    | Data Input / Output                                         |
| nable cycle time     |          | -20    |       | 70        | °C      | optional -30~80°C          | 14              | D87    | Data Input / Output                                         |
|                      | tere     | 990    | -     | • .       | ns      |                            |                 |        | 1                                                           |
| nable pulse width    | PWEH     | 450    | · • • | · · .     | ns      |                            |                 |        |                                                             |
| nable rise/fall time | ter, trr |        | -     | 25        | ns      |                            | L               |        | Blockschaltbild                                             |
| S.R/W set up time    | tas      | 140    |       | •         | ns      |                            |                 |        | DIOCKSCHAILDHU                                              |
| ata delay time       | TODR     | -      | -     | 220       | ns      |                            |                 |        |                                                             |
| ata setup time       | tosw     | 180    |       | -         | ns      |                            |                 |        |                                                             |
| loid time            | tн       | 20     | •     | -         | ns      |                            |                 | ±      |                                                             |
| Interf               | ace timi | ng     |       |           | Powe    | r supply                   | VO<br>RS<br>R/W |        | COMI CONTA                                                  |

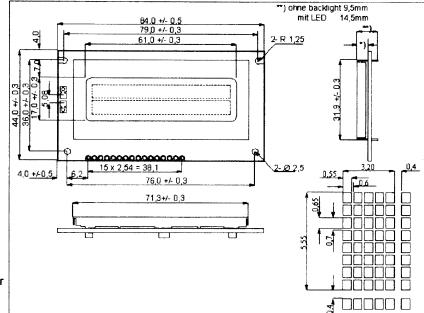




网络希腊城市 法管理工作 法财产法的

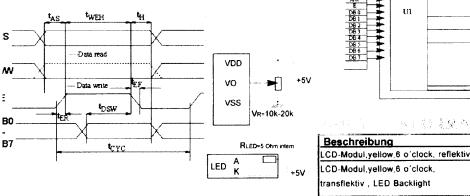
|   | Beschreibung                                          | Bestellnummer     |
|---|-------------------------------------------------------|-------------------|
|   | LCD-Modul,yellow,6:00,reflektiv                       | 18 32 61          |
|   | LCD-Modul,yellow,6:00,<br>transflektiv, LED-Backlight | 1 <b>8 4</b> 0 71 |
| / |                                                       |                   |




# NLC-16x2x06

#### LCD Character

#### eatures

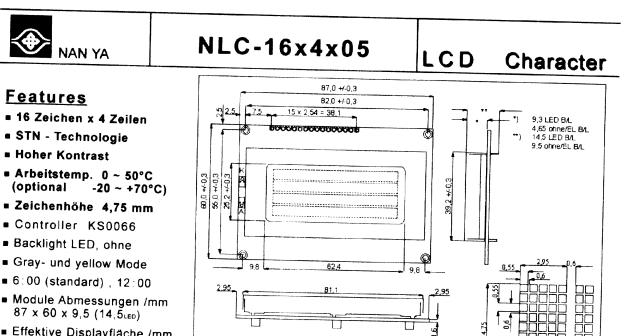

16 Zeichen x 2 Zeilen STN - Technologie **Hoher Kontrast** Arbeitstemp. 0 ~ 50°C optional -20 ~ +70°C) Zeichenhöhe 5,55 mm Controller KS0066 Backlight LED, kein Yellow, grey Mode Blickwinkel 6:00 Uhr Modul-Abmessungen /mm 84 x 44 x 14,5 Effektive Displayfläche /mm 61 x 17

16-Pin Single-in-line Stecker



#### Elektrische und optische Spezifikation (Ta=25°C, Vdd=5,0V)

|                      | Symbol  | Min.      | -    | ·      |         |                              |         |        |                                                             |
|----------------------|---------|-----------|------|--------|---------|------------------------------|---------|--------|-------------------------------------------------------------|
|                      |         |           | Тур. | Max.   | Einheit | Testbedingung                | Pin     | Symbol | Funktion                                                    |
| nput Voltage         | VDD-VSS | 4,5       | 5    | 5,5    | v       |                              | 1       | Vss    | 0V Power supply , GND                                       |
|                      | ViH     | 0,8VDD    | -    | VDD    | v       | H-Level                      | 2       | VDD    | Power Supply for Logic +5V                                  |
| nput Voltage         | VIL     | 0         | -    | 0,2VDD | v       | L-Level                      | 3       | Vo     | Power Supply for LC-Driving                                 |
| Power supply current | DD      |           | -    | 2,0    | mA      | VDD=5V                       | 4       | RS     | Instruction code input RS = "L"<br>Data input RS = "H"      |
| ED Current           | ILED    | -         | 143  |        | mA      | R <sub>LED</sub> = 50hm , 5V | 5       | R/W    | Data write to LCD R/W = "L"<br>Data read from LCD R/W = "H" |
| C driving Voltage    | VDD-VO  | 3,8       | 4,5  | 5,1    | V       |                              | 6       | E      | Enable "H" to "L"                                           |
| /iewing angle        | 0       | 50        | -    | -      | deg     | Cr ≥2,0                      | 7       | DB0    | Data Input / Output                                         |
| /iewing angle        |         |           |      | +/- 40 | deq     | Cr ≥2.0                      | 8       | DB1    | Data Input / Output                                         |
| Contrast ratio       | Cr      | 4         |      | -      |         | <b>φ=0°</b> , θ= <b>0°</b>   | 9       | D82    | Data Input / Output                                         |
| Response time (rise) | Tr      | · · · ·   | 172  | 230    | ms      | φ=0° θ=0°                    | 10      | DB3    | Data Input / Output                                         |
| Response time (fall) | Tr      | · · · · · | 150  | 202    | ms      | ¢=0°, θ=0°                   | 11      | D84    | Data Input / Output                                         |
|                      |         | į         |      |        |         |                              | 12      | DB5    | Data Input / Output                                         |
| rbeitstemperatur     | Тор     | 0         | -    | 50     | °C      | optional -20~70°C            | 13      | DB6    | Data Input / Output                                         |
| agertemperatur       | Tst     | -20       |      | 70     | °C      | optional -30~80°C            | 14      | DB7    | Data Input / Output                                         |
| nable cycle time     | tovo    | 667       | _    |        | ns      |                              | 15      | ALED   | Power supply LED Anode (+)                                  |
| nable pulse width    | Рмен    | 280       | -    | · _    | ns      |                              | 16      | KLED   | Power supply LED Kathode (-)                                |
| nable rise/fall time | TER TRF |           | · .  | 25     | ns      |                              | L       |        | Blockschaltbild                                             |
| S.R/W set up time    | tas     | 140       | _    | · -    | ns      |                              |         |        | Biookoonakana                                               |
| ata delay time       | toor    | -         | -    | 220    | ns      |                              |         |        | ICOM (                                                      |
| ata setup time       | tosw    | 180       | -    | -      | กร      |                              |         |        | — N                                                         |
| lold time            | tu -    | 20        | -    | · ·    | ns      |                              | VSS PDD |        |                                                             |




#### ltbild



 $\sum k_{i}$ 

| Beschreibung                          | Bestellnummer |
|---------------------------------------|---------------|
| LCD-Modul,yellow,6 o'clock, reflektiv | 18 33 42      |
| LCD-Modul,yellow,6 o'clock,           |               |
| transflektiv , LED Backlight          | 18 45 94      |



Effektive Displayfläche /mm 62,4 x 25,2

t<sub>DSW</sub>

tc yc

# Elektrische und optische Spezifikation un

| Beschreibung          | Symbol                                  |                                       |         |        |                     |                   |                                          | Inte  | rnal Pin                               |                                                             |
|-----------------------|-----------------------------------------|---------------------------------------|---------|--------|---------------------|-------------------|------------------------------------------|-------|----------------------------------------|-------------------------------------------------------------|
| Power supply Logik    | -                                       | Min.                                  | Тур.    | Max.   | Einheit             | Testbedingung     |                                          | Pin   | Symbol                                 | Funktion                                                    |
| Input Voltage         | VDD-VSS                                 | 4,5                                   | 5       | 5,5    | V                   |                   | -1                                       | 1     | Vss                                    | OV Power supply, GND                                        |
|                       | VIH                                     | 0,8VDD                                |         | VDD    | V                   | H-Level           |                                          | 2     | Voo                                    | Power Supply for Logic +5V                                  |
| Input Voltage         | VIL                                     | 0                                     |         | 0,2VDD | V                   | L-Level           |                                          | 3     | Vo                                     |                                                             |
| Power supply current  | IDD                                     | -                                     | -       | 2,8    | mΑ                  | VDD=5V            |                                          | 4     | RS                                     | Power Supply for LC-Driving                                 |
| LED Current           | <b>LED</b>                              |                                       | 150     | 220    | mA                  | RLED = 50hm , 5V  |                                          |       | NO                                     | Instruction code input RS = "L"<br>Data input RS = "H"      |
| LC driving Voltage    | VDD-VO                                  | 3,8                                   | 4,7     | 5,1    | v                   |                   |                                          | 5     | R/W                                    | Data write to LCD R/W = 'L'<br>Data read from LCD R/W = 'H' |
| Viewing angle         |                                         |                                       |         |        |                     |                   |                                          | 6     | E                                      | Enable "H" to "L"                                           |
|                       | θ,                                      | 50                                    | -       | •      | deg                 | Cr ≥2,0           |                                          | 7     | DB0                                    | Data Input / Output                                         |
| Viewing angle         | ¢ .                                     | - ;                                   | -       | +/- 40 | deg                 | Cr ≥2,0           |                                          | 8     | DB1                                    | Data Input / Output                                         |
| Contrast ratio        | Cr                                      | 4,3                                   | -       | · • ]  |                     | φ=0°, θ=0°        |                                          | 9     | DB2                                    | Data Input / Output                                         |
| Response time (rise)  | Tr                                      | •                                     | 172     | 500    | ms                  | φ=0°, θ=0°        |                                          | 10    | DB3                                    | Data Input / Output                                         |
| Response time (fall)  | Tr ,                                    | •                                     | 150     | 300    | ms                  | φ=0°, θ=0°        |                                          | 11    | DB4                                    | Data Input / Output                                         |
| vbeitstemperatur      | mperatur Top 0 - 50 °C optional 20~70°C |                                       | 12      | DB5    | Data Input / Output |                   |                                          |       |                                        |                                                             |
| and the second second | · · · · ·                               | · · · · · · · · · · · · · · · · · · · | · · · · | - 50   | °C                  | optional -20~70°C |                                          | 13    | DB6                                    | Data Input / Output                                         |
| agertemperatur        | Tst                                     | -20                                   | -       | 70     | °C                  | optional -30~80°C |                                          | 14    | DB7                                    | Data Input / Output                                         |
| nable cycle time      | tove                                    | 667                                   |         | - '    | ns                  | ,                 |                                          | 15    | LED +                                  | Anode LED B/L                                               |
| nable pulse width     | PWEH                                    | 280                                   | -       |        | ns                  |                   |                                          | 16    | LED -                                  | Katode LED B/L                                              |
| nable rise/fail time  | ter, trr                                |                                       | -       | 25     | ns                  |                   | L                                        |       |                                        |                                                             |
| S.R/W set up time     | tas                                     | 140                                   |         |        | ns                  |                   |                                          |       | B                                      | ockschaltbild                                               |
| ata delay time        | TOOR                                    | •                                     | •       | 220    | ns                  |                   |                                          |       |                                        |                                                             |
| ata setup time        | tosw                                    | 180                                   | - 1     |        | ns                  |                   |                                          |       |                                        |                                                             |
| old time              | tH                                      | 20                                    | - 4     | -      | ns                  |                   |                                          | .   , | ······································ |                                                             |
| Interface             | timing                                  |                                       |         | F      | ower si             | upply             | 755<br>700<br>70<br>80<br>80<br>80<br>80 |       |                                        | <b>485 405</b>                                              |
| t <sub>AS</sub> tw    | /EH                                     | ţн                                    |         |        |                     |                   | NO<br>RS                                 |       |                                        | 16                                                          |
|                       |                                         | <u> </u>                              |         |        |                     |                   |                                          | E     | u1 -                                   | 16 x 4 LCD Panel                                            |
|                       |                                         |                                       |         | -      |                     |                   | DB0<br>DB1<br>DB2<br>DB3                 | E     |                                        | 16                                                          |
| Data                  |                                         | -r`-                                  |         |        |                     |                   | D63                                      |       |                                        | 40 40                                                       |
|                       | 1040                                    |                                       |         |        |                     | ,                 | DB 4<br>DB 5<br>DB 6                     | -     |                                        |                                                             |
| <u> </u>              |                                         | V.                                    |         | VL     |                     | ĸ                 | DB 6<br>DB 7                             |       |                                        |                                                             |
| - Data v              | writeE                                  | F                                     |         | - vo   | )                   | +5V               |                                          |       |                                        | U2                                                          |
| ' /                   |                                         |                                       | _       | -      |                     | L .               |                                          | 1 L   |                                        | ······································                      |

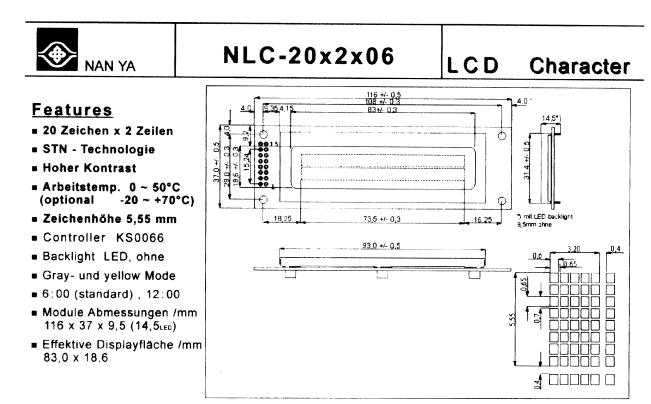
vss

LED A

Vr=10k-20k

RLED=5 Ohm

+5∖


IN CRMA Santa A.

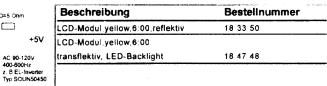
Beschreibung Bestelinummer LCD-Modul, yellow, 6:00, reflektiv 18 33 34 LCD-Modul.yellow,6:00 ,transflektiv, LED-Backlight 18 46 91

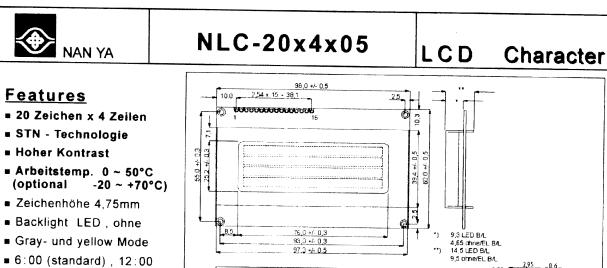
ΠΠ

DB0

DB7



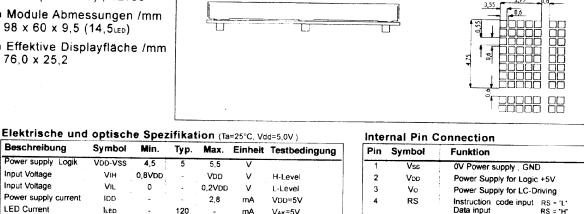

#### Elektrieche und ontieche Spazifikation (T.,


DB7

tere

EL

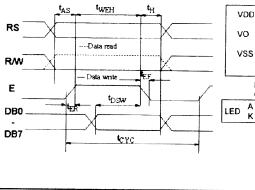
| Beschreibung         | Symbol           | Min.                  | Тур.           | Max.                     | Einheit    | Testbedingun       | 3                                            | Pin                 | Symbol        | Funktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|------------------|-----------------------|----------------|--------------------------|------------|--------------------|----------------------------------------------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power supply Logik   | VDD-VSS          | 4,5                   | 5              | 5,5                      | v          | ****               | -                                            | 1                   | Vss           | 0V Power supply GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nput Voltage         | VIH              | 0.8VDD                | -              | VDD                      | v          | H-Level            |                                              | 2                   | VDD           | Power Supply for Logic +5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nput Voltage         | VIL              | 0                     | -              | 0,2VDD                   | v          | L-Level            |                                              | 3                   | Vo            | Power Supply for LC-Driving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Power supply current | IDD              |                       | · -            | 2,8                      | mA         | VDD=5V             |                                              | 4                   | RS            | Instruction code input RS = 'L'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ED Current           | LED              | -                     | 165            | -                        | mA         | RLED = 50hm , 5    | v                                            |                     |               | Data input RS = "H"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C driving Voltage    | VDD-VO           | 3.8                   | 4,7            | 5.1                      | v          |                    |                                              | 5                   | R/W           | Data write to LCD R/W = "L"<br>Data read from LCD R/W = "H"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| to driving voltage   | VUU-VU           | 3,0                   | . <b>*</b> , / | . <b>D</b> , I           | , v        |                    |                                              | 6                   | E             | Enable "H" to "L"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| /iewing angle        | 0                | 50                    | -              | -                        | deg        | Cr ≥2,0            |                                              | 7                   | DB0           | Data Input / Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| /iewing angle        |                  | -                     | -              | +/- 40                   | deg        | Cr ≥2,0            |                                              | 8                   | D <b>B</b> 1  | Data Input / Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Contrast ratio       | Cr               | 4,3                   |                | · -                      |            | φ=0°, θ=0°         |                                              | 9                   | DB2           | Data Input / Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Response time (rise) | Tr               | -                     | 172            | 230                      | ms         | <b>φ=0°</b> . θ=0° |                                              | 10                  | DB3           | Data Input / Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Response time (fall) | Tr               | -                     | 150            | 202                      | ms         | φ=0°. ()=0°        |                                              | 11                  | DB4           | Data Input / Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                  |                       |                |                          |            |                    |                                              | 12                  | D85           | Data Input / Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| rbeitstemperatur     | Тор              | 0                     | -              | - 50 °C optional -20~70° | C          | 13                 | D <b>B</b> 6                                 | Data Input / Output |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| agertemperatur       | Tst              | -20                   |                | 70                       | °C         | optional -30~80°   | c.                                           | 14                  | DB7           | Data Input / Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nable cycle time     | tovo             | 667                   | -              |                          | ns         |                    |                                              | 15                  |               | Anode LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nable pulse width    | PWEH             | 280                   | -              |                          | ns         |                    |                                              | 16                  |               | Kathode LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nable rise/fall time | ter, trr         | -                     | -              | 25                       | ns         |                    |                                              |                     |               | Blockschaltbild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S R/W set up time    | tas              | 140                   |                |                          | ns         |                    |                                              | 1                   | ·             | (COM )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ata delay time       | toor             | •                     |                | 220                      | ns         |                    |                                              | _                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ata setup time       | tosw             | 180                   | -              | -                        | ns         | *                  | 755                                          | -                   |               | COM 10 20 X 2 LCD Parter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| old time             | tH               | 20                    | -              | -                        | ns         |                    | <u>A0</u><br><u>A0</u><br><u>A22</u>         |                     |               | SEG 1 SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | face tim         | ing<br>t <sub>H</sub> |                |                          | Power      | supply             | RS<br>RAW<br>DB1<br>DB1<br>DB2<br>DB3<br>DB4 |                     | UI            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |                  |                       |                | - \                      | 'DD        | •                  | DB 5<br>DB 6<br>DB 7                         |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Da                   | ta read          |                       |                |                          | <i>'</i> 0 | ► +5V              |                                              |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| v X                  |                  |                       |                |                          | vss        | her                |                                              |                     |               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | a write          | EF                    | /              | -L                       | VR=        | 10k-20k            |                                              | ******              |               | <ul> <li>March 2011 Control of the second secon</li></ul> |
|                      | <sup>t</sup> Dsw | +                     | Y              |                          | RLEC       | D=5 Ohm B          | eschr                                        | eibun               | g             | Bestellnummer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| n HER                |                  |                       |                |                          |            |                    |                                              |                     | w.6:00.reflek | tiv 18 33 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

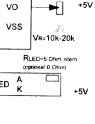





- Module Abmessungen /mm 98 x 60 x 9,5 (14,5LED)
- Effektive Displayfläche /mm 76,0 x 25,2

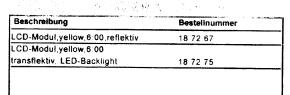
Beschreibung


Power supply Logik




| Input Voltage         | Vін          | 0,8VDD | -     | VDD    | v   | H-Level             |
|-----------------------|--------------|--------|-------|--------|-----|---------------------|
| Input Voltage         | VIL          | 0      | -     | 0,2VDD | v   | L-Level             |
| Power supply current  | IDD          | -      | -     | 2,8    | mA  | VDD=5V              |
| LED Current           | ILED         | -      | 120   | · -    | mA  | VAK=5V              |
|                       |              |        |       |        |     | RLED 5 Ohm (intern) |
| LC driving Voltage    | VDD-VO       | 4,3    | 4,45. | 4,6    | v   | -                   |
| Viewing angle         | θ            | 50     | -     | -      | deg | Cr ≥2.0             |
| Viewing angle         | φ            |        | -     | +/- 40 | deg | Cr ≥2,0             |
| Contrast ratio        | Cr           | 4      | -     |        | -   | φ=0°, ()=0°         |
| Response time (rise)  | Tr           |        | 150   | 258    | ms  | φ=0°, θ=0°          |
| Response time (fall)  | Tr           | -      | 233   | 440    | ms  | φ=0°. θ=0°          |
| Arbeitstemperatur     | Тор          | 0      | •     | 50     | °C  | optional -20~70°C   |
| Lagertemperatur       | Tst          | -20    |       | 70     | °C  | optional -30~80°C   |
| Enable cycle time     | tave         | 667    | -     | -      | ns  |                     |
| Enable pulse width    | PWEH         | 280    | - '   |        | ns  |                     |
| Enable rise/fall time | ter, trr     | - `    |       | 25     | ns  |                     |
| RS.R/W set up time    | tas          | 140    | -     |        | ns  |                     |
| Data delay time       | <b>t</b> DDR | _ :    | · _ · | 220    | ns  |                     |
| Data setup time       | tosw         | 180    |       | -      | ns  |                     |
| Hold time             | tн           | 20     |       | -      | ns  | •                   |

| 5       | R/W         | Data write to LCD R/W = 'L*<br>Data read from LCD R/W = 'H*     |     |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------|-----|--|--|--|--|--|
| 6       | E           | Enable "H" to "L"                                               |     |  |  |  |  |  |
| 7       | DBO         | Data Input / Output                                             |     |  |  |  |  |  |
| 8       | DB1         | Data Input / Output                                             |     |  |  |  |  |  |
| 9       | DB2         | Data Input / Output                                             |     |  |  |  |  |  |
| 10      | DB3         | Data Input / Output                                             |     |  |  |  |  |  |
| 11      | D <b>B4</b> | Data Input / Output                                             |     |  |  |  |  |  |
| 12      | DB5         | Data Input / Output                                             |     |  |  |  |  |  |
| 13      | DB6         | Data Input / Output                                             |     |  |  |  |  |  |
| 14      | DB7         | Data Input / Output                                             |     |  |  |  |  |  |
| 15      | ALED        | Power supply LED Anode (+)                                      |     |  |  |  |  |  |
| 16      | KLED        | Power supply LED Kathode (-)                                    |     |  |  |  |  |  |
|         |             | Blockschaltbild                                                 |     |  |  |  |  |  |
| ******* | и<br>и      | U2<br>40<br>40<br>20<br>x 4 LCD Panel<br>16<br>20 x 4 LCD Panel |     |  |  |  |  |  |
|         |             | 40 40 20                                                        | i I |  |  |  |  |  |


Interface timing





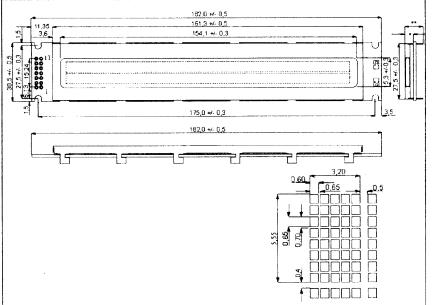
Power supply

+5\



**U4** 

U5




# NLC-40x2x06

# LCD Character

#### **Features**

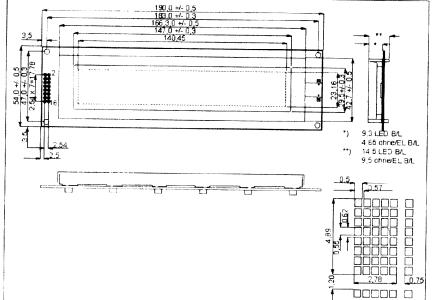
- 40 Zeichen x 2 Zeilen
- STN Technologie
- Hoher Kontrast
- Arbeitstemp. 0 ~ 50°C (optional -20 ~ +70°C)
- Zeichenhöhe 5,55 mm
- Controller KS0066
- Backlight LED, ohne
- Gray- und yellow Mode
- 6:00 (standard) , 12:00
- Module Abmessungen /mm 182 x 30,5 x 9,5 (14,5LED)
- Effektive Displayfläche /mm 154,1 x 15,3



**Internal Pin Connection** 

#### Elektrische und optische Spezifikation (Ta=25°C, Vdd=5.0V)

#### Einheit Testbedingung Beschreibung Symbol Min. Typ. Max. Pin Symbol Funktion Power supply Logik VDD-VSS 4.5 5 5,5 Vss OV Power supply, GND Power Supply for Logic +5V VDD v H-Level Input Voltage ИΗ 0.8VDD 2 Voo v I-Level Power Supply for LC-Driving input Voitage VIL 0 0.2VDD 3 Vo Instruction code input Data input RS = "L" RS = "H" IDD 2,8 mA V00=5V RS Power supply current 4 LED Current 190 mA $R_{LED} = 50hm$ , 5V LED Data write to LCD Data read from LCD R/W = 'L' R/W = 'H' 5 R/W LC driving Voltage 5.1 ٧ VDD-VO 3.8 4.7 Enable "H" to "L" 6 Ε DB0 Data Input / Output 7 Cr ≥2.0 Viewing angle θ 50 deg DB1 Data Input / Output 8 +/- 40 Cr ≥2,0 Viewing angle deg ф Data Input / Output DB2 φ=0°, θ=0° 9 4,3 Contrast ratio Cr φ=0°. θ=0° 10 DB3 Data Input / Output 172 230 Response time (rise) Tr ms DB4 Data Input / Output φ=0°, θ=0° 11 Response time (fall) Tr . 150 202 ms Data Input / Output 12 DB5 °C Arbeitstemperatur 0 50 optional -20~70°C Тор DB6 Data Input / Output 13 Data Input / Output 14 DB7 70 °C optional -30~80°C Lagertemperatur Tst -20 Blockschaltbild Enable cycle time 667 toyo ns Enable pulse width PWEH 280 ns Enable rise/fall time ter, tre 25 ns 40 x 2 LCD Punel RS.R/W set up time 140 ns tas COM 16 VDD VDD RS RW Data delay time 220 ns \*\*\*\*\*\*\*\* SEG 1 SEG 200 TODR 40 俞 Â 180 ns Data setup time tosw añ **1**10 Hold time 20 ns DB0 DB1 DB2 DB3 DB4 DB3 DB4 DB5 DB6 tн Ul U3 U4 U5 U2 Interface timing Power supply t<sub>WEH</sub> ţн RS VDD ---Data read +5V vo 3 RW VSS - Q1 - D - Data write VR=10K-20k ε Bestellnummer Beschreibung t<sub>DSW</sub> RLED=5 Ohm LCD-Modul, yellow, 6:00, reflektiv 18 72 83 DB0 A K LED LCD-Modul, yellow, 6:00 +5V 18 72 91 transflektiv, LED-Backlight DB7 teye AC 90-120V 400-600Hz z B EL-Inverter Typ SOUN50450 EL




# NLC-40x4x05

#### LCD Character

## **Features**

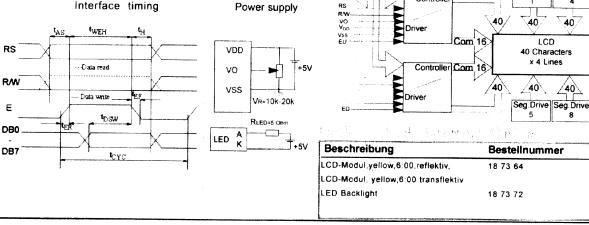
- 40 Zeichen x 4 Zeilen
- STN Technologie
- Hoher Kontrast
- Arbeitstemp. 0 ~ 50°C (optional -20 ~ +70°C)
- Zeichenhöhe 4,89 mm
- Controller HD44780
- Backlight LED, ohne
- Gray- und yellow Mode
- 6:00 (standard) , 12:00
- Module Abmessungen /mm 190,0 x 54,0 x 9,5 (14,5LED)
- Effektive Displayfläche /mm 147,0 x 29,5



Internal Pin Connection

Controlle

4


Л

RS

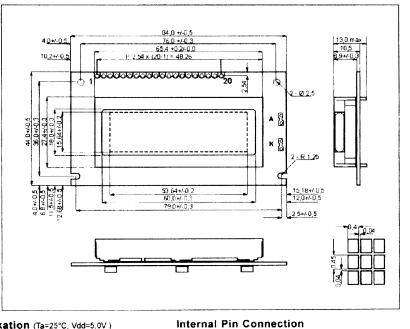
### Elektrische und optische Spezifikation (Ta=25°C. Vdd=5.0V)

| Beschreibung          | Symbol  | Min.   | Тур. | Max.               | Einheit  | Testbedingung     | Pin      | Symbol     | Funktion                                   |  |  |
|-----------------------|---------|--------|------|--------------------|----------|-------------------|----------|------------|--------------------------------------------|--|--|
| Power supply Logik    | VDD-VSS | 4,5    | 5    | 5.5                | V        |                   |          | DB7        | Data Input / Output                        |  |  |
| Input Voltage         | VIH     | 0,8VDD | -    | VDD                | V        | H-Level           | 2        | DB6        | Data Input / Output                        |  |  |
| Input Voltage         | VIL     | 0      | -    | 0,2VDD             | v        | L-Level           | 3        | DB5        | Data Input / Output                        |  |  |
| Power supply current  | מסו     | •      | -    | 2,8                | mA       | VDD=5V            | 4        | DB3<br>DB4 |                                            |  |  |
| LED Current           | ILED    | -      | 190  |                    | mA       | RLED = 50hm , 5V  | 5        | DB4<br>DB3 | Data Input / Output<br>Data Input / Output |  |  |
|                       |         |        |      |                    |          |                   | 6        | DB2        | Data Input / Output                        |  |  |
| LC driving Voltage    | VDD-VO  | 3,8    | 4,7  | 5,1                | v        | ~                 | 7        | DB1        | Data Input / Output                        |  |  |
| Viewing angle         | θ       | 50     |      |                    |          | 0                 | 8        | DBO        | Data Input / Output                        |  |  |
| Viewing angle         | é       | 50     | -    | +/- 40             | deg      | Cr 2.0            | 9        | EU         | Enable Signal (Upper Panel)                |  |  |
| Contrast ratio        | Cr      | 4.3    | -    | <del>+</del> /- 40 | deg      | Cr ⊴2,0           | 10       | R/W        | H: Read / L: Write                         |  |  |
| Response time (rise)  | Tr      | -      | 170  | 300                |          | φ=0° ()=0°        | 11       | RS         | H: Data / L: Instruction                   |  |  |
| Response time (fall)  | Tf      | -      | 220  | 300<br>420         | ms       | ¢=0°. H=0°        | 12       | 5Vo        | Power Supply for LC-Driving                |  |  |
| (dil)                 | • 1     | -      | 220  | 420                | ms       | φ=0°, υ=0°        | 13       | Vss        | 0V Power supply , GND                      |  |  |
| Arbeitstemperatur     | Тор     | 0      | · -  | 50                 | °C       | optional -20~70°C | 14       | VDD        | Power Supply for Logic +5V                 |  |  |
| Lagertemperatur       | Tst     | -20    |      | 70                 | 10       |                   | 15       | ED         | Enable Signal (Down Panel)                 |  |  |
| Enable cycle time     | tore    | 1.0    | -    | 70                 | °C       | optional -30~80°C | 16       | NC         | Not Connected                              |  |  |
| Enable pulse width    | Рмен    | 450    |      | -                  | μs       |                   | L        |            |                                            |  |  |
| Enable rise/fail time | ter.trr | 400    |      | 25                 | ns       |                   |          |            |                                            |  |  |
| RS R/W set up time    | tas     | 140    |      | 20                 | ns       |                   |          |            |                                            |  |  |
| Data delay time       | tope    |        |      | 220                | ns<br>ns |                   |          |            | Blockschaltbild                            |  |  |
| Data setup time       | tosw    | 195    |      | 220                | ns       |                   | DB7 ~ DE | 30         |                                            |  |  |
| Hold time             | tн      | 20     | -    | -                  | ns       |                   | 1        |            | Seg Drive Seg Drive                        |  |  |

Interface timing



10




# NLC-122B032

#### LCD Grafik

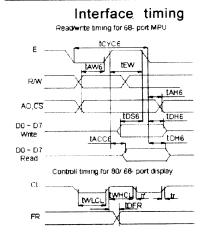
# **Features**

- 122x32 Pixel
- Controller SED1520DAA
- STN Technologie
- Hoher Kontrast
- Arbeitstemp. 0 ~ 50°C (optional -20°C ~ 70°C)
- 0,40x0,45mm Dotgröße
- 0,04x0,04mm Dotspace
- Backlight LED ohne
- vellow / grey Mode
- 6:00 (standard)
- Module Abmessungen /mm 84 x 44 x 13,0
- Effektive Displayfläche /mm 60,0 x 18,0



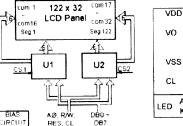
#### Elektrische und optische Spezifikation (Ta=25°C, Vdd=5,0V)

| Beschreibung             | Symbol       | Min.   | Тур. | Max.   | Einheit | Testbedingung     | Pin  | Symbol  | Funktion                         |
|--------------------------|--------------|--------|------|--------|---------|-------------------|------|---------|----------------------------------|
| Power supply Logic       | VDD-VSS      | 4,7    | 5    | 6,5    | V       |                   | 1    | Vss     | OV Power supply . GND            |
| Input Voltage            | VIH          | 0,7VDD | -    | VDD    | V       | H-Level           | 2    | VDD     | Power Supply for Logic +5V       |
| Input Voltage            | VIL          | 0      |      | 0,2VDD | v       | L-Level           | 3    | VEE     | Power supply for LCD-Driving     |
| Power supply current     | loo          | -      | -    | 2.8    | mA      | VDD=5V            | 4    | AØ      | "L" >>Instruction                |
| LED supply current       | ILED         | -      | -    | 2,8    | mA      | VLED=5V RLED=50   |      |         | "H" >> Data                      |
| LC driving Voltage       | VDD-VEE      | 4.4    | 4,9  | 5,3    | V       | -                 | 5    | CS2     | Chip Enable active "L"           |
|                          |              |        |      | 4      |         |                   | 6    | CS1     | Chip Enable active "L"           |
| Viewing angle            | θ            | 40     | 70   | -      | deg     | Cr ≥2,0           | 7    | CL      | External Clock (2kHz)            |
| Viewing angle            | ¢            | 25     | 30   | -      | deg.    | Cr ≥2,0           | 8    | RD (E)  | RD for 80 Series, E for 68 Serie |
| Contrast ratio           | Cr           | 4,5    | 9    | •      |         | φ=0°, θ=0°        | 9    | WR(R/W) | WR for 80 Series                 |
| Response time (nse)      | Tr           | -      | 220  | 450    | ms      | φ=0°, θ=0°        |      |         | R / W for 68 Series              |
| Response time (fall)     | ٦T           | -      | 175  | 350    | ms      | \$=0°, θ=0°       | 10   | DB0     | Data Input / Output              |
|                          |              |        |      |        |         |                   | 11   | DB1     | Data Input / Output              |
| Arbeitstemperatur        | Тор          | 0      | •    | 50     | °C      | optional -20~70°C | 12   | DB2     | Data Input / Output              |
| Lagertemperatur          | Tst          | -20    | -    | 70     | °C      | optional -30~80°C | 13   | DB3     | Data Input / Output              |
|                          |              |        |      |        |         |                   | - 14 | DB4     | Data Input / Output              |
| Low pulse width          | twici        | 35     | •    | •      | μs      |                   | 15   | DB5     | Data Input / Output              |
| High pulse width         | TWHCL        | 35     | •    | . •    | μs      |                   | 16   | DB6     | Data Input / Output              |
| Rising time              | tr           | · · ·  | 30   | 150    | ns      |                   | 17   | DB7     | Data Input / Output              |
| Falling time             | tr           | -      | 30   | 150    | ns      |                   | 18   | RES     | L>>80 Series, H>>68 Series       |
| FR delay time nout       | <b>t</b> DFR | -2,0   | 0.2  | 2,0    | μs      |                   | 19   | ALED    | Power supply backlight           |
| FR delay time output CL= | 100pF LDFR   | -      | 0,2  | 0,4    | μs      |                   | 20   | KLED    | Power supply backlight           |

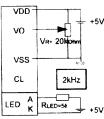

IAØ

20.52 30.51

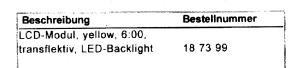
HCL SEDIE SW/P ZVSS SDB0


· 5087

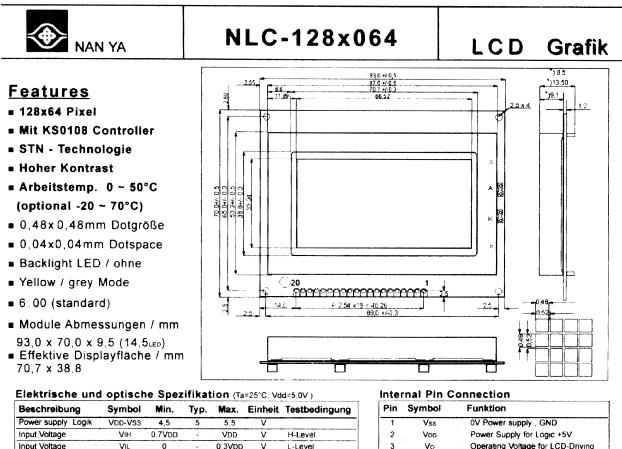
308/ 16000 17RES 18VEE 19A 20 K




#### Block Diagram

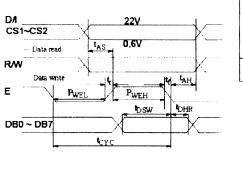

RES, CL

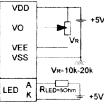



087

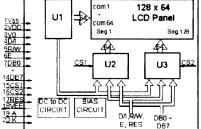


Spannungsversorgung





3.848




|                       | -,           |        | .,    |        |        |                   |
|-----------------------|--------------|--------|-------|--------|--------|-------------------|
| Power supply Logik    | VDD-VSS      | 4,5    | 5     | 5,5    | v      |                   |
| Input Voltage         | VIH          | 0.7VDD | •     | VDD    | V      | H-Level           |
| Input Voltage         | VIL          | 0      | -     | 0,3VDD | V      | L-Level           |
| Power Consumtion      | loo          | -      | -     | 15.0   | mA     | VDD=5V            |
| LED supply current    | LED          |        | 160,0 |        | mA     | VLED=5V, RLED=56  |
| LC driving Voltage    | VDD-VEE      | 12,37  | 12.89 | 13,41  | V      | -                 |
| Viewing angle         | θ            | 50     | -     | -      | deg    | Cr ≥2,0           |
| Viewing angle         | ф            | -      | -     | -      | +/- 50 | Cr ≥2,0           |
| Contrast ratio        | Cr           | 4      | -     |        |        | φ=0°, θ=0°        |
| Response time (rise)  | Tr           | -      | 197   | 318    | ms     | φ=0°, θ=0°        |
| Response time (fall)  | Tr           | -      | 109   | 191    | ms     | φ=0°, θ=0°        |
| Arbeitstemperatur     | Тор          | 0      |       | 50     | °C     | optional -20~70°C |
| Lagertemperatur       | Tst          | -20    | -     | 70     | °C     | optional -30~80°C |
| Enable cycle time     | toyo         | 1000   | -     | -      | ns     |                   |
| Enable pulse width    | Pweh/wel     | 450    | -     | -      | ns     |                   |
| Enable rise/fall time | ter.trf      | •      | -     | 25     | ns     |                   |
| Address set up time   | tas          | 140    | -     | -      | ns     |                   |
| Address hold time     | tas          | 10     | -     | -      | ns     |                   |
| Data delay time       | toor         |        | -     | 320    | ns     |                   |
| Data setup time       | tosw         | 200    | -     | -      | ns     |                   |
| Data hold time (WR)   | tonw         | 10     |       | -      | ns     |                   |
| Data hold time (RD)   | <b>t</b> DHR | 20     | -     | -      | ns     |                   |

Interface timing





| 2  | Vop         | Power Supply for Logic +5V                                  |
|----|-------------|-------------------------------------------------------------|
| 3  | Vo          | Operating Voltage for LCD-Driving                           |
| 4  | D/I         | Instruction code input D/I = "L"<br>Data input D/I = "H"    |
| 5  | R/W         | Data write to LCD R/W = "L"<br>Data read from LCD R/W = "H" |
| 6  | E           | Enable "H" to "L"                                           |
| 7  | DB0         | Data Input / Output                                         |
| 8  | DB1         | Data Input / Output                                         |
| 9  | DB2         | Data Input / Output                                         |
| 10 | DB3         | Data Input / Output                                         |
| 11 | D <b>B4</b> | Data Input / Output                                         |
| 12 | DB5         | Data Input / Output                                         |
| 13 | DB6         | Data Input / Output                                         |
| 14 | DB7         | Data Input / Output                                         |
| 15 | CS1         | Chip select for IC1                                         |
| 16 | CS2         | Chip select for IC2                                         |
| 17 | RES         | Reset ="L"                                                  |
| 18 | VEE         | Power supply output for LCD-Driving                         |
| 19 | VB/L(-/~)   | Power supply backlight LED K / EL                           |
| 20 | VB/L(+/~)   | Power supply backlight LED A / EL                           |
|    |             | []                                                          |



\$P\$11 医二倍尿碱医白酸医白酸

| Beschreibung                | Bestellnummer |
|-----------------------------|---------------|
| LCD-Modul, yellow, 6:00,    |               |
| transflektiv, LED-Backlight | 18 74 29      |



Features

= 240x64 Pixel

Hoher Kontrast

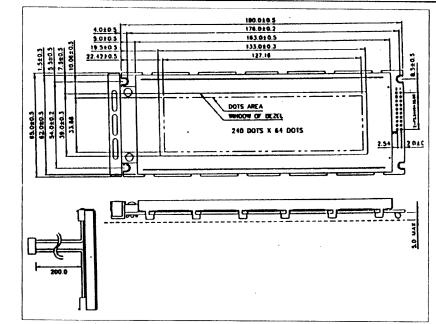
Backlight CFL

133,0 x 39,0

40 Zeichen x 8 Zeilen Mit T6963C Controller F-STN - Technologie

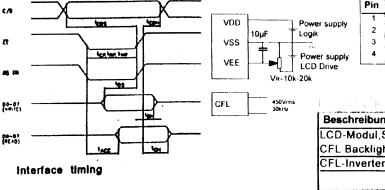
= Arbeitstemp. 0 ~ 50°C

0,49x0,49mm Dotgröße
 0,04x0,04mm Dotspace


Schwarz/weiß, Blue Mode

 6:00 (standard) , 12:00
 Module Abmessungen 190,0 x 65,0 x13,8

Effektive Displayfläche


# NLC-240P064-B

# LCD Grafik



#### Elektrische und optische Spezifikation (Ta=25°C, Vdd=5,0V)

| Beschreibung                 | Symbol       | Min.   | Typ. | Max.   | Einheit | Testbedingung                          |
|------------------------------|--------------|--------|------|--------|---------|----------------------------------------|
| Power supply Logik           | VDD-VSS      | 4,5    | 5    | 5,5    | v       | ······································ |
| Input Voltage                | VIH          | 0,7VDD | +    | VDD    | v       | H-Level                                |
| Input Voltage                | VIL          | 0      | +    | 0,3VD0 | v       | L-Level                                |
| Supply current Logik         | ldd          | -      | •    | 20,0   | mA      | VDD=5V.VEE=-10V                        |
| CFL Starting Voltage         | VFLS         | -      | -    | 900    | Vrms    |                                        |
| CFL Driving Voltage          | VFLD         | -      |      | 450    | Vrms    |                                        |
| CFL Driving Current          | IFLD         | -      | 5    | -      | mArms   | VFLD=450Vrms<br>fFL=30kHz              |
| <b>CFL Driving Frequency</b> | fFL          | 15     | 30   | 50     | kHz     |                                        |
| LC driving Voltage           | VDD-VEE      | -      | 12,1 | -      | ۷       |                                        |
| Viewing angle                | Ð            | 50     | -    | -      | deg     | Cr ::2,0                               |
| Viewing angle                | •            | -      | -    | -      | +/- 40  | Cr 22,0                                |
| Response time (rise)         | Tr           | -      | 155  | 300    | ms      | \$=0°, ()=0°                           |
| Response time (fail)         | Tr           | -      | 200  | 400    | ms      | ¢=0°, ()=0°                            |
| Arbeitstemperatur            | Тор          | 0      | -    | 50     | ۰C      | ** *                                   |
| Lagertemperatur              | Tst          | -20    | •    | 70     | °C      |                                        |
| C/D Set up time              | tcos         | 100    | -    | -      | ns      |                                        |
| C/D Hold Time                | tcoн         | 10     | -    | -      | ns      |                                        |
| CE, RD, WR clock width       | tcp.trp.twp  | 80     | -    | -      | ns      |                                        |
| Data set up time             | tos          | 80     |      | -      | ns      |                                        |
| Data hold time               | ton:         | 40     | •    | •      | ns      |                                        |
| Access time                  | <b>L</b> ACC |        | •    | 150    | ns      |                                        |
| Data output hold time        | tон          | 10     |      | 50     | ns      |                                        |

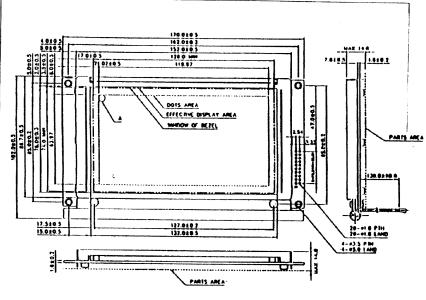


| Pin | Symbol | Funktion                                                                                                            |  |  |  |  |  |
|-----|--------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1   | FGND   | Frame ground (0V)                                                                                                   |  |  |  |  |  |
| 2   | Vss    | 0V Power supply GND                                                                                                 |  |  |  |  |  |
| 3   | VDO    | Power Supply for Logic +5V                                                                                          |  |  |  |  |  |
| 4   | VEE    | Power Supply for LC-Driving                                                                                         |  |  |  |  |  |
| 5   | WR     | Data Write                                                                                                          |  |  |  |  |  |
| 6   | RD     | Data Read                                                                                                           |  |  |  |  |  |
| 7   | CE     | Chip Enable                                                                                                         |  |  |  |  |  |
| 8   | C/D    | Command Write WR="L" C/D="H<br>Status Read RD = 'L" C/D="H<br>Data Write WR="L" C/D="L<br>Data Read RD = 'L" C/D="L |  |  |  |  |  |
| 9   | NC     | No Connection                                                                                                       |  |  |  |  |  |
| 10  | RESET  | Controller Reset                                                                                                    |  |  |  |  |  |
| 11  | D0     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 12  | D1     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 13  | D2     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 14  | D3     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 15  | D4     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 16  | D5     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 17  | D6     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 18  | D7     | Data Input / Output                                                                                                 |  |  |  |  |  |
| 19  | FS     | Font Select FS=VDD 6x8 Pixel/Characte<br>FS=GND 8x8 Pixel/Characte                                                  |  |  |  |  |  |
| 20  | NC     | No Connection                                                                                                       |  |  |  |  |  |

| CFL | Connector | (JAE-Stecker Typ IL-G-4S-S3C2) |
|-----|-----------|--------------------------------|
|     | Symbol    | Funktion                       |
| 1   | VFL       | Power supply CFL               |
| 2   | NC        | No connection                  |
| 3   | NG        | No connection                  |
| 4   | VFL       | Power supply CFL               |
|     |           |                                |

Beschreibung Bestellnummér

| Modul,Schwarz/weiß<br>Backlight | 18 85 81     |
|---------------------------------|--------------|
| Inverter 12V CXA-L              | 10L 18 35 71 |

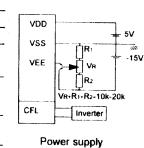



# NLC-240x128

# LCD Grafik



- FSTN Technologie
- Hoher Kontrast
- CFL Backlight
- Helligkeit min 80 cd/m<sup>2</sup>
- 0,47x0,47mm Dotgröße
- 0,03x0,03mm Dotspace
- schwaz/weiß, blue -Mode
- 6:00 (standard) , 12:00
- Module Abmessungen 170 x 102 x 14,5
- Effektive Displayfläche 132 x 76




#### Elektrische und optische Spezifikation (Ta=25°C, Vdd=5,0V)

| Beschreibung           | Symbol        | Min.   | Typ. | Max.   | Einheit | Testbedingung   |
|------------------------|---------------|--------|------|--------|---------|-----------------|
| Power supply Logik     | VDD-VSS       | 4,5    | 5    | 5,5    | v       |                 |
| Input Voltage          | VIH           | 0,7VDD | •    | VDD    | v       | H-Level         |
| Input Voltage          | VIL           | 0      | -    | 0,3VDD | v       | L-Level         |
| Power Consumtion       | Pd            |        | -    | 300.0  | mW      | VDD=5V,VEE=-10V |
| Supply current LCD     | ILCD          | •      | •    | 3.5    | mA      | VDD=5V,VEE=-10V |
| LC driving Voltage     | VDD-VEE       | 17,05  | 17,8 | 18.55  | v       | -               |
| Viewing angle          | 0             | 50     |      | -      | deg     | Cr 22.0         |
| Viewing angle          | \$            | -      | -    | -      | +/- 40  | Cr 22.0         |
| Contrast ratio         | Cr            |        | 25   | ·      |         | \$=0° 0=0°      |
| Response time (rise)   | Tr            | -      | 200  | 400    | ms      | φ=0°, ()=0°     |
| Response time (fail)   | Tr            | •      | 150  | 350    | ms      | φ=0°, θ=0°      |
| Arbeitstemperatur      | Тор           | 0      | •    | 50     | °C      |                 |
| Lagertemperatur        | Tst           | -20    | -    | 70     | °C      |                 |
| C/D Set up time        | tcos          | 100    | -    | -      | ns      |                 |
| C/D Hold Time          | tcpH          | 10     |      | -      | ns      |                 |
| CE, RD, WR clock width | ICP, IRP, IWP | 80     | -    | -      | กร      |                 |
| Data set up time       | tos           | 80     | -    | -      | ns      |                 |
| Data hold time         | ťон           | 40     |      |        | ns      |                 |
| Access time            | tacc          | -      | -    | 150    | ns      |                 |
| Data output hold time  | toн           | 10     | -    | 50     | ns      |                 |

100

100



#### Internal Pin Connection

| Pin | Symbol    | Funktion                                                                                                                                                                                                   |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | FGND      | Frame ground (0V)                                                                                                                                                                                          |
| 2   | Vss       | 0V Power supply , GND                                                                                                                                                                                      |
| 3   | VDD       | Power Supply for Logic +5V                                                                                                                                                                                 |
| 4   | VEE       | Power Supply for LC-Driving                                                                                                                                                                                |
| 5   | WR        | Data Write                                                                                                                                                                                                 |
| 6   | RD        | Data Read                                                                                                                                                                                                  |
| 7   | CE        | Chip Enable                                                                                                                                                                                                |
| 8   | C/D       | Command Write         WR='L'         C/D='H'           Status Read         RD ='L'         C/D='H'           Data White         WR='L'         C/D='L'           Data Read         RD ='L'         C/D='L' |
| 9   | NC        | No Connection                                                                                                                                                                                              |
| 10  | RESET     | Controller Reset                                                                                                                                                                                           |
| 11  | D0        | Data Input / Output                                                                                                                                                                                        |
| 12  | D1        | Data Input / Output                                                                                                                                                                                        |
| 13  | D2        | Data Input / Output                                                                                                                                                                                        |
| 14  | D3        | Data Input / Output                                                                                                                                                                                        |
| 15  | D4        | Data Input / Output                                                                                                                                                                                        |
| 16  | D5        | Data Input / Output                                                                                                                                                                                        |
| 17  | D6        | Data Input / Output                                                                                                                                                                                        |
| 18  | D7        | Data Input / Output                                                                                                                                                                                        |
| 19  | FS        | Font Select FS=VDD 6x8 Pixel/Character<br>FS=GND 8x8 Pixel/Character                                                                                                                                       |
| 20  | RV        | Reverse                                                                                                                                                                                                    |
| CFL | Connector | (JAE-Stecker Typ IL-G-5S-S3C2)                                                                                                                                                                             |
| Pin | Symbol    | Funktion                                                                                                                                                                                                   |
| 1   | VFL       | Power supply for CFL                                                                                                                                                                                       |
| 2   | NC        | No connection                                                                                                                                                                                              |
| 3   | NC        | No connection                                                                                                                                                                                              |
| 4   | NC        | No connection                                                                                                                                                                                              |
| 5   | VFL       | Power supply for CFL                                                                                                                                                                                       |

#### 

| Beschreibung              | Bestellnummer |
|---------------------------|---------------|
| LCD-Modul,schwarz/weiß,   |               |
| CFL Backlight             | 18 74 45      |
| CFL-Inverter 12V CXA-L10L | 18 35 71      |

Interface timing

1005

-----

105

¢/0

(t

86

-----

00-87 (MEAD)

# CFL-INVERT CXA-L10L



# **Elektrische Werte**

| Eingangspannung | Ausgangsleerlauf-<br>spannung<br>AC Vrms typ. | Ausgangsspannung<br>AC Vrms max | Ausgangsstrom<br>mA rms | Frequenz<br>kHz |
|-----------------|-----------------------------------------------|---------------------------------|-------------------------|-----------------|
| 12V +-10%       | 900V                                          | 450V                            | 5x2                     | 30              |

# Pinbelegung

| Pin | Funktion   |
|-----|------------|
| 1   | + Vin      |
| 2   | - Vin      |
| 3   | AC Vout1   |
| 4   | AC Vout2   |
| 5   | Common out |

# Allgemeine Spezifikation

| Arbeitstemperatur | -10~+60°C   |
|-------------------|-------------|
| Lagertemperatur   | -20 ~ +85°C |

## Bestellinformation

| Тур      | Best-Nr  |
|----------|----------|
| CXA-L10L | 18 35 71 |

# Dokumentation HD44780/KS0066 Ansteuerung

HD44780/KS0066Eigenschaften

- 4-bit oder 8-bit MPU-Interface
- Integriertes Display RAM für 80 Zeichen
- Zeichengenerator ROM 5x 7: 160 Zeichen 5x10: 32 Zeichen
- Display Daten und Zeichengenerator RAM können von der MPU gelesen werden
- Umfangreicher Befehls Satz Display löschen, Cursor home, Display ON/OFF, Cursor ON/OFF, Zeichen Blinkfunktion, Cursor shift, Anzeigen shift
- Interner Power On Reset (POR)

Der HD44780-Controller unterstützt damit die folgenden Displays:

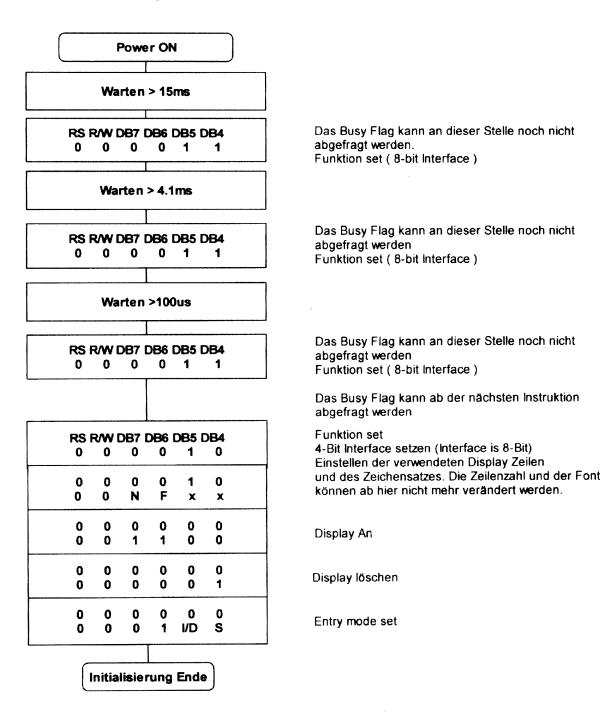
- 1 Zeile x 16 Zeichen
- 2 Zeilen x 16 Zeichen
- 2 Zeilen x 20 Zeichen
- 2 Zeilen x 40 Zeichen
- 4 Zeilen x 20 Zeichen

Der HD44780 verfügt über einen 8-bit-DatenBus sowie über die Steuersignale R/W, RS und E. Es ist sowohl eine 8-bit als auch ein 4-bit Betrieb des Controllers möglich, welche Datenbusbreite verwendet werden soll kann nur bei der Initialisierung festgelegt werden. Bei Verwendung des 4-bit Betriebs müssen die im folgenden beschriebenen Kommandos in zwei aufeinander folgenden Schritten an den HS44780 gesendet werden. Zuerst der High Nibble dann der LOW Nibble die Nibble werden über die Datenleitungen DB7-DB4 übertragen DB3-DB0 werden dann nicht beachtet.

Mit dem Signal RS wird dem Display mitgeteilt, ob Anweisungen, Instruktionscodes (RS=0) oder Daten (RS=1) übertragen werden. Bei der fallende Flanke des Enable Signals (E) übernimmt der Controller die Daten.

#### Hardware Initialisierung

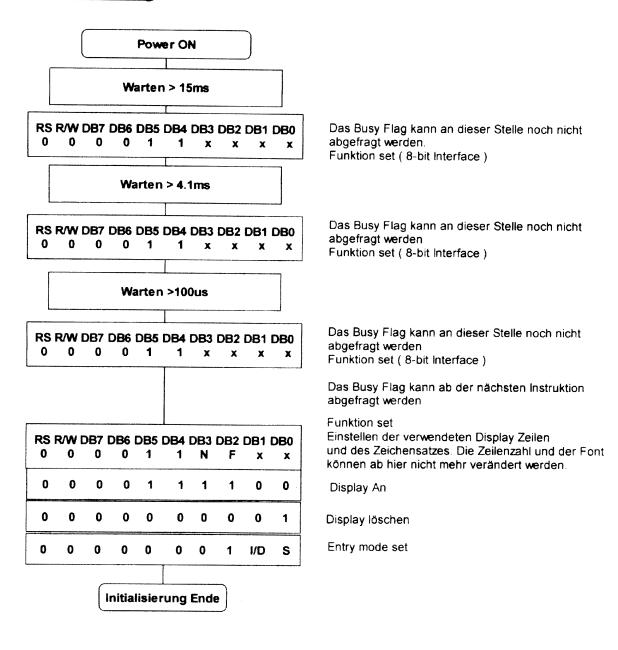
Nach dem Anlegen der Versorgungsspannung an das Display, sollte der Mikrokontroller ca. 15ms warten, bevor er mit der Software Initialisierung des HD44780 beginnt.


Während der Power On Phase der Initialisierung werden die folgenden Schritte durchgeführt:

- 1. Display löschen
- 2. Funktion DL = 1 : 8-bit Datenbusbreite
  - N = 0 : 1-Zeilen Display
  - F = 0: 5x7 Zeichensatz
- 3. Display ON/OFF
  - Function D = 0: Display aus
    - C = 0 : Cursor aus
    - **B** = 0 : Blinkfunktion aus
- 4. Entry mode sett
  - I/D = 1 : Inkrementiert die DD-RAM Adresse nach dem Lesen/Schreiben eines Zeichens.
  - S = 0 : Kein schieben des Displays
- 5. Schreiben des DD-RAM

Als erster Schritt erfolgt die Festlegung der Datenbusbreite, während dieser Phase der Initialisierung werden nur die oberen Datenbits beachtet.

Auf der folgenden Seite befindet sich ein Ablaufdiagramm für die 8-bit und die 4-bit Initialisierung


# 4-bit Initialisierung



Mögliche Probleme:

• Keine Anzeige Kontrastspannung richtig eingestellt ? Initialisierung richtig durchgeführt ? Pausen eingehalten?

# 8-bit Initialisierung



#### HD44780 Befehlssatz

| Instruktion                            | RS | R/W | DB7                  | DB6         | DB5               | DB4      | DB3    | DB2      | DB1   | DB0 |  |  |
|----------------------------------------|----|-----|----------------------|-------------|-------------------|----------|--------|----------|-------|-----|--|--|
| Clear Display                          | 0  | 0   | 0                    | 0           | 0                 | 0        | 0      | 0        | 0     | 1   |  |  |
| Return Home                            | 0  | 0   | 0                    | 0           | 0                 | 0        | 0      | 0        | 1     | x   |  |  |
| Entry mode set                         | 0  | 0   | 0                    | 0           | 0                 | 0        | 0      | 1        | I/D   | S   |  |  |
| Display ON/OFF                         | 0  | 0   | 0                    | 0 0 0 1 D C |                   |          |        |          |       |     |  |  |
| Cursor und Display shift               | 0  | 0   | 0                    | 0           | 0 0 1 S/C R/L x x |          |        |          |       |     |  |  |
| Funktion Set                           | 0  | 0   | 0                    | 0           | 1                 | DL       | N      | F        | x     | x   |  |  |
| CG RAM Adresse setzen                  | 0  | 0   | 0                    | l           |                   | (        | G-RAM  | Adresse  | 2     |     |  |  |
| DD RAM Adresse setzen                  | 0  | 0   | 1                    |             |                   | D        | D-RAM  | Adresse  | ;     |     |  |  |
| Busy Flag und Adresse lesen            | 0  | 1   | BF                   |             | Adreßzä           | hler für | CG-RAN | 1 und DI | D-RAM |     |  |  |
| Daten in CG- oder DD-<br>RAM schreiben | 1  | 0   | Zu schreibende Daten |             |                   |          |        |          |       |     |  |  |
| Daten aus CG- oder DD-<br>RAM lesen    | 1  | 1   | Gelesene Daten       |             |                   |          |        |          |       |     |  |  |

#### Befehlsbeschreibung:

Return Home

Setzt das Adreßzähler des DD-RAM auf Adresse 0. Der Inhalt des DD-RAM bleibt unverändert. Der Cursor wird an die erste Position der ersten Zeile gesetzt.

Entry mode set

- 1/D: 1 = Adreßpointer inkrementieren, 0 = Adreßpointer dekrementieren
- S :1 = Displayinhalt schieben,0 = Displayinhalt nicht schieben.Schreiben in DD-RAM verschiebt den Displayinhalt, DD-RAM lesen verschiebt nicht.Der Cursor bleibt an derselben StelleLesen oder schreiben in das CG\_RAM hat auch keinen Einfluß auf den Displayinhalt.

Display ON/OFF

- D : 1 =**Display an**, 0 =**Display aus**
- C : 1 = Cursor unsichtbar, 0 = Cursor sichtbar
- B: 1 = Zeichen unter dem Cursor blinkt, 0 = Blinken aus

Cursor und Display shift

| S/C | R/L | Funktion                                                                                    |
|-----|-----|---------------------------------------------------------------------------------------------|
| 0   | 0   | Bewegt den Cursor um eine Stelle nach links ohne das DD-RAM zu verändern                    |
| 0   | 1   | Bewegt den Cursor um eine Stelle nach rechts ohne das DD-RAM zu verändern                   |
| 1   | 0   | Verschiebt Displayinhalt und Cursor um eine Stelle nach links ohne das DD-RAM zu verändern  |
| 1   | 1   | Verschiebt Displayinhalt und Cursor um eine Stelle nach rechts ohne das DD-RAM zu verändern |

Funktion Set

Die Datenbusbreite, Anzahl Zeilen und der Zeichensatz können nur währen der Initialisierungsphase des Controllers gesetzt werden.

- DL:1 = 8-bit Interface,0 = 4-bit InterfaceN:1 = 2 Zeilen Display,0 = 1 Zeilen Display
- F : 1 = 5x10 Zeichenfont, 0 = 5x7 Zeichenfont. Der 5x

#### Busy Flag und Adresse lesen

BF:  $\overline{1}$  = Controller arbeitet gerade eine interne Operation ab, 0 = Controller akzeptiert neue Instruktionen.

Das Busy Flag sollte vor jeder Schreiboperation ausgelesen werden, um sicherzustellen, das der Controller bereit ist.

Set CG RAM Adresse setzen oder DD RAM Adresse setzen verwendet wurde. Adresse inkrementiert (I/D = 1) bzw. dekrementiert (I/D = 0) automatisch.

Daten aus CG- oder DD- RAM lesen

Es werden 8-Bit Daten zum CG- oder DD-RAM geschrieben. Das Ziel des Transfers hängt davon ab ob der Befehl

Set CG RAM Adresse setzen oder DD RAM Adresse setzen verwendet wurde. Adresse inkrementiert (I/D = 1) bzw. dekrementiert (I/D = 0) automatisch.

#### Frei definierbare Zeichen

Der HD44780 Controller erlaubt die Definition von 8 5x7 Zeichen oder von 4 5x10 Zeichen. Diese Zeichen werden im CG-RAM abgelegt.

Die frei definierten 5x7 Zeichen werden über Zeichen Codes 0x00 - 0x07 adressiert.

Dabei gilt der folgende Zusammenhang:

Character Code Bit 0-2 korrespondieren mit den CG-RAM Adress-Bits 3-5( Ergibt 8 verschiedene Zeichen ) Es werden nur die Bits 0 - 4 des Character Pattern für die Zeichen Generierung genutzt, diese Bits können anderweitig verwendet werden (z.B. als Flags)

Die frei definierten 5x7 Zeichen werden über Zeichen Codes 0x00, 0x02, 0x40 und 0x06 adressiert.

Dabei gilt der folgende Zusammenhang:

Character Code Bit 1 und 2 korrespondieren mit den CG-RAM Adress-Bits 3 und 5( 4 verschiedene Zeichen)

Es werden nur die Bits 0 - 4 des Character Pattern für die Zeichen Generierung genutzt, diese Bits können anderweitig verwendet werden (z.B. als Flags)

| Cha | aract | er C | ode | (DD- | RA | М |   | CGI | RAM | Character Pattern (CG RAM |   |   |   |        |   |   |   |   |   |   |   |
|-----|-------|------|-----|------|----|---|---|-----|-----|---------------------------|---|---|---|--------|---|---|---|---|---|---|---|
| Dat | en)   |      |     |      |    |   |   |     |     |                           |   |   |   | Daten) |   |   |   |   |   |   |   |
| 7   | 6     | 5    | 4   | 3    | 2  | 1 | 0 | 5   | 4   | 3                         | 2 | 1 | 0 | 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|     |       |      |     |      |    |   |   | 0   | 0   | 0                         | 0 | 0 | 0 | x      | x | x | 1 | 1 | 1 | 1 | 0 |
|     |       |      |     |      |    |   |   | 0   | 0   | 0                         | 0 | 0 | 1 | x      | x | x | 1 | 0 | 0 | 0 | 1 |
|     |       |      |     |      |    |   |   | 0   | 0   | 0                         | 0 | 1 | 0 | x      | x | x | 1 | 0 | 0 | 0 | 1 |
| 0   | 0     | 0    | 0   | x    | 0  | 0 | 0 | 0   | 0   | 0                         | 0 | 1 | 1 | x      | x | x | 1 | 1 | 1 | 1 | 1 |
|     |       |      |     |      |    |   |   | 0   | 0   | 0                         | 1 | 0 | 0 | x      | X | X | 1 | 0 | 1 | 0 | 0 |
|     |       |      |     |      |    |   |   | 0   | 0   | 0                         | 1 | 0 | 1 | x      | x | x | 1 | 0 | 0 | 1 | 0 |
|     |       |      |     |      |    |   |   | 0   | 0   | 0                         | 1 | 1 | 0 | x      | x | X | 1 | 0 | 0 | 0 | 1 |
|     |       |      |     |      |    |   |   | 0   | 0   | 0                         | 1 | 1 | 1 | x      | X | X | 0 | 0 | 0 | 0 | 0 |
|     |       |      |     |      |    |   |   |     |     |                           |   |   |   |        |   |   |   |   |   |   |   |
|     |       |      |     |      |    |   |   | 1   | 1   | 0                         | 0 | 0 | 0 | x      | X | x | 1 | 1 | 1 | 1 | 1 |
|     |       |      |     |      |    |   |   | 1   | 1   | 0                         | 0 | 0 | 1 | x      | x | x | 1 | 0 | 1 | 0 | 1 |
|     |       |      |     |      |    |   |   | 1   | 1   | 0                         | 0 | 1 | 0 | x      | x | x | 1 | 0 | 1 | 0 | 1 |
| 0   | 0     | 0    | 0   | x    | 1  | 1 | 1 | 1   | 1   | 0                         | 0 | 1 | 1 | x      | x | X | 1 | 1 | 1 | 1 | 1 |
|     |       |      |     |      |    |   |   | 1   | 1   | 0                         | 1 | 0 | 0 | x      | x | x | 1 | 0 | 1 | 0 | 1 |
|     |       |      |     |      |    |   |   | 1   | 1   | 0                         | 1 | 0 | 1 | x      | x | X | 1 | 0 | 1 | 0 | 1 |
|     |       |      |     |      |    |   |   | 1   | 1   | 0                         | 1 | 1 | 0 | x      | x | x | 1 | 1 | 1 | 1 | 1 |
|     |       |      |     |      |    |   |   | 1   | 1   | 0                         | 1 | 1 | 1 | x      | x | х | 0 | 0 | 0 | 0 | 0 |

Beispiel für 5x7 Zeichen:

#### Beispiel für 5x10 Zeichen:

|   | Character Code (DD-RAM<br>Daten) |   |   |   |   |   |   | CG RAM Adresse |   |   |   |   |   | Character Pattern (CG RAM<br>Daten) |   |   |   |   |   |   |   |
|---|----------------------------------|---|---|---|---|---|---|----------------|---|---|---|---|---|-------------------------------------|---|---|---|---|---|---|---|
| 7 | 6                                | 5 | 4 | 3 | 2 | 1 | 0 | 5              | 4 | 3 | 2 | 1 | 0 | 7                                   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 0 | 0 | 0 | 0 | x                                   | x | x | 1 | 1 | 1 | 1 | 0 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 0 | 0 | 0 | 1 | x                                   | X | x | 1 | 0 | 0 | 0 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 0 | 0 | 1 | 0 | x                                   | x | x | 1 | 0 | 0 | 0 | 1 |
| 0 | 0                                | 0 | 0 | x | 0 | 0 | X | 0              | 0 | 0 | 0 | 1 | 1 | x                                   | x | x | 1 | 1 | 1 | 1 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 0 | 1 | 0 | 0 | x                                   | X | X | 1 | 0 | 1 | 0 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 0 | 1 | 0 | 1 | x                                   | x | x | 1 | 1 | 0 | 1 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 0 | 1 | 1 | 0 | x                                   | X | X | 1 | 0 | 0 | 0 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 0 | 1 | 1 | 1 | x                                   | X | x | 1 | 0 | 0 | 0 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 0 | 0 | 0 | x                                   | x | X | 1 | 1 | 1 | 1 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 0 | 0 | 1 | x                                   | X | x | 1 | 1 | 1 | 1 | 1 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 0 | 1 | 0 | x                                   | X | X | 0 | 0 | 0 | 0 | 0 |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 0 | 1 | 1 | x                                   | X | x | x | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 1 | 0 | 0 | x                                   | x | x | x | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 1 | 0 | 1 | x                                   | X | X | X | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 1 | 1 | 0 | x                                   | X | X | X | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 0              | 0 | 1 | 1 | 1 | 1 | X                                   | X | X | X | x | x | x | x |
| 0 | 0                                | 0 | 0 | x | 1 | 1 | x | 1              | 1 | 1 | 0 | 1 | 0 | X                                   | x | x | 0 | 0 | 0 | 0 | 0 |
|   |                                  |   |   |   |   |   |   | 1              | 1 | 1 | 0 | 1 | 1 | x                                   | x | x | x | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 1              | 1 | 1 | 1 | 0 | 0 | x                                   | X | x | x | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 1              | 1 | 1 | 1 | 0 | 1 | x                                   | x | x | x | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 1              | 1 | 1 | 1 | 1 | 0 | x                                   | х | x | x | x | x | x | x |
|   |                                  |   |   |   |   |   |   | 1              | 1 | 1 | 1 | 1 | 1 | x                                   | x | x | x | x | x | x | x |

#### RAM Adressen zu LCD Display Zuordnung

# Die folgenden Tabellen Zeigen die RAM Aufteilung des Display RAM für verschiedene NAN YA Character Module.

1-Zeilen Display (N=0) mit einem HD44780 und einem HD44100 Der HD44780 bedient Position 1 - 8, der HD44100 Position 9 - 16

Nach Return Home Befehl

| <b>Display Position</b> | 1   | 2  | 3        |          | 15     | 16       |   | 77 | 78 | 79 | 80 |
|-------------------------|-----|----|----------|----------|--------|----------|---|----|----|----|----|
| <b>DD-RAM Adresse</b>   | 00  | 01 | 02       | 1        | 0E     | OF       |   | 4C | 4D | 4E | 4F |
| >>                      |     |    | sichtba  | rer Bere | ich <- | <u> </u> |   |    |    |    |    |
| Nach einem Links Shi    | ft  |    |          |          |        |          |   |    |    |    |    |
| <b>Display</b> Position | 1   | 2  | 3        |          | 15     | 16       |   | 77 | 78 | 79 | 80 |
| <b>DD-RAM Adresse</b>   | 01  | 02 | 03       | 1        | OF     | 10       |   | 4D | 4E | 4F | 00 |
| >>                      |     |    | sichtbar | er Berei | ich    |          | < |    | L  |    |    |
| Nach einem Rechts Sh    | ift |    |          |          |        |          |   |    |    |    |    |
| <b>Display Position</b> | 1   | 2  | 3        |          | 15     | 16       |   | 77 | 78 | 79 | 80 |
| <b>DD-RAM Adresse</b>   | 4F  | 00 | 01       | 1        | 0D     | OE       |   | 4B | 4C | 4D | 4E |
| >>                      |     | ·  | sichtbar | er Bere  | ich << | <        |   |    |    |    |    |

1x16-Zeilen Display mit einem HD44780/KS0066 (N=1) Der HD44780/KS0066 bedient Position 1 - 16 als zwei Zeilen.

#### Nach Return Home Befehl

| <b>Display Position</b> | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| <b>DD-RAM Adresse</b>   | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

#### Nach einem Links Shift

| <b>Display Position</b> | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| DD-RAM Adresse          | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Nach einem Rechts Shift

| <b>Display Position</b> | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| DD-RAM Adresse          | 27 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 67 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

2x16-Zeilen Display mit einem HD44780/KS0066 (N=1) und einem HD44100H

Der HD44780/KS0066 bedient Position 1 - 7, der ersten und zweiten Zeile, der HD44100 die Positionen 8 - 16 der ersten und zweiten Zeile.

#### Nach Return Home Befehl

| <b>Display</b> Position | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11         | 12 | 13         | 14 | 15         | 16 |
|-------------------------|----|----|----|----|----|----|----|----|----|----|------------|----|------------|----|------------|----|
| <b>DD-RAM Adresse</b>   | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A         | 0B | <b>0C</b>  | 0D | 0E         | OF |
| 2-Zeile                 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | <b>4</b> A | 4B | <b>4</b> C | 4D | <b>4</b> E | 4F |

#### Nach einem Links Shift

| <b>Display Position</b> | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10         | 11        | 12         | 13 | 14         | 15 | 16 |
|-------------------------|----|----|----|----|----|----|----|----|----|------------|-----------|------------|----|------------|----|----|
| <b>DD-RAM Adresse</b>   | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A         | <b>0B</b> | 0C         | 0D | 0E         | 0F | 10 |
| 2-Zeile                 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | <b>4</b> A | <b>4B</b> | <b>4</b> C | 4D | <b>4</b> E | 4F | 50 |

#### Nach einem Rechts Shift

| <b>Display Position</b> | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12         | 13         | 14         | 15 | 16         |
|-------------------------|----|----|----|----|----|----|----|----|----|----|----|------------|------------|------------|----|------------|
| <b>DD-RAM Adresse</b>   | 27 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A         | OB         | 0C         | 0D | 0E         |
| 2-Zeile                 | 67 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | <b>4</b> A | <b>4</b> B | <b>4</b> C | 4D | <b>4</b> E |

16x4-Zeilen Display mit einem HD44780/KS0066 (N=1) und einem HD44100H

Der HD44780/KS0066 bedient Position 1 - 7, der ersten und zweiten Zeile, der HD44100 die Positionen 8 - 16 der ersten und zweiten Zeile.

| Nach  | Return | Home | Refehl |
|-------|--------|------|--------|
| racin | Netuin | nome | Delein |

| Display Position | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11         | 12         | 13         | 14 | 15         | 16 |
|------------------|----|----|----|----|----|----|----|----|----|----|------------|------------|------------|----|------------|----|
| DD-RAM Adresse   | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A         | 0B         | 0C         | 0D | 0E         | OF |
| 2-Zeile          | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | <b>4</b> A | <b>4</b> B | <b>4</b> C | 4D | <b>4</b> E | 4F |
| 3-Zeile          | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A         | 1 <b>B</b> | 1C         | 1D | 1E         | 1F |
| 4-Zeile          | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A         | 5B         | 5C         | 5D | 5E         | 5F |

#### Nach einem Links Shift

| <b>Display Position</b> | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10         | 11         | 12        | 13         | 14         | 15 | 16 |
|-------------------------|----|----|----|----|----|----|----|----|----|------------|------------|-----------|------------|------------|----|----|
| <b>DD-RAM Adresse</b>   | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A         | 0B         | <b>0C</b> | 0D         | 0E         | OF | 10 |
| 2-Zeile                 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | <b>4</b> A | <b>4</b> B | 4C        | <b>4</b> D | <b>4</b> E | 4F | 50 |
| 3-Zeile                 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A         | 1 <b>B</b> | 1C        | 1D         | 1E         | 1F | 20 |
| 4-Zeile                 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A         | 5B         | <b>5C</b> | 5D         | 5E         | 5F | 60 |

#### Nach einem Rechts Shift

| Display Position      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12         | 13         | 14         | 15 | 16         |
|-----------------------|----|----|----|----|----|----|----|----|----|----|----|------------|------------|------------|----|------------|
| <b>DD-RAM Adresse</b> | 27 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A         | OB         | <b>0C</b>  | 0D | 0E         |
| 2-Zeile               | 67 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | <b>4</b> A | <b>4B</b>  | <b>4</b> C | 4D | <b>4</b> E |
| 3-Zeile               | OF | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | <b>1</b> A | 1 <b>B</b> | 1C         | 1D | 1E         |
| 4-Zeile               | 4F | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A         | 5B         | <b>5</b> C | 5D | 5E         |

20x4-Zeilen Display mit einem HD44780/KS0066 (N=1) und einem HD44100H

Der HD44780/KS0066 bedient Position 1 - 7, der ersten und zweiten Zeile, der HD44100 die Positionen 8 - 16 der ersten und zweiten Zeile.

#### Nach Return Home Befehl

| <b>Display Position</b> | 1  | 2  | 3  | 4  | 5  | 6  | 7  |   | 13         | 14 | 15         | 16 | 17 | 18 | 19 | 20 |
|-------------------------|----|----|----|----|----|----|----|---|------------|----|------------|----|----|----|----|----|
| DD-RAM Adresse          | 00 | 01 | 02 | 03 | 04 | 05 | 06 | - | <b>0C</b>  | 0D | 0E         | OF | 10 | 11 | 12 | 13 |
| 2-Zeile                 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | - | <b>4</b> C | 4D | <b>4</b> E | 4F | 50 | 51 | 52 | 53 |
| 3-Zeile                 | 14 | 15 | 16 | 16 | 17 | 18 | 19 | - | 20         | 21 | 22         | 23 | 24 | 25 | 26 | 27 |
| 4-Zeile                 | 54 | 55 | 56 | 57 | 58 | 59 | 5A | - | 60         | 61 | 62         | 63 | 64 | 65 | 66 | 67 |

#### Nach einem Links Shift

| Display Position | 1  | 2  | 3  | 4  | 5  | 6  | 7  | - | 9  | 10         | 11 | 12 | 13 | 14 | 15 | 16 |
|------------------|----|----|----|----|----|----|----|---|----|------------|----|----|----|----|----|----|
| DD-RAM Adresse   | 01 | 02 | 03 | 04 | 05 | 06 | 07 | - | 0D | 0E         | OF | 10 | 11 | 12 | 13 | 14 |
| 2-Zeile          | 41 | 42 | 43 | 44 | 45 | 46 | 47 | - | 4D | <b>4</b> E | 4F | 50 | 51 | 52 | 53 | 54 |
| 3-Zeile          | 15 | 16 | 16 | 17 | 18 | 19 | 1A | - | 21 | 22         | 23 | 24 | 25 | 26 | 27 | 00 |
| 4-Zeile          | 55 | 56 | 57 | 58 | 59 | 5A | 5B | - | 61 | 62         | 63 | 64 | 65 | 66 | 67 | 40 |

#### Nach einem Rechts Shift

| Display Position | 1  | 2  | 3  | 4  | 5  | 6  | 7  | - | 9         | 10         | 11        | 12         | 13 | 14 | 15 | 16 |
|------------------|----|----|----|----|----|----|----|---|-----------|------------|-----------|------------|----|----|----|----|
| DD-RAM Adresse   | 27 | 00 | 01 | 02 | 03 | 04 | 05 | - | OB        | <b>0C</b>  | 0D        | 0E         | OF | 10 | 11 | 12 |
| 2-Zeile          | 67 | 40 | 41 | 42 | 43 | 44 | 45 | - | <b>4B</b> | <b>4</b> C | <b>4D</b> | <b>4</b> E | 4F | 50 | 51 | 52 |
| 3-Zeile          | OF | 10 | 11 | 12 | 13 | 14 | 15 | - | 1F        | 20         | 21        | 22         | 23 | 24 | 25 | 26 |
| 4-Zeile          | 4F | 50 | 51 | 52 | 53 | 54 | 55 | - | 5F        | 60         | 61        | 62         | 63 | 64 | 65 | 66 |

## Standard Character Pattern (KS0066F00)

| Upper<br>4bit<br>lower<br>4bit | LLLL             | LLHL | LLHH | LHLL | LHLH | LНHL | ГННН | HLLL                                                                                                                                                                                                                                                                                                                                                                                                                                        | HLLH | нінг | нгнн | HHLL | ннгн | нннс             | нннн |
|--------------------------------|------------------|------|------|------|------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------------------|------|
| LLLL                           | CG<br>RAM<br>(1) |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| LLLH                           | (2)              |      |      |      |      |      |      | <br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |      |      |      |                  |      |
| LLHL                           | (3)              |      |      |      |      |      |      | 98,202 f<br>297,11,5,11<br>11,11,1<br>11,11,1<br>11,11,1<br>11,12,1<br>11,12,1<br>11,12,1<br>11,12,1<br>11,12,1<br>11,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,1<br>11,12,12,12,1<br>11,12,12,12,1<br>11,12,12,12,1<br>11,12,12,12,12,12,12,12,12,12,12,12,12,1 |      |      |      |      |      |                  |      |
| ССНН                           | (4)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| LHLL                           | (5)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| LHLH                           | (6)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| LHHL                           | (7)              |      |      |      |      |      |      | 1947<br>1947<br>1947<br>1947<br>1947<br>1947<br>1947<br>1947                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                  |      |
| LННН                           | (8)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| HLLL                           | (1)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| HLLH                           | (2)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      | ••               |      |
| HLHL                           | . (3)            |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| нгнн                           | (4)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  | 1    |
| HHLL                           | (5)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| ннцн                           | (6)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      | ) 2 <b>2</b> 333 |      |
| ннн                            | (7)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |
| нннн                           | (8)              |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |      |      |      |                  |      |

\_\_\_\_

# 1 SED1520DAA Eigenschaften

- 6800 und 8080 Familien Mikroprozessor Interface
- 2560 Bit integriertes Display Daten RAM
- Gering Stromaufnahme
- Funktion von 2,4V bis 7,0V
- Ansteuerung von 61 Segmenten (Vertikale Display Linien) und 16 Zeilen pro Controller
- Master/Slave Betrieb
- Der Typ AA benötigt einen externen 2 kHz Clock
- Reiner Grafik Controller kein eingebauter Zeichensatz

In Verbindung mit einem SED1521 ist es möglich bis zu 141 Segmente in 16 Zeilen anzuzeigen.

| Pin Nummer | Bezeichnung      | Funktion                                                                   |
|------------|------------------|----------------------------------------------------------------------------|
| 1          | VDD              | Logik Versorgung 2,4V - 7,0V ( 0,6mA bei VDD=5V )                          |
| 2          | GND              | Logik Masse                                                                |
| 3          | VEE              | LCD Treiber Versorgung                                                     |
| 4          | A0               | L: Kommando, H: Daten                                                      |
| 5          | CS1              | Chip Select Signal Controller 1 (Master)                                   |
| 6          | CS2              | Chip Select Signal Controller 2 (Slave)                                    |
| 7          | CL               | externer 2 kHz Clock, kann z.B. mit 80C52 Timer2 erzeugt werden            |
| 8          | RDN              | RDN bei 8080 Interface, E bei 68xx Interface                               |
| 9          | WRN              | WRN bei 8080 Interface, R/W bei 68xx Interface                             |
| 10-17      | D0-D7            | Daten Bus                                                                  |
| 18         | Reset            | Flanke: Reset; Pegel :Mikroprozessor Interface Typ Auswahl L: C51, H: 68xx |
| 19         | A <sub>LED</sub> | LED Hintergrund Beleuchtung Anode                                          |
| 20         | KLED             | LED Hintergrund Beleuchtung Kathode                                        |

# 2 Modul Pinbelegung

Die Ansteuerung des vorliegende 122x32 Display erfolgt über zwei SED1520:

Controller 1 (CS1) steuert die ersten(linken) 61 vertikalen Display Linien und die oberen 16 Zeilen an. Controller 2 (CS2) steuert die zweiten(rechten) 61 vertikalen Display Linien und die unteren 16 Zeilen an. Die Controller werden über einen LOW Signal am Anschluß CS1 bzw. CS2 ausgewählt.

# 3 MPU Interface

Die Bausteine der SED1520 Serie haben einen 8 Bit Datenbus (D0-D7) für den Datentransfer. Der Reset Pin selektiert das MPU Interface. Durch setzen des Reset Pin auf LOW oder High wird das 68xx oder 80xx Interface selektiert. Die Zuordnung ist der Tabelle 1 zu entnehmen.

| Pegel an Reset | Interface Typ | A0 | E   | R/W | CSN | D0-D7        |
|----------------|---------------|----|-----|-----|-----|--------------|
| High           | 68xx MPU      | AO | E   | R/W | CSN | D0-D7        |
| LOW            | 80xx MPU      | AO | RDN | WRN | CSN | <b>D0-D7</b> |

|    | 80xx Interface 68xx Interface |     | nterface |   |                                        |  |
|----|-------------------------------|-----|----------|---|----------------------------------------|--|
| A0 | RDN                           | WRN | R/WN     | Е | Funktion                               |  |
| 0  | 0                             | 1   | 1        | 1 | Status Flag lesen                      |  |
| 1  | 0                             | 1   | 1        | 1 | Display Daten und Cursor Adresse lesen |  |
| 0  | 1                             | 0   | θ        | 1 | Display Daten und Parameter schreiben  |  |
| 1  | 1                             | 0   | 0        | 1 | Befehls Byte schreiben                 |  |

### 4 SED1520 Befehlssatz

|     |                        |    |    |    |          |          |           |          |             |          |          | ]        |                                                                       |  |  |  |  |
|-----|------------------------|----|----|----|----------|----------|-----------|----------|-------------|----------|----------|----------|-----------------------------------------------------------------------|--|--|--|--|
|     | Befehl                 | A0 | RD | WR | D7       | D6       | D5        | D4       | D3          | D2       | DI       | D0       | Funktion                                                              |  |  |  |  |
| (1) | Display ON/OFF         | 0  | 1  | 0  | 1        | 0        | 1         | 0        | 1           | 1        | 1        | 0/1      | 1                                                                     |  |  |  |  |
|     |                        |    |    |    | ļ        | ļ        | Ļ         |          |             | l        |          |          | 0: aus                                                                |  |  |  |  |
| (2) | Display Start Zeile    | 0  | 1  | 0  | 1        | 1        | 0         | 2        | Leile       | n Nu     | mme      | er       | Legt Zeilennummer fest, die in der oberen                             |  |  |  |  |
| (3) | setzen                 |    |    |    |          | <u> </u> |           | <u> </u> |             | T        |          | ······   | Zeile (COM0) ausgegeben werden soll.                                  |  |  |  |  |
| (3) | Page Adresse setzen    | 0  | 1  | 0  | 1        | 0        | 1         | 1        | 1           | 0        |          | ige      | Setzt Display RAM Page im Page                                        |  |  |  |  |
| (1) | 0                      | +  |    |    | <u> </u> |          | L         | L        | L           | L        |          | -3)      | Adreßregister Register                                                |  |  |  |  |
| (4) | Spalten Adresse        | 0  | 1  | 0  | 0        |          | St        |          |             | ress     | 5        |          | Setzt Display RAM Spalten Adresse im                                  |  |  |  |  |
| (5) | setzen<br>Status Lesen | ╂  |    |    |          | <u> </u> |           |          | <u>0-79</u> | <u>}</u> | <b></b>  | r        | Spalten Register                                                      |  |  |  |  |
| (5) | Status Lesen           |    |    |    | B        | A<br>D   | ON/<br>OF | R        |             |          |          |          | BUSY 1: Interne Operation aktiv                                       |  |  |  |  |
|     |                        | 0  | 0  | 1  | u<br>s   | C        | OF<br>F   | E<br>S   | 0           | 0        | 0        | 0        | ADC 1: normale Adressen Zuordnung                                     |  |  |  |  |
|     |                        | U. | U  |    | -        | Ľ        | Г         | E E      | U           | U        | U        | U        | 0: Inverse Adressen Zuordnung<br>ON/OFF 1: Display an, 0: Display aus |  |  |  |  |
|     |                        |    |    |    | У        |          |           | T        |             |          |          |          | RESET 1: Reset Vorgang 0: Normal                                      |  |  |  |  |
| (6) | Display Daten          | 1  |    |    |          | L        | L         |          | I           |          |          | I        | Display Daten werden in die adressierte RAM                           |  |  |  |  |
| (•) | schreiben              | 1  | 1  | 0  |          |          | D         | ater     | Byt         | •        |          |          | Adresse geschrieben, der Adreßzähler wird                             |  |  |  |  |
|     |                        | 1  | -  | Ŭ  |          |          | -         |          | . 29.       | •        |          |          | eine Stelle hoch gezählt                                              |  |  |  |  |
|     |                        |    |    |    |          |          |           |          |             |          |          |          | Display Daten werden aus der adressierten                             |  |  |  |  |
| (7) | Display Daten lesen    | 1  | 0  | 1  |          |          | D         | aten     | Byt         | e        |          |          | RAM Adresse gelesen, der Adreßzähler wird                             |  |  |  |  |
|     |                        |    |    |    |          |          |           |          | •           |          |          |          | eine Stelle hoch gezählt                                              |  |  |  |  |
| (8) | ADC Auswählen          | 0  | 1  | 0  | 1        | 0        | 1         | 0        | 0           | 0        | 0        | 0/1      | 0: Normale Adressen Zuordnung                                         |  |  |  |  |
|     |                        |    |    |    |          |          |           |          |             |          |          |          | 1: Inverse Adressen Zuordnung                                         |  |  |  |  |
| (9) | Statische Ausgabe      | 0  | 1  | 0  | 1        | 0        | 1         | 0        | 0           | 1        | 0        | 0/1      | 0: Normaler Betrieb                                                   |  |  |  |  |
|     | ON/OFF                 |    |    |    |          |          |           |          |             | 1        |          |          | 1: Schaltet alle Segmente statisch ein                                |  |  |  |  |
|     |                        |    |    |    |          |          |           |          |             |          |          |          | ( Power Saving Mode )                                                 |  |  |  |  |
| 10  | Duty Cycle setzen      | 0  | 1  | 0  | 1        | 0        | 1         | 0        | 1           | 0        | 0        | 0/1      | 0: 1/16 LCD Zellen Duty Cycle                                         |  |  |  |  |
|     |                        |    |    |    |          |          |           |          |             | ļ        |          |          | 1: 1/32 LCD Zellen Duty Cycle                                         |  |  |  |  |
|     |                        |    |    |    |          |          |           |          |             |          |          |          | In diesem Mode wird nur beim Schreiben ins                            |  |  |  |  |
| 11  | Read Modify Write      | 0  | 1  | 0  | 1        | 1        | 1         | 0        | 0           | 0        | 0        | 0        |                                                                       |  |  |  |  |
|     |                        |    |    |    |          |          |           |          |             |          |          | <u> </u> | nicht aber beim Lesen aus dem Display RAM                             |  |  |  |  |
| 12  | Ende                   | 0  | 1  | 0  | 1        | 1        | 1         | 0        | 1           | 1        | 1        | 0        | Read Modify Write Modus                                               |  |  |  |  |
|     | <b></b>                |    |    | -  |          |          |           |          |             |          | <u> </u> |          | Lesen aus dem RAM inkrementiert wieder.                               |  |  |  |  |
| 13  | Reset                  | 0  | 1  | 0  | 1        | 1        | 1         | 0        | 0           | 0        | 1        | 0        | Setzt Display Start Zeile auf Zeile 0                                 |  |  |  |  |
|     | 1                      | L  |    |    |          |          |           |          |             |          |          |          | Page und Spaltenzähler auf 0                                          |  |  |  |  |

# 5 Erklärungen zum Befehls Satz

#### 5.1 Display Startzeile setzen

Die Start Zeilen Nummer legt fest welche Zeile des Display RAM in der als oberste Zeile auf dem Display erscheinen soll. Eine grafische Darstellung dieser Funktion findet sich auf der Seite 4.

Beispiel:

1. Grafische Textausgabe mit Start Zeile = 0

2. Grafische Textausgabe mit Start Zeile = 8. In der Tabelle auf Seite 4 grau hinterlegt

| Zeile0  | Zeile8  |
|---------|---------|
| Zeile8  | Zeile16 |
| Zeile16 | Zeile24 |
| Zeile24 | Zeile0  |

<sup>15</sup> Die Anzahl der Angezeigten Spalten beträgt beim 122x32 Display nur 61/Controller

# 5.2 Page Adresse setzen

Dieser Befehl setzt den Page Adreßzähler auf die gewünschte Page (Seite). Die Page Adresse kann nur mit diesem Befehl verändert werden!

### 5.3 Spalten Adresse setzen

Der Spalten Adreßzähler wird über dieses Kommando gesetzt. Der Zähler kann nur aufwärts zählen und hat seine obere Grenze von 80. Es findet kein automatische Überlauf nach 0 statt, der Page Adreßzähler hat auch keinen Einfluß. Damit ist dieser Befehl die einzige Möglichkeit den Zähler auf einen Startwert zu setzen.

Bei erreichen der oberen Grenze wird der Page Zähler nicht verändert. Der Zähler arbeitet immer in einer Page!!

### 5.4 Status lesen

Das Status Byte wird mit diesem Befehl gelesen. Es können die folgenden Informationen zurück gelesen werden.

| Bit7 Busy:   | <ul> <li>Dieses Bit zeigt an, ob eine interne Operation ausgeführt wird oder nicht</li> <li>1: Interne Operation wird gerade ausgeführt, derzeit kein weiter Befehl möglich</li> <li>0: Display Controller wartet auf neue Eingabe.</li> <li>Anders als bei verschieden anderen Controllern ist es nicht unbedingt erforderlich das<br/>BUSY Bit vor jeder Mikroprozessor Eingabe zu prüfen, wenn die System<br/>Instruktionsrate kleiner lusec ist. In den meisten Applikationen, die auf Strom sparen<br/>ausgelegt sind ist dies der Fall.</li> </ul> |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit6 ADC:    | Zeigt die aktuelle Zuordnung von Display RAM Spalten Adresse zu Segment Treiber an.         0: Invertiert ( Spalten Adresse 79-n ⇔ Segment Treiber n )         1: Normal ( Spalten Adresse n ⇔ Segment Treiber n )                                                                                                                                                                                                                                                                                                                                       |
| Bit5 ON/OFF: | Zeigt an ob das Display ein oder aus geschaltet ist<br>Die Polarität dieses Bits ist zum DISPLAY ON/OFF Kommando invertiert.<br>0: Display ist an<br>1: Display ist aus                                                                                                                                                                                                                                                                                                                                                                                  |
| Bit4 Reset:  | Zeigt an, daß der Display Controller gerade durch Hardware oder Software Reset<br>initialisiert wird.<br>0: Display arbeitet normal<br>1: Controller durchläuft Reset.                                                                                                                                                                                                                                                                                                                                                                                   |

### 5.5 Display Daten lesen

Dieser Befehl liest die an der aktuelle Adresse des Display RAM.

Ist der Read-Modify-Write-Mode ausgeschaltet wird nach dem Lesezugriff automatisch die Spalten Adresse inkrementiert.

Die Daten des Display RAM werden immer um einen Lesezugriff verspätet ausgegeben, da beim lesen die erst in das Ausgangs Latch geschrieben, dort können sie dann mit dem nächsten Lesezugriff abgeholt werden. Möchte man nur ein Daten Byte lesen muß ein Dummy gelesen werden, erst dann steht das gewünschte Datenbyte im Ausgangs Latch. Das lesen des Display RAM hat keinen Einfluß auf die momentan laufende Ausgabe ( kein Flackern ).

# 5.6 Display Daten schreiben

Dieses Kommando ermöglicht es dem Mikrokontroller 8-Bit Daten in das Display RAM zu schreiben. Nach jedem Schreibzugriff wird die Spaltenadresse automatisch inkrementiert. Durch das automatisch hochzählen der Spalten Adresse ist es dem angeschlossenen Mikrokontroller leicht möglich eine ganze Page mit Daten zu füllen. Aber auch hier gilt der Zähler kann nur innerhalb einer Page(Seite) hochzählen, es gibt keinen automatisch Seitenumbruch.

## 5.7 ADC auswählen

Mit diesem Befehl kann die Zuordnung zwischen Display RAM und Anzeige Position umgekehrt werden.

Diese Funktion ist bei dem hier beschriebenen Display nicht so sehr von Bedeutung. Bei Displays, die aber einen SED1521 als zusätzlichen Segment Treiber haben muß die Zuordnung umgedreht werden, da dieser Zusatztreiber die Segmente intern invers sortiert.

## 5.8 Statische Ausgabe ON/OFF

Dieser Befehl schaltet das Display statisch ein, alle Segmente werden angezeigt. Mit dieser Methode wird die Stromaufnahme reduziert.

## 5.9 Duty Cycle setzen

Dieser Befehl legt die Multiplexer Rate fest. Es stehen zweit Multiplexer Raten zur Auswahl 1/16 und 1/32.

### 5.10 Read Modify Write Mode / Ende

Dieser Befehl wird mit dem Ende Befehl zusammen verwendet. Wenn der Read-Modify-Write-Mode aktiviert ist wird die Spaltenadresse nur beim Schreiben eines Daten Bytes, aber nicht beim lesen verändert. Der Read-Modify-Write-Mode bleibt eingeschaltet bis das Ende Kommando übertragen wird.

Erhält der Display Controller das Ende Kommando wird der Spalten Adreßzähler wieder auf den Wert zurückgesetzt, der gültig war bevor der Read-Modify-Write-Mode aktiviert wurde.

Während der Read-Modify-Write-Mode aktiv ist können alle anderen Kommandos weiterhin ausgeführt werden.

### 5.11 Reset

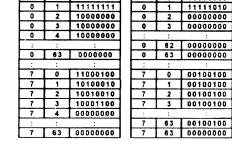
Das Reset Kommando initialisiert das Start Zeilen Register, den Spalten Adreßzähler und den Page Adreßzähler.

Das Display RAM wird durch den Reset Befehl nicht verändert.

# 6 Zuordnung Display RAM / Anzeige

Der SED1520 Controller organisiert den LCD Bildschirmaufbau in Seiten (Page). Eine Page besteht aus 8 Zeilen zu je 80 Bits. Jedem der 80 Bits ist eine Spalten Adresse zugeordnet. Der Zugriff auf eine solche Seite erfolgt immer Byteweise.

| Page<br>Adresse | Daten<br>Bits | An         | gezei | gter l | Berei | ch |    |      |                                       |          |   |    | Zeiler<br>Adres |   | sgabe<br>Gese |    |
|-----------------|---------------|------------|-------|--------|-------|----|----|------|---------------------------------------|----------|---|----|-----------------|---|---------------|----|
|                 |               |            |       |        |       |    |    |      |                                       |          |   |    | e               |   | rtzeil        |    |
|                 | DO            |            |       |        |       |    |    |      |                                       |          |   |    | 0x00            |   | 25            | Í  |
|                 | D1            |            |       |        |       |    |    |      |                                       |          |   |    | 0x01            |   | 26            | 1  |
|                 | D2            |            | 1     |        |       | 1  |    |      |                                       |          |   |    | 0x02            |   | 27            | 1  |
|                 | D3            | 1          |       |        |       |    |    |      | i i i i i i i i i i i i i i i i i i i | Page 0   |   |    | 0x03            |   | 28            | 1  |
|                 | D4            |            | 1     |        |       |    |    | -1   |                                       |          |   |    | 0x04            |   | 29            | 1  |
|                 | D5            |            |       |        |       | 1  |    |      |                                       |          |   |    | 0x05            |   | 30            | 1  |
|                 | D6            |            | 1     |        |       |    |    |      |                                       |          |   |    | 0x06            | 1 | 31            |    |
|                 | <b>D</b> 7    |            |       |        |       |    | 1' |      |                                       |          |   |    | 0x07            | 3 | 32            |    |
|                 | DO            | <b>1</b> . | 1     | 1      |       | 1  | 1  | <br> |                                       |          |   |    | 0x08            |   | )1            |    |
|                 | D1            | 4          |       |        |       |    |    |      |                                       |          |   |    | 0x09            | ( | )2            |    |
|                 | D2            | 4          |       |        |       |    |    |      |                                       |          |   |    | 0x0A            |   | 13            |    |
|                 | D3            | -          |       |        |       |    |    |      |                                       |          |   |    | 0x0B            | 0 | )4            |    |
|                 | D4            |            |       | l      |       |    |    |      |                                       | Page 1   |   |    | 0x0C            |   | )5            |    |
|                 | D5            |            |       | 1      |       |    |    |      |                                       |          |   |    | 0x0D            |   | )6            |    |
|                 | D6            |            |       |        |       |    |    |      |                                       |          |   |    | 0x0E            |   | 17            |    |
|                 | D7            |            |       |        |       |    |    |      |                                       |          |   |    | 0x0F            |   | 8             |    |
|                 | DO            |            |       | Ι      |       |    |    |      |                                       |          |   |    | 0x10            |   | 9             |    |
|                 | D1            |            |       | İ      |       |    |    |      |                                       |          |   |    | 0x11            |   | 0             | İ. |
|                 | D2            | ]          |       |        |       |    |    |      |                                       |          |   |    | 0x12            |   | 1             |    |
|                 | D3            | 1          |       |        |       |    |    |      |                                       | Page 2   |   |    | 0x13            |   | 2             |    |
|                 | D4            | 1          |       |        |       |    |    |      |                                       | <b>A</b> |   |    | 0x14            |   | 3             |    |
|                 | D5            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x15            |   | 4             |    |
|                 | D6            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x16            |   | 5             |    |
|                 | D7            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x17            |   | 6             |    |
|                 | DO            | T          | 1     | 1      |       |    |    | <br> |                                       |          |   |    | 0x18            |   | 7             |    |
|                 | D1            | 1          | 1     |        |       |    |    |      |                                       |          |   |    | 0x19            |   | 8             |    |
|                 | D2            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x1A            |   | 9             |    |
|                 | D3            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x1A            |   | 0             |    |
|                 | D4            | 1          |       |        |       |    |    |      |                                       | Page 3   |   |    | 0x1C            |   | 1             |    |
|                 | D5            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x1D            |   | 2             |    |
|                 | D6            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x1E            |   | 3             |    |
|                 | D7            | 1          |       |        |       |    |    |      |                                       |          |   |    | 0x1F            | 7 | 4             |    |
| Spalten Adı     |               | 00         | 01    | 02     | 03    | 04 |    | <br> |                                       |          | 4 | 4  | 4F              |   | -             |    |
| Autor Aut       | ADC=1         | 4F         | 4E    | 4D     | 4C    | 4B | 1  | <br> |                                       | <u></u>  |   | 01 | 4 <b>r</b>      |   |               |    |


# Ansteuerung KS0108 für NLC 128X064

#### Allgemeine Angaben:

Bild1: Bildschirmspeicheraufbau:

Das 128x64 Grafikdisplay wird über zwei Samsung KS0108 Grafikcontroller angesteuert. Jeder Controller steuert einen Block von 64x64 Pixel. Ein Block ist in 8 Page (Seiten) mit je 64 Byte unterteilt. Jedem Bit eines Bytes ist ein Pixel der Anzeige zugeordnet. Die Zuordnung von Page, Byte und Bit ist dem Bild1 zu entnehmen. Die Auswahl eines Blocks erfolgt über die Chip Select Leitungen CS1(Block1) und CS2(Block2). X bezeichnet den Page Zähler, Y bezeichnet den Adressenzähler, D0...D7 sind die Bits eines Daten Bytes.

#### $\frac{Page}{X=0}$ YO Y1 Y2 Y3 Y4 63 YOY 1 Y2 Y3 162Y63 RAM Inhait Controller 1 D٥ Zeile 0 X Y Zeile 1 . . . . 0 0 Zeile 2 Zeile 3 D 0 1 D3 0 Zeile 4 0 Zeile 5 0 Zeile 6 Zeile 7 DI 0 X = 1 Zeile 8 Zeile 9 ۵ 1 $\overline{X} = 7$ Zeile 56 D 2 . . . Zeile 57 3 . . . 7 Zeile 58 7 Zeile 59 •••• Zeile 60 7 . . . Zeile 61 Zeile 62 Zeile 63 Block | mit CS1=1 selektiert Block || mit CS2=1 selektiert



D7...D0

00000000

RAM inhait Controller 2

x Ŷ

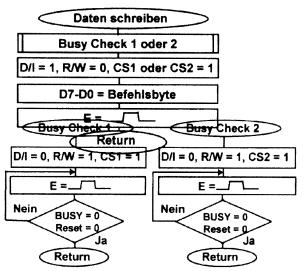
ō 0 D7...D0

11111010

00000000

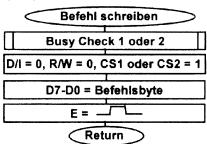
00000000

00100100


00100100

00100100

#### **Befehlssatz:**


Mit CS1(Pin 15) oder CS2(Pin 16) = 1 wird festgelegt welcher der beiden Controller angesprochen werden soll. Vor jedem Befehlszugriff muß der Status des BUSY Flags geprüft werden.

| Befehl                         | R<br>/<br>W | D<br>/1                                   | DB7  | DB6    | DB5        | DB4        | DB3    | DB2    | DB1                                                                                                           | DB0   | Funktion                                                                                                                                                |
|--------------------------------|-------------|-------------------------------------------|------|--------|------------|------------|--------|--------|---------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin                            | 5           | 4                                         | 14   | 13     | 12         | 11         | 10     | 9      | 8                                                                                                             | 7     | Pin Nummern am Display                                                                                                                                  |
| Display AN/AUS                 | 0           | 0                                         | 0    | 0      | 1          | 1          | 1      | 1      | 1                                                                                                             | 1/0   | an(1)/aus(0)                                                                                                                                            |
| Display Start Zeile            | 0           | 0                                         | 1    | 1      | Displa     | ay Start Z | eilenn | umme   | er (0                                                                                                         | )-63) | Legt fest mit welcher RAM<br>Adresse das Display in der<br>oberen Zeile Starten soll                                                                    |
| Page Adresse (Reihe)<br>setzen | 0           | 0                                         | 1    | 0      | 1          | 1          | 1      | Re     | ihe ( 0                                                                                                       | -7)   | Setzt RAM Page Adresse                                                                                                                                  |
| Byte Adresse setzen            | 0           | 0                                         | 0    | 1      |            | Y Zä       | hler A | dresse | )                                                                                                             |       | Setzt Y Adressenzähler                                                                                                                                  |
| Status lesen                   | 1           | 0                                         | BUSY | 0      | ON/<br>OFF | Reset      | 0      | 0      | 0                                                                                                             | 0     | Liest den Display Status<br>Reset 1: Reset 0: Normal<br>ON/OFF 1: Display aus<br>0: Display an<br>BUSY(DB7) 1: Befehl wird<br>abgearbeitet<br>0: Bereit |
| Display Daten<br>schreiben     | 0           | 1                                         | Da   | aten a | n Displ    | ay DB7 (I  | WSB).  | DB0    | (LSB)                                                                                                         |       | Schreibt Daten ins Display<br>RAM, der Y Adreßzähler wird<br>automatisch um eine Stelle<br>hoch gezählt (0-63-0)                                        |
| Display Daten lesen            | 1           | der Y Adreßzähler w<br>automatisch um ein |      |        |            |            |        |        | Liest Daten vom Display RAM,<br>der Y Adreßzähler wird<br>automatisch um eine Stelle<br>hoch gezählt (0-63-0) |       |                                                                                                                                                         |



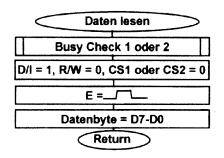
#### Status lesen:

- 1. Controller für Block I oder Block II mit CS1 oder CS2 auswählen. Aktiver Pegel high.
- 1. D/I Pin (4) auf LOW und R/W Pin (5) auf high zu setzen. Mit der fallenden Flanke des E(nable) Pulses (Pin 6) gibt der selektierte Controller den Status auf den Datenleitungen (7-14) aus. BUSY ist Bit D7.



#### Befehl schreiben:

- 1. Controller über CS1 oder CS2 auswählen.
- 2. Status des selektierten Controllers prüfen.
- Wenn das BUSY Flag auf <u>LOW</u> liegt, R/W Pin auf <u>LOW</u> setzen, Befehlsbyte an den Datenbus anlegen, mit der fallenden Flanke des E(nable) Pulses wird der Befehl in den Controller gelesen und ausgeführt.


#### Daten schreiben:

- 1. Adresse und Page des ersten Datenbytes einstellen.
- 2. Controller über CS1 oder CS2 auswählen.
- 3. Status des selektierten Controllers prüfen.
- 4. Wenn das BUSY Flag auf LOW liegt, R/W Pin auf <u>LOW</u> und D/I Pin auf <u>high</u> setzen, Datenbyte an den Datenbus anlegen, mit der fallenden Flanke des E(nable) Pulses werden die Daten in den Controller übernommen und zur Anzeige gebracht.
- Weitere Daten in das RAM schreiben ab Schritt 1., der Y Zähler steht automatisch auf der nächsten Adresse der eingestellten Page.

#### Daten lesen:

#### Nach dem Einstellen der Adresse ist ein Dummy Lesezugriff nötig, um gültige RAM Daten zu erhalten .

- 1. Adresse und Page des ersten Datenbytes einstellen.
- 2. Controller über CS1 oder CS2 auswählen.
- 3. Status des selektierten Controllers prüfen.
- Wenn das BUSY Flag auf LOW liegt, R/W Signal auf <u>high</u> lassen D/I auf <u>high</u> setzen. Das Daten Byte wird mit der fallenden Flanke des E(nable) Pulses auf dem Datenbus ausgegeben.
- 5. Weitere Daten aus dem RAM auslesen ab Schritt 1., der Y Zähler steht automatisch auf der nächsten Adresse der eingestellten Page.



#### **Displayinitialisierung:**

- 1. Displayversorgung einschalten.
- 2. Reset mindestens 1µsek auf LOW ( Display AUS, Display Start Zeilen Register auf Zeile 0).
- 3. Displaycontroller 1 (CS1) oder Displaycontroller 2 (CS2) auswählen.
- 4. Status prüfen (BUSY Flag abfragen)
- 5. Display einschalten mit Befehl Display AN.
- 6. Status prüfen (BUSY Flag abfragen)

Display Initialisierung

| Reset 1µSekunde = 0              |
|----------------------------------|
| Status Check 1                   |
| Status Check 2                   |
| Befehl 0x3F schreiben mit CS1 =1 |
| Befehl 0x3F schreiben mit CS2 =1 |

#### Wenn es nicht funktioniert:

Wenn nach erfolgter Initialisierung nicht das gewünschte Ergebnis zu sehen ist hier ein paar praktische Tips:

- Ist die Kontrastspannung richtig eingestellt? Sie muß ≈-6V betragen. Einfacher, aber häufiger Fehler.
- 2. Sind alle Leitungen korrekt verbunden.
- 3. Ist der Reset noch auf 0 (LOW Pegel).
- 4. Initialisierungssequenz nochmals

überprüfen.

# 2 Kommunikation mit dem T6963C

Die Kommunikation mit dem T6963C ist sehr einfach. Das Display ist in geeigneter Weise in den Adressraum des angeschlossenen Controllers einzubinden, für die Kommunikation werden nur zwei Adressen benötigt.

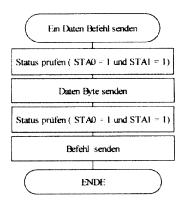
Generell gilt:

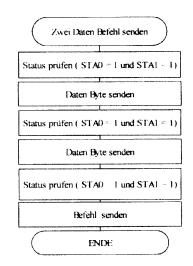
Bevor ein Befehl an den Controller gesendet wird muß das Statuswort des T6963C abgefragt werden. Es gibt drei arten von Befehlen Kommandos ohne Parameter, mit einem Parameter oder zwei Parametern. Es müssen immer erst die Parameter und dann der Befehlscode übertragen werden.

#### 2.1 Status Check

Das Status Byte erhält man, wenn man mit der MPU vom Display Daten liest mit C/DN = H (Pin 8).

### 2.1.1 T6963C STATUS BYTE


| STA0 | Kommando Ausführung                 | 0: möglich       |                                         |
|------|-------------------------------------|------------------|-----------------------------------------|
|      |                                     | 1: nicht möglich |                                         |
| STA1 | Daten lesen / schreiben             | 0: möglich       | $ $ $\leq \frac{STA2=1}{(STA3=1)}$ Nein |
|      |                                     | 1: nicht möglich | Ja                                      |
| STA2 | Auto Mode Daten lesen               | 0: möglich       |                                         |
|      |                                     | 1: nicht möglich | ( Return )                              |
| STA3 | Auto Mode Daten schreiben           | 0: möglich       |                                         |
|      |                                     | 1: nicht möglich |                                         |
| STA4 | Nicht benutzt                       |                  | (Status)                                |
| STA5 | Controller                          | 0: möglich       |                                         |
|      |                                     | 1: nicht möglich |                                         |
| STA6 | Error Flag für Screen Peek / Kopier | 0: Kein Fehler   | STA0=1                                  |
|      | Kommando                            | 1: Fehler        | STAI-1 Nein                             |
| STA7 | Prüfung des Display Modus           | 0: Display Aus   | Ja                                      |
|      |                                     | 1: Display AN    | Return                                  |


#### STA0 und STA1 müssen gleichzeitig getestet werden.

STA2/STA3 sind im Auto Mode gültig, STA0/STA1 sind im Auto Mode ungültig.

#### 2.2 Daten in die Anzeige schreiben

Um Daten in den Controller zu schreiben müssen erst die Daten und dann das Befehls Byte gesendet werden. Vor jeder Übertragung an die Anzeige muß der Status des Controllers geprüft werden. Wenn mehr als 1 bzw. 2 Daten gesendet werden sind nur das letzte bzw. die beiden letzten Daten vor dem Befehls Byte gültig.



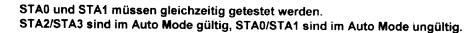


(Auto Mode Status)

# 2 Kommunikation mit dem T6963C

Die Kommunikation mit dem T6963C ist sehr einfach. Das Display ist in geeigneter Weise in den Adressraum des angeschlossenen Controllers einzubinden, für die Kommunikation werden nur zwei Adressen benötigt.

Generell gilt:


Bevor ein Befehl an den Controller gesendet wird muß das Statuswort des T6963C abgefragt werden. Es gibt drei arten von Befehlen Kommandos ohne Parameter, mit einem Parameter oder zwei Parametern. Es müssen immer erst die Parameter und dann der Befehlscode übertragen werden.

# 2.1 Status Check

Das Status Byte erhält man, wenn man mit der MPU vom Display Daten liest mit C/DN = H (Pin 8).


# 2.1.1 T6963C STATUS BYTE

| STA0 | Kommando Ausführung                 | 0: möglich       |                                                                                |
|------|-------------------------------------|------------------|--------------------------------------------------------------------------------|
|      |                                     | 1: nicht möglich |                                                                                |
| STA1 | Daten lesen / schreiben             | 0: möglich       | $\left  \begin{array}{c} \text{STA2-1} \\ \text{(STA3-1)} \end{array} \right $ |
|      |                                     | 1: nicht möglich |                                                                                |
| STA2 | Auto Mode Daten lesen               | 0: möglich       | Ja                                                                             |
|      |                                     | 1: nicht möglich | (Return                                                                        |
| STA3 | Auto Mode Daten schreiben           | 0: möglich       |                                                                                |
|      |                                     | 1: nicht möglich |                                                                                |
| STA4 | Nicht benutzt                       |                  | T (Status                                                                      |
| STA5 | Controller                          | 0: möglich       |                                                                                |
|      |                                     | 1: nicht möglich |                                                                                |
| STA6 | Error Flag für Screen Peek / Kopier | 0: Kein Fehler   | STAD-1                                                                         |
|      | Kommando                            | 1: Fehler        | STAI-I                                                                         |
| STA7 | Prüfung des Display Modus           | 0: Display Aus   | Ja                                                                             |
|      |                                     | 1: Display AN    | Return                                                                         |



## 2.2 Daten in die Anzeige schreiben

Um Daten in den Controller zu schreiben müssen erst die Daten und dann das Befehls Byte gesendet werden. Vor jeder Übertragung an die Anzeige muß der Status des Controllers geprüft werden. Wenn mehr als 1 bzw. 2 Daten gesendet werden sind nur das letzte bzw. die beiden letzten Daten vor dem Befehls Byte gültig.



| Zwei Daten Befehl senden              |
|---------------------------------------|
| Status prufen (STA0 = 1 und STA1 = 1) |
| Daten Byte senden                     |
| Status prüfen (STA0 = 1 und STA1 = 1) |
| Daten Byte senden                     |
| Status prufen (STA0 = 1 und STA1 = 1) |
| Befehl senden                         |
| ENDE                                  |

Auto Mode Status

# 3 T6963C Befehlssatz

| Befehlsart     | Code     | Data 1        | Data 2    | Final At an                            |
|----------------|----------|---------------|-----------|----------------------------------------|
| Register Set   | 00100001 | X ADRS        | YADRS     | Funktion                               |
|                | 00100010 | data          | 1         | Cursor Pointer setzen                  |
|                | 00100100 |               | 0x00      | Offset Register setzen                 |
| Control Word   |          | Low ADRS      | High ADRS | Adress Pointer setzen                  |
| Set            | 0100000  | Low ADRS      | High ADRS | Text Home Adresse setzen               |
| Jet            | 01000001 | Spaltenanzahl | 0x00      | Text Bereich setzen                    |
|                | 01000010 | Low ADRS      | High ADRS | Grafik Home Adresse                    |
| Mode Set       | 01000011 | Spaltenanzahi | 0x00      | Grafik Bereich setzen                  |
| Mode Set       | 1000x000 | -             | -         | "OR" Mode                              |
|                | 1000x001 | -             | -         | "EXOR" Mode                            |
|                | 1000x011 | -             | •         | "AND" Mode                             |
|                | 1000x100 | -             | -         | "TEXT ATTRIBUTE" Mode                  |
|                | 10000xxx | -             | •         | Interner CG ROM Mode                   |
| Disaland       | 10001xxx | -             | -         | Externer CG RAMN Mode                  |
| Display Mode   | 10010000 | -             | ~         | Display OFF                            |
|                | 1001xxx0 | -             | -         | Cursor blink OFF                       |
|                | 1001xxx1 | -             | -         | Cursor blink ON                        |
|                | 1001xx0x | -             | -         | Cursor OFF                             |
|                | 1001xx1x | -             | -         | Cursor ON                              |
|                | 1001x0xx | -             | -         | Text OFF                               |
|                | 1001x1xx | -             | -         | Text ON                                |
|                | 10010xxx | -             | -         | Grafik OFF                             |
| 0              | 10011xxx | -             | -         | Grafik ON                              |
| Cursor Pattern | 10100000 | -             | -         | 1 Zeile Cursor                         |
| Auswählen      | 10100001 | -             | -         | 2 Zeilen Cursor                        |
|                | 10100010 | -             | -         | 3 Zeilen Cursor                        |
|                | 10100011 | -             | -         | 4 Zeilen Cursor                        |
|                | 10100100 | -             | -         | 5 Zeilen Cursor                        |
|                | 10100101 | -             | -         | 6 Zeilen Cursor                        |
|                | 10100110 | -             | -         | 7 Zeilen Cursor                        |
|                | 10100111 | -             | -         | 8 Zeilen Cursor                        |
| Data Auto      | 10110000 | -             | -         | Auto Data Write Mode setzen            |
| Read/Write     | 10110001 | -             | -         | Auto Data Read Mode setzen             |
|                | 10110010 | -             | -         | Auto Reset ( Auto Mode aus )           |
| Data           | 11000000 | data          | -         | Daten schreiben und ADP inkrementieren |
| Read/Write     | 11000001 | -             | -         | Daten lesen und ADP inkrementieren     |
|                | 11000010 | data          | -         | Daten schreiben und ADP dekrementieren |
|                | 11000011 | -             | -         | Daten lesen und ADP dekrementieren     |
|                | 11000100 | data          | -         | Daten schreiben und ADP unverändert    |
|                | 11000101 | -             | -         | Daten lesen und ADP unverändert        |
| Screen Peek    | 11100000 | -             | -         | Screen Peek                            |
| Screen Copy    | 11101000 | -             | -         | Screen copy                            |
| Bit Set/Reset  | 11110xxx | -             | -         | Bit löschen                            |
|                | 11111xxx | -             | -         | Bit setzen                             |
|                | 1111x000 | -             | -         | Bit 0 (LSB)                            |
|                | 1111x001 | -             | -         | Bit 1                                  |
|                | 1111x010 | -             | -         | Bit 2                                  |
|                | 1111x011 | -             |           | Bit 3                                  |
|                | 1111x100 | •             | 1         | Bit 4                                  |
|                | 1111x101 | -             |           | Bit 5                                  |
|                | 1111x110 | -             |           | Bit 6                                  |
|                | 1111x111 | -             | 1         | Bit 7 (MSB)                            |

### 3.1 Erläuterungen zum Befehlssatz

#### 3.1.1 Register Set

#### 3.1.1.1 Cursor Pointer Set

Die Position des Cursors wird über die X und Y Adresse festgelegt. Der Cursor kann nur mit diesem Befehl bewegt werden, der Cursor Pointer hat keine Inkrement- oder Dekrement Funktion. XADRS: 0x00 bis 0x4F ( nur die unteren 7 Bits sind gültig ) YADRS: 0x00 bis 0x1F ( nur die unteren 5 Bits sind gültig )

3.1.1.2 Offset Register setzen

Das Offset Register legt den RAM Bereich fest, in dem der vom Benutzer definierte Zeichensatz abgelegt wurde. Die Adresse des T6963C wird wie folgt aufgeteilt

- Die Adressen AD10-AD3 werden vom Zeichen Code bestimmt.
- die Adressen AD2 AD0 werden durch den Vertikalen Zähler bestimmt

Es werden nur die unteren 5 Bits eines Daten Bytes zur Anzeige gebracht.

#### 3.1.1.3 Abhängigkeit Display RAM Adresse vom Offset Register

| ad15            | ad14 | ad13 | ad12 | ad11 | ad10 | ad9 | ad8 | ad7    | ad6    | ad5 | ad4 | ad3 | ad2    | ad1   | ad0 |
|-----------------|------|------|------|------|------|-----|-----|--------|--------|-----|-----|-----|--------|-------|-----|
| Offset Register |      |      |      |      |      |     |     | Zeiche | n Code |     |     |     | Zeilen | (0-7) |     |

 Offset Register Inhalt
 CG RAM Adresse in Hex (Start - Ende)

 00000
 0000-07FF

 00001
 0800-0FFF

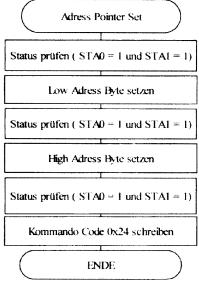
 :
 :

 11110
 F000-F7FF

 11111
 F800-FFFF

#### **Beispiel:**

Offset Register Inhalt : 0x02


Zeichen Code: 0x80, damit ergibt sich die CG RAM Startadresse 0x1400

| DB7 | DB6      | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | Adresse | Daten |
|-----|----------|-----|-----|-----|-----|-----|-----|---------|-------|
|     |          |     |     |     |     |     |     | 0x1400  | 0x00  |
|     |          |     |     |     | 1   |     | 1   | 0x1401  | 0x1F  |
|     | 1        |     |     |     |     |     |     | 0x1402  | 0x04  |
|     |          |     |     |     |     |     |     | 0x1403  | 0x04  |
|     | <b> </b> |     |     |     |     |     |     | 0x1404  | 0x04  |
|     | <u> </u> |     |     |     |     |     |     | 0x1405  | 0x04  |
|     | •        |     |     |     |     |     |     | 0x1406  | 0x04  |
|     |          |     |     |     |     |     |     | 0x1407  | 0x00  |

Character Codes 0x80 - 0xFF werden automatisch aus dem externen CG RAM geladen.

#### 3.1.1.4 Adress Pointer Setzen

Mit dem Adress Pointer Set Kommando wird die Adresse im RAM gesetzt, auf die geschrieben bzw. von der gelesen werden soll. Vor dem Schreiben der Parameter und des Kommandos ist der Status des Controller zu prüfen.



#### 3.1.2 Control Word Set

| Code         | D1            | D2        | Funktion                 |
|--------------|---------------|-----------|--------------------------|
| <br>01000000 | Low ADRS      | High ADRS | Text Home Adresse setzen |
| 01000001     | Spaltenanzahl | 0x00      | Text Bereich setzen      |
| 01000010     | Low ADRS      | High ADRS | Grafik Home Adresse      |
| 01000011     | Spaltenanzahl | 0x00      | Grafik Bereich setzen    |

Mit diesen Kommandos werden die Home Adresse und die Anzahl der Spalten für den Text und den Grafikbereich gesetzt.

#### 3.1.2.1 Text Home Adresse setzen

Dieses Kommando definiert die Adresse des Display RAM die im Text Display Mode in der oberen linken Ecke des Displays ausgegeben werden soll.

Damit ergibt sich der in folgenden Tabellen gezeigte Zusammenhang zwischen Display RAM Adresse und Display Position.

| Zeile # | Adressen der erste Spalte |   | Adresse der letzten Spalte |
|---------|---------------------------|---|----------------------------|
| 1       | ТН                        | - | TH + CL                    |
| 2       | TH + TA                   | - | TH + TA + CL               |
| 3       | TH + 2TA                  | - | TH + 2TA + CL              |
|         |                           |   |                            |
| n       | TH + (n-1)TA              |   | TH + (n-1)TA + CL          |

TH : Text Home Adresse

TA : Anzahl Spalten Software bestimmt siehe auch 2.3

.

CL : Hardware bestimmte Anzahl Spalten

#### 3.1.2.1.2 Beispiel 240x128

Das 240x128 Display ist durch die Hardware auf physikalisch 40x16 Character Zeilen und 128 vertikale Punkte eingestellt. Damit ergibt sich für TA = CL = 0x27, TH = 0x0000, die folgende Speicheraufteilung.

| Zeile # | Adressen der erste Spalte | T | Adresse der letzten Spalte |
|---------|---------------------------|---|----------------------------|
| 1       | 0x0000                    | - | 0x0027                     |
| 2       | 0x0028                    | - | 0x004F                     |
| 3       | 0x0050                    | - | 0x0077                     |
|         |                           | - |                            |
| 16      | 0x0258                    | - | 0x027F                     |

#### 3.1.2.1.3 Beispiel 240x64

Das **240x64**Display ist durch die Hardware auf physikalisch 40x8 Character Zeilen und 64 vertikale Punkte eingestellt. Damit ergibt sich für TA = CL = 0x27, TH = 0x0000, die folgende Speicheraufteilung.

| Zeile # | Adressen der erste Spalte |   | Adresse der letzten Spalte |
|---------|---------------------------|---|----------------------------|
| 1       | 0x0000                    | - | 0x0027                     |
| 2       | 0x0028                    | - | 0x004F                     |
| 3       | 0x0050                    | - | 0x0077                     |
| 8       | 0x0118                    |   | 0x013F                     |

#### 3.1.2.2 Grafik Home Adresse setzen

Dieses Kommando definiert die Adresse des Display RAM die im Grafik Mode in der oberen linken Ecke des Displays ausgegeben werden soll.

Damit ergibt sich der in folgenden Tabellen gezeigte Zusammenhang zwischen Display RAM Adresse und Display Position.

#### 3.1.2.2.1 Allgemeine Beschreibung

| Zeile #  | Adressen der erste Spalte | Ι        | Adresse der letzten Spalte |
|----------|---------------------------|----------|----------------------------|
| 1        | GH                        | -        | GH + CL                    |
| 2        | GH + GA                   | - 1      | GH + GA + CL               |
| 3        | GH + 2GA                  | -        | GH + 2GA + CL              |
| <u> </u> | GH + (n-1)GA              | <u> </u> | GH + (n-1)GA + CL          |

GH : Grafik Home Adresse

GA : Anzahl Spalten Software bestimmt siehe auch 2.4

CL : Hardware bestimmte Anzahl Spalten

n : Anzahl der durch die Hardware bestimmten Grafik Zeilen

240x128 : 128 Grafik Zeilen , 240x64 : 64 Grafik Zeilen

Ein Beispiel entfällt an dieser Stelle, da Methode gleich der für Text Ausgaben, nur mehr Zeilen.

#### 3.1.2.3 Text Bereich setzen

Dieses Kommando erlaubt es die Anzahl der Display Spalten für den Text Mode einzustellen. Er legt den Adressbereich fest, an der ein automatischer Zeilenumbruch erfolgt. Damit lassen sich Texte, die nur auf der linken Hälfte des Display ausgegeben werden sollen, Speicherplatz schonend im Display RAM abspeichern.

Die folgende Tabelle zeigt den Zusammenhang zwischen Adresse und Display Position für ein 240x64 Display mit Hardware: 40 Spalten x 8Zeilen Text; Software : 20 Spalten

| Auf dem L | .CD ausgeg | ebener Ber | eich      | Physika   | alischer Rest Be | reich (keine T | ext Ausgabe)                        |
|-----------|------------|------------|-----------|-----------|------------------|----------------|-------------------------------------|
| Zeilen #  | Spalte 1   | Spalte 2   |           | Spalte 20 | Spalte 21        |                | Spalte 40                           |
| 1         | 0x0000     | 0x0000     |           | 0x0013    |                  |                |                                     |
| 2         | 0x0014     | 0x0015     | <i>,</i>  | 0x0027    |                  |                |                                     |
| 3         | 0x0028     | 0x0029     |           | 0x003B    |                  |                |                                     |
| 4         | 0x003C     | 0x003D     | <i>..</i> | 0x004F    |                  |                |                                     |
| 5         | 0x0050     | 0x0051     |           | 0x0063    |                  |                |                                     |
| 6         | 0x0064     | 0x0065     |           | 0x0077    |                  |                |                                     |
| 7         | 0x0078     | 0x0079     |           | 0x008B    |                  |                |                                     |
| 8         | 0x008C     | 0x008D     |           | 0x009F    |                  |                | · · · · · · · · · · · · · · · · · · |

Anmerkung: Diese Methode arbeitet immer von der linken Display Kante aus gesehen. Möchte man Texte nur auf der rechten Hälfte des Displays ausgeben müssen die führenden Speicherplätze mit 0x20(Space) gefüllt werden, damit dieser Textbereich bei einer Überlagerung mit dem Grafik Bildschirm unsichtbar bleibt.

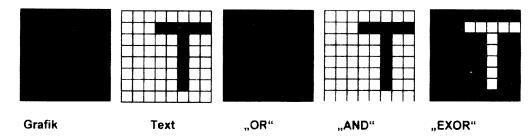
#### 3.1.2.4 Grafik Bereich setzen

Dieses Kommando erlaubt es die Anzahl der Display Spalten für den Grafik Mode per Software einzustellen. Er legt die RAM Adressbereich fest an dessen Kante ein automatischer Wechsel in die nächste Zeile erfolgen soll. Diese Funktion erlaubt es die Bildschirmgröße auf eine auszugebende Grafik anzupassen. Wenn die Grafikdaten ein kleineres Bild enthalten als durch die Hardware vorgegeben kann damit eine Anpassung erfolgen. Auch hier zur Verdeutlichung eine kleine Tabelle.

| Zeilen # | Spalte 1 | Spalte 2 |         | Spalte 20 | Spalte 21 | <br>Spalte 40 |
|----------|----------|----------|---------|-----------|-----------|---------------|
| 1        | 0x0000   | 0x0000   |         | 0x0013    |           |               |
| 2        | 0x0014   | 0x0015   |         | 0x0027    |           |               |
| 3        | 0x0028   | 0x0029   |         | 0x003B    |           |               |
| 4        | 0x003C   | 0x003D   |         | 0x004F    |           |               |
| 5        | 0x0050   | 0x0051   |         | 0x0063    |           |               |
| 6        | 0x0064   | 0x0065   |         | 0x0077    |           |               |
| 7        | 0x0078   | 0x0079   |         | 0x008B    |           |               |
| •••      |          |          |         |           |           |               |
| 63       | 0x04D8   | 0x04D9   | <i></i> | 0x043D    |           |               |
| 64       | 0x04EC   | 0x04ED   |         | 0x04FF    |           |               |

Hardware: 40 Spalten x 64Zeilen Grafik; Software : 20 Spalten

Anmerkung: Diese Methode arbeitet immer von der linken Display Kante aus gesehen. Eine formatierte Ausgabe funktioniert also nur an der linken Bildschirm Kante durch die Hardware. Möchte man Grafiken auf der Anzeige nur an bestimmten Positionen ausgeben muß der ganze Bildschirm als Grafikbereich definiert werden und die Ausgabe in das Display RAM per Software gesteuert werden.


!!!! Achtung Veränderungen des Grafikbereichs beeinflussen natürlich auch den bereits dargestellten Grafikbereich. Es kommt also zu den wildesten Ausgaben, wenn man den Grafikbereich eines bereits beschriebenen Bildschirm verändert.

#### 3.1.3 Mode

| Mode Set | Function              | Parameter |
|----------|-----------------------|-----------|
| 1000x000 | "OR" Mode             | -         |
| 1000x001 | "EXOR" Mode           | -         |
| 1000x011 | "AND" Mode            | -         |
| 1000x100 | "TEXT ATTRIBUTE" Mode | -         |
| 10000xxx | Interner CG ROM Mode  | -         |
| 10001xxx | Externer CG RAMN Mode | -         |

Mit diesem Kommando wird die Verknüpfungsart von Zeichen und Grafik festgelegt. Die Mode Einstellung bleibt solange aktiv, bis ein anderer Mode ausgewählt wird. Die Mode Einstellung gilt für frei definierte Zeichen genauso wie für Zeichen aus dem internen Character Generator ROM.

#### 3.1.3.1 Beispiel der Modes EXOR, OR und AND



#### 3.1.3.2 TEXT ATTRIBUTE Mode

Der Text Attribute Mode ist nur im reinen Text Mode möglich, da die Attributinformationen im Grafik RAM Bereich gespeichert werden. Die Attribute der Zeichen sind in diesem Mode immer in der korrespondierenden Speicherstelle des Grafik RAM Bereichs abgespeichert. Wird dieser Mode gewählt wird automatisch die Grafikausgabe unterdrückt. Damit die Funktion arbeiten kann muß aber die Grafik über das Display Mode Kommando eingeschaltet werden. (Siehe dazu 4.)

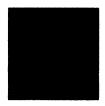
Es stehen die folgenden Attribute zur Verfügung, die Tabelle Zeigt die Bitcodierung der einzelnen Attribute.

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Funktion                             |  |
|----|----|----|----|----|----|----|----|--------------------------------------|--|
| x  | x  | X  | X  | 0  | 0  | 0  | 0  | Normal                               |  |
| X  | ×  | X  | X  | 0  | 1  | 0  | 1  | Inverse Darstellung des Zeichens     |  |
| X  | ×  | X  | X  | 0  | 0  | 1  | 1  | Zeichen unterdrücken (Keine Anzeige) |  |
| X  | X  | Х  | X  | 1  | 0  | 0  | 0  | Blinken der Normalen Darstellung     |  |
| X  | x  | X  | X  | 1  | 1  | 0  | 1  | Blinken der Inversen Darstellung     |  |
| x  | x  | X  | X  | 1  | 0  | 1  | 1  | Blinken des unterdrückten Zeichens   |  |

#### 3.1.4 Display Mode

Mit diesem Kommando werden der Cursor, die Textausgabe und die Grafikausgabe ein bzw. ausgeschaltet. Dieses Kommando steuert auch die Blinkfunktion des Cursors.

| Code     | Funktion         | Parameter |
|----------|------------------|-----------|
| 10010000 | Display OFF      | -         |
| 1001xxx0 | Cursor blink OFF | -         |
| 1001xxx1 | Cursor blink ON  | -         |
| 1001xx0x | Cursor OFF       | -         |
| 1001xx1x | Cursor ON        | -         |
| 1001x0xx | Text OFF         | -         |
| 1001x1xx | Text ON          | -         |
| 10010xxx | Grafik OFF       | -         |
| 10011xxx | Grafik ON        | _         |

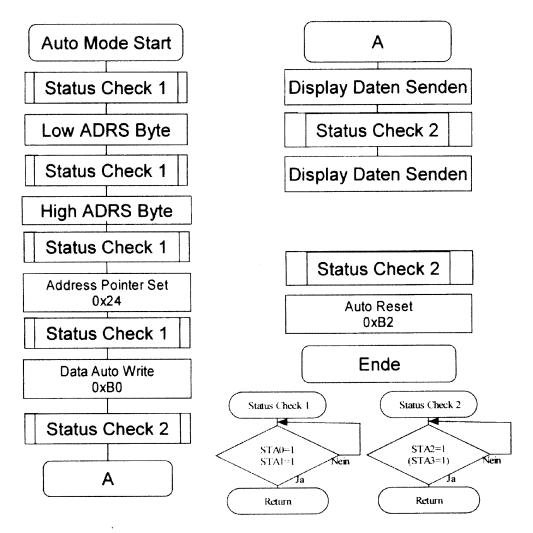

#### 3.1.5 Cursor Pattern Auswählen

Dieser Befehl legt die Form des Cursors fest. Die Adresse an der er auf dem Display erscheinen soll muß mit dem Registerbefehl Cursor Pointer Set erfolgen.

#### Cursorform Beispiele:

|  |  |   |   | Ц |
|--|--|---|---|---|
|  |  | · | _ |   |
|  |  |   |   |   |
|  |  |   |   |   |

8 Zeilen

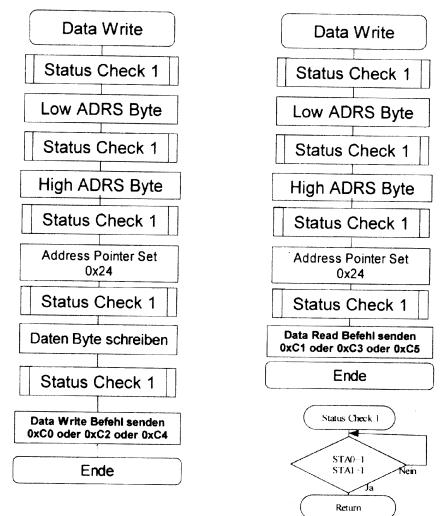



1 Zeilen Cursor Cursor

#### 3.1.6 Data Auto Read/Write

Diese Kommando bietet eine bequeme Möglichkeit große Daten Mengen von einem externen RAM in das Display RAM zu Übertragen. Nach dem aktivieren von "Data Auto Write" oder "Data Auto Read" können beliebig viele Daten geschrieben bzw. gelesen werden. Die Adresse des Display RAM's muß vorher mit dem Kommando "Address Pointer Set" auf die gewünschte Adresse eingestellt werde, die Adresse wird während des Auto Betriebs automatisch um +1 hochgezählt. Der Auto Mode wird mit dem Kommando Auto Reset beendet. Vor dem senden/lesen der Daten sollte der "Auto Status" geprüft werden, dazu sind die Status Bits STA2 und STA3 wie bereits im Abschnitt 1. beschrieben auszuwerten.

#### 3.1.6.1 Ablaufdiagramm des Auto Mode:

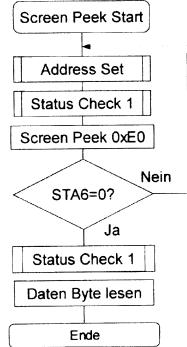



#### 3.1.7 Data Read/Write

| Code     | Parameter | Code in Hex | Funktion                               |
|----------|-----------|-------------|----------------------------------------|
| 11000000 | data      | 0xC0        | Daten schreiben und ADP inkrementieren |
| 11000001 | -         | 0xC1        | Daten lesen und ADP inkrementieren     |
| 11000010 | data      | 0xC2        | Daten schreiben und ADP dekrementierer |
| 11000011 | · •       | 0xC3        | Daten lesen und ADP dekrementieren     |
| 11000100 | data      | 0xC4        | Daten schreiben und ADP unverändert    |
| 11000101 | -         | 0xC5        | Daten lesen und ADP unverändert        |

Die in der Tabelle auf geführten Kommandos dienen zum Byteweise schreiben und lesen des Display RAM durch die MPU. Der Adreßzähler kann automatisch inkrementiert und dekrementiert werden. Die Verwendung dieses Befehls ist dem Ablaufdiagramm 3.1.7.1 zu entnehmen.

## 3.1.7.1 Ablaufdiagramm Data Read/Write

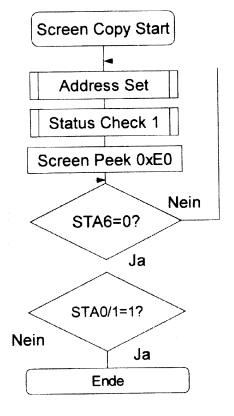



#### 3.1.8 Screen Peek

Mit dem Screen Peek Kommando kann der aktuelle Inhalt einer Grafik-Display Speicherstelle ausgelesen werden. Es wird der angezeigte Wert zurückgegeben, man erhält die Pixelinformation der Speicherstelle, die sich durch die Verknüpfung von Text und Grafik ergibt.

Das Status Flag STA6 sollte gleich nach dem Screen Peek Befehl überprüft werden. Wird auf eine Adresse, die nicht im Grafik Bereich liegt zugegriffen, wird das Kommando ignoriert und das Status Bit STA6 gesetzt.

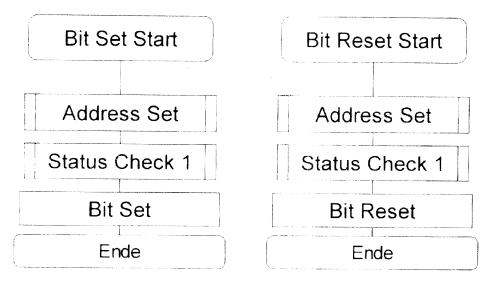
Dieser Befehl ist nur anwendbar, wenn die Anzahl der über Software eingestellten Spalten gleich der über die Hardware eingestellten Spalten ist.




#### 3.1.9 Screen Copy

Dieses Kommando kopiert eine Bildschirmzeile in den Grafikbereich. Der Startpunkt der Bildschirmzeile muß mit dem Adress Pointer Set Kommando eingestellt werden. Mit diesem Befehl ist es möglich Texte, die im Text Modus ausgegeben wurden in den Grafik Bereich zu kopieren.

Dieser Befehl ist bei aktivierter Attribut Funktion nicht anwendbar.


Das Kommando ist nur anwendbar, wenn die Anzahl der über Software eingestellten Spalten gleich der über die Hardware eingestellten Spalten ist.



#### 3.1.10 Bit Set / Reset


| Code     | Parameter | Funktion    |
|----------|-----------|-------------|
| 11110xxx | -         | Bit löschen |
| 11111xxx | -         | Bit setzen  |
| 1111x000 | -         | Bit 0 (LSB) |
| 1111x001 | -         | Bit 1       |
| 1111x010 | -         | Bit 2       |
| 1111x011 | -         | Bit 3       |
| 1111x100 | -         | Bit 4       |
| 1111x101 | -         | Bit 5       |
| 1111x110 | -         | Bit 6       |
| 1111x111 | -         | Bit 7 (MSB) |

Mit diesem Kommando können einzelne Bits eines über den Adress Pointer adressierten Daten Bytes gesetzt bzw. gelöscht werden. Es kann immer nur ein Bit zur Zeit gelöscht werden



### **4** Beispiel Initialisierung

#### Display Typ 240x128 Text Home Adresse : 0x0000; Text Spalten : 40 Grafik Home Adresse : 0x03FF; Grafik Spalten : 40 OR Mode, Text : An, Grafik : An Cursor : Aus



CMD : C/DN = H; Status Byte lesen, wenn STA0 und STA1 = 1, dann C/DN = H; Kommando Byte schreiben.

DATA : C/DN = H; Status Byte lesen, wenn STA0 und STA1 = 1, dann C/DN = L Daten Byte schreiben.

### 5 Zeichensatz Tabelle:

| LSB<br>MS8 | C    | 1             | 2         | 3                    | 4        | 5          | Б            | 7             | 8                                     | 9                 | A          | B           | c      | D   | E     | F          |
|------------|------|---------------|-----------|----------------------|----------|------------|--------------|---------------|---------------------------------------|-------------------|------------|-------------|--------|-----|-------|------------|
| 0          |      | !             | 11        | 非                    |          |            |              |               | ľ.                                    |                   | . <u>.</u> |             |        |     |       |            |
| 1          |      |               | ż         |                      | :4       | 5          | <u>;</u> ,   | i<br>l        | 3                                     | 1                 | 11<br>11   | 12<br>71    |        |     |       |            |
| 2          |      | <b></b>       | F         |                      |          |            |              |               | H                                     | I.                | Ţ          | E           |        | [1] | •••   |            |
| 3          | j;   |               | F         |                      |          |            | i.,i         | ļij           | · · · · · · · · · · · · · · · · · · · | 1I<br>            |            |             | "      |     | •**•  |            |
| 4          | ŗ    | ••••<br>••••i | ŀ<br>L.,i | j                    | i.,,j    | Ē          |              | •••••<br>•••• |                                       |                   | .]         | <b>I</b> -: | I      | ĪÚ  | j.**, |            |
| 5          | <br> | • • • • • •   | ş         | ****<br>****<br>**** | ••••••   | <b>L</b> . | ! <u>,</u> ! | <u> ,</u>     | <u>};</u>                             | ا <sub>نی</sub> ا | 7          | ;           |        |     | **••  |            |
| 6          | 1    | <br>          |           |                      |          | <u>-</u>   | .:           | I             | Ĥ                                     |                   | ė          | 1           | <br>]. | i   |       |            |
| 7          |      |               | i         |                      | <u>.</u> | ċ          |              | •.<br>!!      |                                       |                   |            | <b>.</b>    | • • •  | ¥   | 14    | . <b>+</b> |

.

# **TDK DC to AC Inverters**

## CXA Series, 3 to 9 Watts

TDK CXA series of DC to AC inverters are designed for driving cold cathode discharge lamps and to handle a wide range of lamp characteristics.

## Features

Constant current output ensures compatibility with a wide range of discharge lamps.

High-efficiency resonant circuitry produces low-noise, sinusoidal-wave output.

One-lamp/two-lamp combined-used capability allows use in four different configurations.

Full protection against open circuits, short circuits, and overheat conditions provides dependable operation.

Compact size and light weight facilitate PC board mounting.

# **Standard Specification**

#### Temperature and humidity range

Operating temperature range -10 to +60°C[+14 to +140°F]

Storage temperature range -20 to +85°C[-4 to +185°F]

Humidity 95% max.

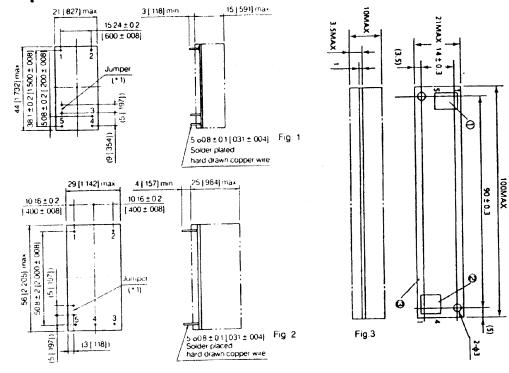
(Maximum wet built temperature: 38°C[100.4°F]

#### Terminal connections

| Terminal number                                  | Function   |                        |   |
|--------------------------------------------------|------------|------------------------|---|
| 1                                                | + Vin      |                        |   |
| ACCENTER AND AND AND AND AND AND AND AND AND AND |            | •••                    |   |
| 2                                                | , Vn       | . And the second       |   |
| 3                                                | AC Vout 1  |                        |   |
|                                                  | 1011.40    | د موجود<br>ا او ۲۰۰۱ و | 1 |
| 4 C. mill                                        | AC Voul 2  | Con a la               |   |
| 5                                                | Common out |                        |   |

Note 1: Terminals 2 and 5 are connected by a jumper (\*1). Cut this jumper to let the secondary float with respect to the primary.

Note 2: Standard application is driving two lamps. Three lamps can also be driven as follows: 1. A lamp drawing twice the inverter's rated output current can be driven by connecting


terminals 3 and 4. 2. A lamp drawing 1.2 times the inverter's rated output current can be driven by opening terminal 4.

3. A lamp drawing the invertien's rated output current can be driven by connecting terminals 4 and 5.

# **TDK DC to AC Inverters**

# CXA Series, 3 to 9 Watts (Continued)

# **Shapes and Dimensions**



Dimensions in mm [inches]

## **Electrical Characteristics**

|                           |                      | uotorioti                                   |                                           |                | TATA I MANA           | Econyone         | y Weight | Configuration |
|---------------------------|----------------------|---------------------------------------------|-------------------------------------------|----------------|-----------------------|------------------|----------|---------------|
| Part No.                  | input voltage<br>(V) | Open circuit<br>output volta<br>(AC Vrms) h | Guinout voita<br>ges (AC Viros)<br>gu max | re (aug mes) . | Efficiency<br>(%) typ | Frequenc<br>Idtz | (g)      |               |
| CXA-K10A                  | 5±10%                | 600                                         | 300                                       | 5 x 2          | 80                    | 30               | 11       | Fig. 1        |
| CXA-K10L                  | 12±10%               | 600                                         | 300                                       | 5 x 2          | 80                    | 30               | 11       | Fig. 1        |
| CXA-L10A                  | 5±10%                | 900                                         | 450                                       | 5×2            | 80                    | 30               | 11       | Fig. 1        |
| CXA-L10L                  | 12±10%               | 900                                         | 450                                       | 5 x 2          | 80                    | 30               | 11       | Fig. 1        |
| CXA-M10A-L                | 5±10%                | 1200                                        | 600                                       | 5×2            | 80                    | 30               | 27       | Fig. 2        |
| CXA-M10L-L                | 12±10%               | 1200                                        | 600                                       | 5 x 2          | 80                    | 30               | 27       | Fig. 2        |
| CXA-M10M-L                | 24±10%               | 1200                                        | 600                                       | 5 x 2          | 80                    | 30               | 27       | Fig. 2        |
| CXA-N20L-L                | 12±10%               | 600                                         | 300                                       | 10 x 2         | 85                    | 30               | 27       | Fig. 2        |
|                           | 12±10%               | 900                                         | 450                                       | 10 x 2         | 85                    | 30               | 27       | Fig. 2        |
| CXA-P20L-L<br>CXA-K10L-FS | 8-16±10%             | 1100                                        | 330                                       | 7              | 80                    | 36               | 27       | Fig. 3        |
|                           |                      |                                             |                                           |                |                       |                  |          |               |

## Impressum

Diese Bedienungsanleitung ist eine Publikation der Conrad Electronic GmbH, Klaus-Conrad-Straße 1, D-92240 Hirschau. Alle Rechte einschließlich Übersetzung vorbehalten. Reproduktionen jeder Art, z. B. Fotokopie, Mikroverfilmung, oder die Erfassung in EDV-Anlagen, bedürfen der schriftlichen Genehmigung des Herausgebers.

Diese Bedienungsanleitung entspricht dem technischen Stand der beschriebenen Geräte und Bauteile bei Drucklegung.

Nachdruck, auch auszugsweise, verboten.

100 % Recyclingpapier. Chlorfrei gebleicht.

© Copyright 1998 by Conrad Electronic GmbH; Printed in Germany.

Änderung in Technik, Farben und Ausstattung behalten wir uns ausdrücklich vor.

\*227-08-98/36-M

## Hinweis zu den LCD-Punktmatrix-Modulen Best.-Nr. 183369 - 187372 Standaranschlussmöglichkeit für die CM-Module (2x8 .... 40x4)

CM-Module mit 16 Pin Schnittstelle:

Pin 1 ..... 14 Standard (siehe Datenblatt)

Pin 15 + 5 V (Vorwiderstand in Zuleitung ca. 6 Ohm)

Pin 16 Gnd (0V)

Auf der Modul-Rückseite (siehe Anleitungs-Aufdruck) die Jumper J2, J4 und J6 überbrücken

## oder

als 14 Pin Schnittstelle (Pin 15 und 16 leer): Pin 1 ...... 14 Standard (siehe Datenblatt) Beleuchtung extern + 5 (Vorwiderstand ca. 6 Ohm) an Anode Gnd (OV) an Kathode

Bitte entnehmen Sie die möglichen Jumper-Kombinationen auf der Rückseite aller Module (aufgedruckt).