
1 J. Kaiser, IVS-EOS Embedded Networks 12

Concepts and Mechanisms
of Dependable Systems

Summer Term 2011!

2 J. Kaiser, IVS-EOS Embedded Networks 12

Paulo Veríssimo, Luís Rodrigues:
Distributed Systems for System Architects
Kluwer Academic Publishers, Boston, January 2001

Eugen Schäfer: "Zuverlässigkeit, Verfügbarkeit und Sicherheit in der Elektronik,
Eine Brücke von der Zuverlässigkeittheorie zu den Aufgaben der Zuverlässigkeits-
praxis", 1. Auflage, Vogel Verlag, 1979, ISBN 3-0823-0586-8,

Stefan Poledna: "Lecture on Fault-Tolerant Systems", Vorlesungsfolien, Institut
für Technische Informatik, TU Wien, SoSe 1996

References and Readings:

3 J. Kaiser, IVS-EOS Embedded Networks 12

Dependability

The dependability of a system is its ability to deliver specified services to the end users
so that they can justifiably rely on and trust the services provided by the system.

The function or service is the behaviour which can be observed at the interface
to other systems which interact with the observed system. Quality referes to the
conformance to the specifcations.

Algirdas Avižienis, Jean-Claude Laprie, Brian Randell

Fundamental Concepts of Dependability (2001)!

UCLA CSD Report no. 010028 !
LAAS Report no. 01-145 !
Newcastle University Report no. CS-TR-739!
!

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans. Dependable
Secur. Comput. 1, 1 (January 2004), 11-33. !

4 J. Kaiser, IVS-EOS Embedded Networks 12

Security is defined as the absence of unauthorized access to, or handling
of, system state. This includes multiple aspects as unauthorized
disclosure of information (confidentiality), unauthorized change of
information (integrity) and stopping or slowing down authorized access
to information (availability). The fault model for security particularly
copes with faults originating from intended malicious attacks to the
system. !

Security

5 J. Kaiser, IVS-EOS Embedded Networks 12

Dependability Tree

will be treated later!

focus in!
this course!

6 J. Kaiser, IVS-EOS Embedded Networks 12

Dependability has several attributes, including reliability, availability, maintainability, security !
(with aspects like privacy, confidentiality and integrity) and safety.!
!
Reliability: !Reliability of a system for a period (0,t) is the probability that the system is

continuously operational (i.e., does not fail) in time interval (0,t) given that it
is operational at time 0.!

!
Availability: !Availability of a system for a period (0,t) is the probability that the system is

available for use at any random time in (0,t).!
!
Safety: !Safety of a system for a period (0,t) is the probability that the system will not

incur any catastrophic failures in time interval (0,t).!
!
Maintainability: !Maintainability of a system is a measure of the ability of the system to

undergo maintenance or to return to normal operation after a failure.!
!

Attributes of Dependability!

7 J. Kaiser, IVS-EOS Embedded Networks 12

Error Detection

Reconfiguration

Recovery

e.g. Error Correcting Codes

n-out-of - m - Majority Voting

(Explizit) Fault-Treatment Fault-Masking

Mechanisms of Fault-Tolerance

All Mechanisms of Fault-Tolerance are based on Redundancy
• Information Redundancy
• Component Redundancy
• Time Redundancy

Static Redundancy Dynamic Redundancy

Damage Assessment
and Confinement

Fault-
Treatment

8 J. Kaiser, IVS-EOS Embedded Networks 12

Impairments:!
!

Faults, errors, failures!

9 J. Kaiser, IVS-EOS Embedded Networks 12

The Cause-Effect-Chain: Classifying Impairments

Fault

Error

Failure

inherently
unavoidable

faulty state,
e.g. memory or
register contents

a fault may probably cause
a erroneous change of the system
state.

an error may cause a change of the
system behaviour

deviation from the
specified behaviour.

this must be treated!
a faulty state must be
recovered to a correct
state.

this cannot be
tolerated because it
becomes visible at
the system's
interface and may be
propagated to other
systems.

failure of a physical component
or a faulty statement in a program. Methods of

fault
avoidance

Methods of
fault-
tolerance

cannot be handled
by the system.

action from outside
needed. May lead to
a disaster in safety-
critical apps.

10 J. Kaiser, IVS-EOS Embedded Networks 12

The Cause-Effect-Chain: Classifying Impairments

transitions:!
!
fault → error: !A fault which has not been activated by a computation is called!

! !dormant. A fault is activated if it causes an error.!
!
error→ failure: !An error is latent if it has not yet lead to a failure or has been!

! !detected by some error detection mechanism.!
! !An error is effective if it caused a failure.!

!
failure→ fault: !A fault is caused if the error becomes effective and the specified!

! !service is affected. This failure can be propagated and appears as!
! !a fault on a higher system layer or in a connected component.!

* Algirdas Avižienis, Jean-Claude Laprie, Brian Randell: Fundamental Concepts of Dependability!

*!

11 J. Kaiser, IVS-EOS Embedded Networks 12

The Cause-Effect-Chain: Classifying Impairments

Error Propagation!

* Algirdas Avižienis, Jean-Claude Laprie, Brian Randell: Fundamental Concepts of Dependability!

*!

12 J. Kaiser, IVS-EOS Embedded Networks 12

C: System component

C
internal
failure

fault class

The fault semantics describes the assumptions about the effect of internal failures on the
observable behaviour of a system component. It thus describes an abstraction of internal
failures.

F

S has the failure semantics of F

Abstracting Failures: Failure Semantics

Examples:
Omission-Failure Semantics
Crash-Failure Semantics

Problem:
The mechanisms to handle
component failures are related to
the assumed fault class.

It has to be guaranteed that the
fault class F is enforced by the
system, i.e. no failure inside the
component may lead to a fault not
covered by the failure semantics
visible at the interface.

13 J. Kaiser, IVS-EOS Embedded Networks 12

Hierarchy of failures in a networked system

-  processes may fail!
-  the network may fail!

-  in the temporal domain!
-  in the value domain!
-  benign!
-  arbitrary (malicious)!

What may fail?!

How it may fail?!

-  many processes!
-  processes cooperate by sending and receiving messages!

System!
assumptions:!

14 J. Kaiser, IVS-EOS Embedded Networks 12

Fail Stop

Crash Failure

Omission Failure

Timing (Performance)
 Failure

Byzantine Failures
(fail uncontrolled)

Hierarchy of Failures
Byzantine Failure:
Arbitrary, uncontrolled.

Value Failures:
Corrupted value delivered to all nodes.

Timing (Prerformance) Failures:
Correct values but too early or too late.

Omission Failures:
Special class of timing failures. Correct values are
available in time or not at all.

Crash Failures:
Component does not deliver any data.

Fail Stop:
Failed component stops to produce results.
Components are able to diagnose the Crash
Failure correctly.

Membership Protocols

 Value Failures

System diagosis / Majority decisions

 Consensus Protocols
(Byzantine Agreement)

15 J. Kaiser, IVS-EOS Embedded Networks 12

fail stop crash omission timing
(performance)

value byzantine

temporal domain only

temporal + value domain

masking
mapping

resend, time-out, duplicate msg. recognition and removal,
check sum, replication, majority voting.

Fault Model and Failure Semantics

the same!
faulty value!
perceved by!
all nodes!

different nodes!
may see !
different values!

too early or!
too late!

16 J. Kaiser, IVS-EOS Embedded Networks 12

Fault Class affects: description

fail stop process A process crashes and remains inactive.

 All all participants safely detect this state.

crash process A process crashes and remains inactive.

 Other processes may not detect this state.

omission channel A message in the output message buffer of

 one process never reaches the input message
 buffer of the other process.

- send om. channel A process completes the send but the respective
 message is never written in its send output buffer.

- receive om. channel A message is written in the input message buffer
 of a process but never processed.

byzantine process An arbitrary behaviour of a process.

Fault Model and Failure Semantics

17 J. Kaiser, IVS-EOS Embedded Networks 12

Reliable 1-to-1 Communication:

Validity: every message which is sent (queued in the out-buffer of a

 correct process) will eventually be received (queued in the
 in-buffer of an correct process)

Integrity: the message received is identical with the message sent and

 no message is delivered more than once.

Validity and integrity are properties of a channel!

Fault Model and Failure Semantics

18 J. Kaiser, IVS-EOS Embedded Networks 12

Fault Model and Failure Semantics

UDP provides a Channels with Omission Faults and doesn't guarantee any order.
TCP provides a Reliable FIFO-Ordered Point-to-Point Connection (Channel)

Mechanisms Effect

sequence numbers assigned to packets FIFO between sender and receiver.

 Allows to detect duplicates.

acknowledge of packets Allows to detect missing packets on the

 sender side and initiates retransmission

Checksum for data segments Allows detection of value failures.

Flow Control Receiver sends expected "window size"

 characterizing the amount of data for
 future transmissions together with ack.

19 J. Kaiser, IVS-EOS Embedded Networks 12

How to determine the reliability of a systems?

Structure-based modelling:

• identifiable independent components

• every component has its individual fixed reliability

• the system is composed from multiple interconnected components

• the construction of the model is based on the connection structure

20 J. Kaiser, IVS-EOS Embedded Networks 12

Determining reliability quantitatively by reliability diagrams

Probability of a correctly working component:
For every part of the system we distinguish two states:

• intact (correctly working component)
• failed

C-Probability (probability of working correctly) of a component is defined by:
Probability that the component exhibits the specified behaviour.

A system is fault-tolerant, if it is showing the overall specified behaviour while some components fail.

Reliability Diagrams (do not mix up with electrical schematics) :
Abstracting a system in components. Every component has a specified reliability.

• serial dependency:

• parallel dependency:

C1 C2 C3 Cn

• serial/parallel dependency: C1

C2

Cn

•
•

C1 C2

C3

21 J. Kaiser, IVS-EOS Embedded Networks 12

Pseries = P (C1 intact) and P(C2 intact) andP(Cn intact)

Assumption: The properties (Ci intact) (i=1,..,n) are independent.

 Pseries = P (C1 intact) • P(C2 intact) • •P(Cn intact)

with pi : probability of unfailed component (C-probability):

 Pseries = p1•p2• •pn

Examplel:

n identical Components:

Pseries for pi

n, n = 5, pi = 0,99: Pseries = 0,995 = 0,95
Pseries for pi

n, n = 5, pi = 0,70 : Pseries = 0,705 = 0,16

Probability for a correctly working system:

C1 C2 C3 Cn Serial dependencies!

22 J. Kaiser, IVS-EOS Embedded Networks 12

Probability of failure (F-probability) = 1 - C-probability
(correct and failed are complementary events).

Pparallel = P (C1 failed) and P(C2 failed) andP(Cn failed)

Assumption: The properties (Ci failed) (i=1,..,n) are independent..

 Pparallel = P (C1 failed) • P(C2 failed) • •P(Cn failed)

pi : F-probability of component i:

 Pparallel = 1 - (p1•p2• •pn)
Example F-probability:

n identical Components:

Pparallel for pi

n, n = 5, pi = 1 - 0,99 : Pparallel = 1 - 0,015 = 1- 0,0000000001 = 0,9999999999
Pparallel for pi

n, n = 5, pi = 1- 0,70 : Pparallel = 1 - 0,305 = 1 - 0,00243 = 0,99757

C1

C2

Cn

•
•

Probability for a correctly working system:
parallel dependencies!

23 J. Kaiser, IVS-EOS Embedded Networks 12

Example TMR (Triple Modular Redundancy: 2-out-of-3 system)!

C1!

C2!

C3!

Voter!

reliability diagram

P TMR = (p3 + 3 p2 • (1 -p)) • pvoter!
!
p = 0,9, pvoter = 0,99: P TMR = (0,93 + 3• 0,92 • (1 -0,9)) • 0,99!

! ! ! !
! ! ! = (0,729 + 3• 0,81 • (1 -0,9)) • 0,99!

!
! ! ! = (0,729 + 2,43 • 0,1) • 0,99 = 0,972 • 0,99!

!
! ! ! = 0,96228!

(electr.) block schematics
C1!

C1!

C2!

C2!

C3!

C3!

Voter!

C2! C3! C1!

24 J. Kaiser, IVS-EOS Embedded Networks 12

Example Pair&Spare (3-out-of-4-System)

K1!

K2!

V1!

(electr.) block schematics

K3!

K4!

V3!

V2!

K1!

reliability diagram

K2!

K1!

K1!

K3!

K3!

K2!

K2!

K4!

K4!

K3!

K4!
V3!V1! V2!

K1! K2! K3! K4!

25 J. Kaiser, IVS-EOS Embedded Networks 12

P P&S = (p4 + 4 p3 • (1 - p)) • pvoter!
!
p = 0,9, pvoter = 0,99: P P&S = (0,94 + 4• 0,93 • (1 -0,9)) • 0,99!

! ! ! !
! ! ! = (0,656 + 4• 0,73 • (1 -0,9)) • 0,99!

!
! ! ! = (0,656 + 2,92 • 0,1) • 0,99 = 0,948 • 0,99!

!
! ! ! = 0,9385!

!
p = 0,9, pv1,2 = 0,99, pv3= 0,999: !

! ! !!
! ! P P&S = (0,94 + 4• 0,93 • (1 -0,9)) • 0,992 • 0,999!
! ! ! !
! ! ! = (0,656 + 4• 0,73 • (1 -0,9)) • 0,979!

!
! ! ! = (0,656 + 2,92 • 0,1) • 0,99 = 0,948 • 0,9879!

!
! ! ! = 0,928!

Example Pair&Spare (3-out-of-4-System)

26 J. Kaiser, IVS-EOS Embedded Networks 12

Probability that exactly k defined components are correct!
(components 1,..,k), while the other n-k components failed!
(componenten k+1,...,n) is given by:!
!

!Pk-aus-n = p1 • p2 • • pk • (1 - pk+1) • (1 - pi+ 2) • • (1- pn)!
!
There are possibilities, to select i components out of n components:!
!

! Pk-out-of-n = Σ pi • (1 - p)n- i!
!

! !

k-out-of-n - systems

Systems of n components in which at least k components are working correctly.

n!
i!(!)!

n!
i!(!)!

i=k!

n!

Example: 2-out-of-3 System: p2 • (1 - p)3-2 + p3 • (1 - p)3-3 = 3 • p2 •(1 - p) + p3 • 1!
3!
2!(!)! 3!

3!(!)!

27 J. Kaiser, IVS-EOS Embedded Networks 12

How to derive the probability
of component failure ?

28 J. Kaiser, IVS-EOS Embedded Networks 12

λ(t)!

period of!
constant failure rate!

Infant!
mortality!

Wear out!

t!

Burn in!

failure rate!

The "bath tub" curve!

Typical failure rates:!
VLSI-Chip: 10 -8 failures/h = 1 failure during 115000 years!

typical failure rate! increased failure rate!
because of aging!

Where to start? Counting the number of failing components over time.!

29 J. Kaiser, IVS-EOS Embedded Networks 12

Note: !
!
The failure rate is defined relative to the number of correct
components. In a certain time interval, if always the same number of
components fail, the failure rate increases relatitively to the number of
correct components that becomes smaller by every failed component. !

30 J. Kaiser, IVS-EOS Embedded Networks 12

Dependability measures

Probability of failure F(t)
probability to fail in the interval [0,T], T < ti .

Probability density function f(t)
f(t) models how failures probabilities are distributed over time
f(t) • dt is the probability that a failure occurs in interval (t, t+dt))

Lifetime T
Time interval from the mission start to a non-repairable failure

for non repairable systems
R(t) is a monotonely decreasing
function. R(0) ≤ 1, R(∞) = 0

Reliability R(t)
Probability that a component did not fail until time ti.
F(t) is the complement to R(t).

 R(t) = 1 - F(t)

Failure Rate λ (t)
number of failures per time unit

f(t) =
 dF(t)

 dt
= -

 dR(t)

 dt

31 J. Kaiser, IVS-EOS Embedded Networks 12

Dependability measures

failure rate λ (t)
number of failures per hour

R(t)

F(t)

λ(t)

R(t) = e -λt	

F(t) = 1 - e -λt	

100%

100%

λ = const.

f(t) f(t) = λe -λt =	

λ	

Remember: The failure rate is defined
relativly to the number of correct
components. In a certain time interval, if
always the same number of components
fail, the failure rate increases relatitively
to the number of correct components
that becomes smaller by every!
failed component. !
!
If the failure rate remains constant wrt.
the set of correct components, this
results in an exponential distribution for
the reliability R(t).!

 dF(t)

 dt

32 J. Kaiser, IVS-EOS Embedded Networks 12

Life time modelling!

t!

f(t)!

F(t2)-F(t1): Probability that the system fails !
between t1 and t2.!

F(t): Area below the curve represents the!
probability that the system has failed!
until t. F(t1) = ∫ f(t1)!

f(t): !PDF: Probability Density Function !
F(t): !CDF: Cumulative Density Function. For t→∞ : F(t) = ∫ f(t) =1!

t1! t2!

f(t)·dt : Probability that the system fails!
in the interval (t, t+ dt).!

t!

dt!

λ	

33 J. Kaiser, IVS-EOS Embedded Networks 12

Probability distribution for human life!

failure probablity F(t)!

failure rate λ (t)!

Reliability R(t) !

probability density f(t)!

34 J. Kaiser, IVS-EOS Embedded Networks 12

Parameter ! ! !Symbol ! !Unit!
!
life time ! ! ! !T ! !h!
failure probability ! ! !F ! !%!
reliability! ! ! !R ! !%!
probability density! ! !f ! !%/h!
failure rate ! ! !λ 	
 	
1/h
!

Summary of Measures!

35 J. Kaiser, IVS-EOS Embedded Networks 12

Assuming λ (t) = const. we have:

 = MTBF = MTTFF = MTTF

1

λ	

MTBF : Mean Time Between Failures

MTTFF: Mean Time To First Failure

MTTF : Mean Time To Failure

Dependability measures

36 J. Kaiser, IVS-EOS Embedded Networks 12

Availability
time in which the system works correct
related to the (down-) time when it is
repaired.

A = U (Up time)

M (Mission time)

M = U + TR (Repair time)

A =
 MTBF

MTBF + MTTR

Approximation of dependability measures

R = 1 - F = M (Mission time)

 MTBF (>> M) ∼ e -λt	
1 -! Reliability!

37 J. Kaiser, IVS-EOS Embedded Networks 12

Availability Classes

1 year = 525600 minutes = 8760 h

system type non-availability availability class
 minutes/year %

non-adminitrated 50 000 ~ 90 1
systems

administrated systems 5 000 99 2

well admin. syst. 500 99,9 3

fault-tolerant syst. 50 99,99 4

high availability syst. 5 99,999 5

very high avail. syst. 0,5 99,9999 6

ultra-high avail. syst. 0,05 99,99999 7

class: ⎣log10 (1/(1-A))⎦

Dependability measures

38 J. Kaiser, IVS-EOS Embedded Networks 12

Fault diagnosis in
Distributed Systems

39 J. Kaiser, IVS-EOS Embedded Networks 12

System diagnosis to detect and localize faults!

I! D!
faulty!

faulty! ?!
Assumptions: !
- components are either faulty or correct.!
- a test is complete and correct.!
- a correct process wil deliver a correct result.!
- a faulty process will deliver an arbitrary result.!
- a central correct observer evaluates the result of the test.!

F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem of diagnosable !
systems. IEEE Trans. Electron. Comput., EC--16:848--854, 1967!

40 J. Kaiser, IVS-EOS Embedded Networks 12

?!
d!

i! d!

Assumptions: !
- components are either faulty or correct.!
- a test is complete and correct.!
- a correct process wil deliver a correct !
 result.!
- a faulty process will deliver an arbitrary !
 result.!
- a node is marked as faulty if it has an !
 incoming edge originating from a correct !
 node, which has tested this node as faulty!
- a central correct observer evaluates the !
 result of the test.!

f – diagnosability!

1-diagnosable system!

?!

?!

D ?! I!

D ?!

D?!I ?!

I ?!

I!

I!

f – diagnosable :!
A system with n components is f–diagnosable if!
n≥ 2f +1 and every component test at least f other components.!
The components do not test each other.!

41 J. Kaiser, IVS-EOS Embedded Networks 12

d!

d!
i!

i!

d!
i!

d!

i!

d!

d!
?!

?!

?!?!

?!

Will diagnosis deliver an unambiguous result?!

42 J. Kaiser, IVS-EOS Embedded Networks 12

d!

d!
i!

i!

d!
i!

d!

i!

d!

d!

d!

d!i!

i!

i!

2-diagnosable system!

Assumptions: !
- components are either faulty or correct.!
- a test is complete and correct.!
- a correct process wil deliver a correct !
 result.!
- a faulty process will deliver an arbitrary !
 result.!
- a node is marked as faulty if it has an !
 incoming edge originating from a correct !
 node, which has tested this node as faulty!
- a central correct observer evaluates the !
 result of the test.!

43 J. Kaiser, IVS-EOS Embedded Networks 12

d!

i!
i!

i!

d!
d!

d!

d!

i!

d!

d!

d!i!

i!

d!

d!

i!
i!

i!

d!
d!

d!

d!

i!

d!

i!

i!d!

d!

i!

 3 faulty nodes

fault cannot be detected (obviously) because the!
fault assumption (max. 2 faults) is violated.!

44 J. Kaiser, IVS-EOS Embedded Networks 12

Assumption:!
Node is the unit of fault-containment and replacement!!
!
Problems:!
1. What kind of faults have to be considered?!

!Fault model.!
!
2. Can we replace the central evaluation component?!

!Distributed consensus.!
!
3. Can fault-detection always successfully be performed?!

!The problem of synchrony.!

45 J. Kaiser, IVS-EOS Embedded Networks 12

The Network or the Node?!

Fault-assumptions in Distributed Systems!

46 J. Kaiser, IVS-EOS Embedded Networks 12

Formalisation by Chandra and Tueg (1996):!
!
Strong Acuracy (SA): No correct process ever is considered to be faulty.!
(safety criterion)!
!
Strong Completeness (SC): A faulty process eventually will be detected by every !
correct process (liveness criterion).!

Failure Detectors and Consistency of Distributed Failure Detection!

Intuitive Consistency Criterion:!
!
When a process fails, all correct processes are able to detect the failure!
and achieve consensus about the faulty process.!

47 J. Kaiser, IVS-EOS Embedded Networks 12

What are the conditions to achieve SA and SC?

Assumptions:
1. Transmission delays can be bounded.
2. Processes can generate and send a "heartbeat" message periodically in a
 bounded time interval.
3. We assume a crash failure model, i.e. the network is fault-free.

Heartbeat-mechanism is a perfect failure detector!

Assumptions:
1. Transmission delays can be bounded.
2. Processes can generate and send a "heartbeat" message periodically in a
 bounded time interval.
3. We assume an omission failure model, however the omissions may be bounded.

Apply mechanisms to mask omissions.!

48 J. Kaiser, IVS-EOS Embedded Networks 12

FT communication - Handling message failures!

P1!

P2!

P3!

P1!
P2!
P3!
P4!

P1!
P2!
P3!
P4!

Static Redundancy: Masking Failures!

component redundancy! time redundancy!

Dynamic Redundancy: Detection + Recovery!
Time-out!

“forward”
error
recovery!

“backward” error
recovery!
!
(requires add.!
ack!)!

49 J. Kaiser, IVS-EOS Embedded Networks 12

FT Communication - Handling sender failures!

P1!
P2!
P3!
P4!

Unreliable Multicast!

P1!
P2!
P3!
P4!

Best effort Multicast!

P1!
P2!
P3!
P4!

Reliable Multicast!

50 J. Kaiser, IVS-EOS Embedded Networks 12

Imperfect failure detectors!

Assumptions: !
!
Temporal assumptions:!
1.  the latency of messages cannot be bounded (asynchronous model),!
2.  processes cannot always produce a heartbeat in a bounded interval.!
!
Assmptions about the number of faults:!
3. !The number of omissions cannot be bounded.!
!

No deterministic decision can be derived whether a process has !
failed or not.!

51 J. Kaiser, IVS-EOS Embedded Networks 12

Consensus in Distributed Systems!

Goal: !A group of processes agree on a common value.!
! !Every process proposes a value once.!
! !Every process decides a value once.!
! !Proposed and decided values are 0 or 1 (simplification).!

The following conditions must be achieved:!
!
Consistency: !All processes eventually agree on the same value and!
(Agreement) !the decision is final.!
!
Non Triviality: !The decided value has been proposed by some process.!
(Validity)!
!
Termination: !Every correct process decides on the common value within!

! !a finite time interval.!

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one!
faulty process. Journal of the ACM, 32(2):374{382, April 1985.!

FLP Impossibility Result!

52 J. Kaiser, IVS-EOS Embedded Networks 12

Fault-Tolerant Consensus!

P1!

P2!

P3!

P4!

v(w)!

w!

w!

w!

a (w)!

v(w): suggest(w)!
a(w): accepted (w)!
d(w): decided (w)!

a (w)!
a (w)!

d(w)!

Assumptions: !
1.  The latency of messages is bounded.!
2.  Failure detection is reliable.!

3. !Dynamic redundancy with fault treatment.!

d(w)!

P5! w!

d(w)!

53 J. Kaiser, IVS-EOS Embedded Networks 12

P1!

P2!

P3!

P4!

v(w)!

w!

w!

w!

a (w)!

a (w)!
a (w)!

d(w)!

v(w)!

a (w)! d(w)!

P5! w!
a (w)! d(w)!

w!

w!

Assumptions: !
1.  The latency of messages is bounded.!
2.  Failure detection is reliable.!

3. !Dynamic redundancy with fault treatment.!

Fault-Tolerant Consensus!

v(w): suggest(w)!
a(w): accepted (w)!
d(w): decided (w)!

54 J. Kaiser, IVS-EOS Embedded Networks 12

How much redundancy is needed to achieve consensus
about the faulty nodes?!

The results of Preparata, Metze & Chien say: 2f+1!
But: Strong assumptions about testability!
Evaluation centralized! No consensus is needed. !

Is this majority also enough for distributed consensus?!
Does the fault model influence the redundancy requirements? !

Q!

DETECTION!
DISSEMINATION!
EVALUATION!

3 STEPS!

55 J. Kaiser, IVS-EOS Embedded Networks 12

Byzantine Faults and Byzantine Agreement!
!
L. Lamport, R. Shostak, M. Pease: „The byzantine generals‘ problem“, ACM TC on Progr. !
Languages and systems, 4(3), 1982!

The Story: !

enemy!
army!

G!

G!

G!
Goal: !
Agreement about a common action.!
Attack or retreat? Only a joint attack will be successful,!
otherwise the allies will be defeated.!
!
Problem:!
A (single) traitor !
!
Assumptions:!
Communication via a reliable point-to-point network.!
!
Under which conditions and by which protocol is it possible to!
derive a correct majority vote?!

56 J. Kaiser, IVS-EOS Embedded Networks 12

T!

L!

L!

T: Traitor!
L: Loyal general!

enemy !
army!

attack!

attack!

retreat!

retreat!

attack!
retreat!

retreat!

Even multiple rounds will not help to achieve agreement because a loyal general
never knows who is the traitor.!

Byzantine Faults and Byzantine Agreement!

57 J. Kaiser, IVS-EOS Embedded Networks 12

T!

A/0!

C/1!

0!

0!

B/1!

T!

A/0!

C/1!

0!

1!

1!

B/1!

1!

1!

1! 1. round!

messages, that reach A! messages, that reach B!

Agreement on a value in two rounds!

During the first round no unambiguous decision is possible because A and B!
don't agree.!

Distribution of values!

Byzantine Faults and Byzantine Agreement!

58 J. Kaiser, IVS-EOS Embedded Networks 12

T!

A!

C!

0!

B!

T!

A!

C!

0!

1!

1!

B!

1!1! 1. case!
sender is the traitor!

1!

1!
0!

maj (0,1,1) = 1!

maj (0,1,1) = 1!

maj (0,1,1) = 1!

T!

A!

C!

B!

T!

A!

C!

0!

1!

1!

B!
1!

1!
2. case!
traitor disseminates a!
faulty value.!

1!

1! 0!

maj (0,1,1) = 1!maj (0,1,1) = 1!

1!

2. round!
agreement on a value proposed by some !
participant.!

1.  round!
distribution of values from some participant!

59 J. Kaiser, IVS-EOS Embedded Networks 12

- Participants are processes.!
!
- Evenry process locally desides by majority voting on the value that is !
 decided by evera correct process.!
!
- The value decided by the majority of processes is the corect value.!
!
- To detect f byzantine faults, !
!

! ! (3f + 1) processes are needed.!

Byzantine Faults and Byzantine Agreement!

60 J. Kaiser, IVS-EOS Embedded Networks 12

In a centralized evaluation, cheating is impossible, i.e. the central
observer either receives a "good" or "faulty" result. Therefore, simple
majority 2f+1 is sufficient.!
!
In the distributed case, a faulty node may send different test outcomes
to different nodes. Informally, the good nodes need to achieve a
majority without the bad nodes. I.e. even if a good node has a wrong
view on the state of some other node, it distributes this view
consistently and no byzantine behaviour has to be considered in the
subset of good nodes. Therefore in this subset, also simple majority is
sufficient. !
!
The equation 3f +1 can be written as: (2f + 1) + f !

Byzantine Faults and Byzantine Agreement!

61 J. Kaiser, IVS-EOS Embedded Networks 12

Failure Semantics and Coverage

A supposedly fault-tolerant system may fail if any of the assumptions
on which its design is based should prove to be false. !

David Powell, Failure Mode Assumptions and Assumption
Coverage, Research Report 91462, March 1995!

assumption ! !redundancy needed!
!
k fail stop failures !k+1!
k value failures !2k+1!
k arbitrary failures !3k+1!

failure assumptions have to be enforced in the system! !

62 J. Kaiser, IVS-EOS Embedded Networks 12

Def. 1. Service item si is correct iff: (vsi∈SVi) ⋀ (tsi∈STi) where SVi
and STi are respectively the specified sets of values and times for
service item . si .!

The service delivered by a system can be defined in terms of a sequence of
service items, si, i = 1,2,… each characterized by a tuple ⟨vsi ,tsi⟩ where vsi is
the value or content of service item si and tsi is the time of observation of
service item si .!

SVi = {svi} : ! ! !Set of correct values ! ! !!
!
STi = [stmin (i), stmax (i)] ! !Correct time interval!

Failure Semantics and Coverage

63 J. Kaiser, IVS-EOS Embedded Networks 12

Arbitrary value error: si : vsi ∉ Svi!
!
Noncode value error: si : vsi ∉ CV where CV defines a code.!
!
Arbitrary timing error: si : tsi ∉ Sti !
!
Early timing error: si : tsi < min(STi)!
!
Late timing error (or performance error): si : tsi > max(STi)!
!
Infinitely late timing error or omission error: si : tsi = ∞!
!
Impromptu error: si : (vsi = ⊥) ⋀ (tsi = ⊥) since the admissible value and time
sets are undefined si : (vsi ∉ SVi) ⋀ (tsi ∉ STi)!

Formal Definition of failures

64 J. Kaiser, IVS-EOS Embedded Networks 12

Vnone:= ∀i, vsi ∈ Svi : No value errors occur (every service item is of correct value).!
!
VN:= ∀i, (vsi ∈ Svi) , (vsi ∉ CV) : The only value errors that occur are non-code value errors!
(every service item value is either correct or noncode).!
!
Varb:= ∀i, (vsi ∈ Svi) ∨(vsi ∉ Svi) ≣ true : Arbitrary value errors can occur.!

Formal definition of failures

Vnone! VN! Varb!

 Value error implication graph!

65 J. Kaiser, IVS-EOS Embedded Networks 12

Tnone : !No timing errors occur (every service item is delivered on time).!
TO : !The only timing errors that occur are omission errors.!

!(every service item is deliverd on time or not at all)!
TL : !The only timing errors that occur are late timing errors !

!(every service item is delivered on time or too late)!
TE : !The only timing errors that occur are early timing errors !

!(every service item is delivered on time or too early)!
Tarb : !Arbitrary timing errors can occur.!
Tp : Permanent Timing failure: a component delivers correctly timed service items !

!up to a particular item and then ceases (omits) to deliver service items.!
TBk : Bounded ommission degree: a component omits to deliver some service !

!items but, if more than k contiguous items are omitted then all further items !
!are omitted.!

Formal definition of failures

66 J. Kaiser, IVS-EOS Embedded Networks 12

TE!

Tnone!

Tarb!

TL!

TO!

TBk!

TP!

Formal definition of failures

 Timing error implication graph!

67 J. Kaiser, IVS-EOS Embedded Networks 12

The failure mode assumption coverage (PX) is defined as the probability
that the assertion X defining the assumed behavior of a component
proves to be true in practice conditioned on the fact that the component
has failed:!
!

! !PX = Pr {X = true⎮ component failed}!

Coverage:!

Varb ⋀ Tarb = 1!
!
Vnone ⋀ Tnone = 0!

All intermediate assumptions thus have a
coverage p∈]0,1[.!

Coverage

68 J. Kaiser, IVS-EOS Embedded Networks 12

Discussion

Does the highest coverage always lead to
the most reliable system?!

69 J. Kaiser, IVS-EOS Embedded Networks 12

Summary and Points to Remember!

•  Strong failure semantics eases distributed system programming.!

•  Redundancy requirements:!

•  In a centralized system and under a non-byzantine fault model,
2f+1 processes can achieve consistent system diagnosis.!

• Under a distributed system model and byzantine faults 3f+1
processes are needed. !

•  Synchrony requirements:!

•  Synchronous systems and bounds on the communication delays
allow deterministic consensus in a distributed system.!

•  In an asynchronous system deterministic consensus is
impossible if one process may be faulty.!

!
 !

