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Dependability 
 
The dependability of a system is its ability to deliver specified services to the end users 
so that they can justifiably rely on and trust the services provided by the system.  
 
The function or service is the behaviour which can be observed at the interface 
to other systems which interact with the observed system. Quality referes to the 
conformance to the specifcations. 
 

Algirdas Avižienis, Jean-Claude Laprie, Brian Randell 

Fundamental Concepts of Dependability (2001)!

UCLA CSD Report no. 010028 !
LAAS Report no. 01-145 !
Newcastle University Report no. CS-TR-739!
!

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004. Basic 
Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans. Dependable 
Secur. Comput. 1, 1 (January 2004), 11-33. !
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Security is defined as the absence of unauthorized access to, or handling 
of, system state. This includes multiple aspects as unauthorized 
disclosure of information (confidentiality), unauthorized change of 
information (integrity) and stopping or slowing down authorized access 
to information (availability). The fault model for security particularly 
copes with faults originating from intended malicious attacks to the 
system. !

Security 
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Dependability Tree 

will be treated later!

focus in!
this course!
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Dependability has several attributes, including reliability, availability, maintainability, security !
(with aspects like privacy, confidentiality and integrity) and safety.!
!
Reliability: !Reliability of a system for a period (0,t) is the probability that the system is 

continuously operational (i.e., does not fail) in time interval (0,t) given that it 
is operational at time 0.!

!
Availability: !Availability of a system for a period (0,t) is the probability that the system is 

available for use at any random time in (0,t).!
!
Safety: !Safety of a system for a period (0,t) is the probability that the system will not 

incur any catastrophic failures in time interval (0,t).!
!
Maintainability: !Maintainability of a system is a measure of the ability of the system to 

undergo maintenance or to return to normal operation after a failure.!
!

Attributes of Dependability!
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Error Detection 

Reconfiguration  

Recovery 

e.g. Error Correcting Codes 
 
n-out-of - m - Majority Voting 

(Explizit) Fault-Treatment Fault-Masking 

Mechanisms of Fault-Tolerance 

All Mechanisms of Fault-Tolerance are based on Redundancy 
•  Information Redundancy 
•  Component Redundancy 
•  Time Redundancy 

Static Redundancy Dynamic Redundancy 

Damage Assessment  
and Confinement 

Fault- 
Treatment 
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Impairments:!
!

Faults, errors, failures!
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The Cause-Effect-Chain: Classifying Impairments 

Fault  

Error 

Failure 

inherently 
unavoidable 

faulty state, 
e.g. memory or 
register contents 

a fault may probably cause 
a erroneous change of the system 
state. 

an error may cause a change of the 
system behaviour 

deviation from the  
specified behaviour. 

this must be treated! 
a faulty state must be 
recovered to a correct 
state. 

this cannot be 
tolerated because it 
becomes visible at 
the system's 
interface and may be 
propagated to other 
systems.  

failure of a physical component 
or a faulty statement in a program. Methods of 

fault  
avoidance 

Methods of 
fault- 
tolerance 

cannot be handled 
by the system. 
 
action from outside 
needed. May lead to 
a disaster in safety- 
critical apps.  
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The Cause-Effect-Chain: Classifying Impairments 

transitions:!
!
fault → error: !A fault which has not been activated by a computation is called!

! !dormant. A fault is activated if it causes an error.!
!
error→ failure: !An error is latent if it has not yet lead to a failure or has been!

! !detected by some error detection mechanism.!
! !An error is effective if it caused a failure.!

!
failure→ fault: !A fault is caused if the error becomes effective and the specified!

! !service is affected. This failure can be propagated and appears as!
! !a fault on a higher system layer or in a connected component.!

* Algirdas Avižienis, Jean-Claude Laprie, Brian Randell: Fundamental Concepts of Dependability!

*!
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The Cause-Effect-Chain: Classifying Impairments 

Error Propagation!

* Algirdas Avižienis, Jean-Claude Laprie, Brian Randell: Fundamental Concepts of Dependability!

*!
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C: System component 

C 
internal 
failure 

fault class 

The fault semantics describes the assumptions about the effect of internal failures on the 
observable behaviour of a system component. It thus describes an abstraction of internal 
failures. 

F 

S has the failure semantics of F 

Abstracting Failures: Failure Semantics 

Examples: 
Omission-Failure Semantics 
Crash-Failure Semantics 

Problem: 
The mechanisms to handle 
component failures are related to 
the assumed fault class. 
 
It has to be guaranteed that the 
fault class F is enforced by the 
system, i.e. no failure inside the 
component may lead to a fault not 
covered by the failure semantics  
visible at the interface. 



13 J. Kaiser, IVS-EOS Embedded Networks 12 

Hierarchy of failures in a networked system 

-  processes may fail!
-  the network may fail!

-  in the temporal domain!
-  in the value domain!
-  benign!
-  arbitrary (malicious)!

What may fail?!

How it may fail?!

-  many processes!
-  processes cooperate by sending and receiving messages!

System!
assumptions:!
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Fail Stop 

Crash Failure 

Omission Failure 

Timing (Performance) 
           Failure 

Byzantine Failures 
(fail uncontrolled) 

Hierarchy of Failures 
Byzantine Failure: 
Arbitrary, uncontrolled. 
 
Value Failures: 
Corrupted value delivered to all nodes. 
 
Timing (Prerformance) Failures: 
Correct values but too early or too late. 
 
Omission Failures: 
Special class of timing failures. Correct values are 
available in time or not at all. 
 
Crash Failures: 
Component does not deliver any data. 
 
Fail Stop: 
Failed component stops to produce results. 
Components are able to diagnose the Crash 
Failure correctly. 
 

Membership Protocols 

     Value Failures 

System diagosis / Majority decisions 

 Consensus Protocols  
(Byzantine Agreement) 
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fail stop crash omission timing 
(performance) 

value byzantine 

temporal domain only 

temporal + value domain 

masking 
mapping 

resend, time-out, duplicate msg. recognition and removal, 
check sum, replication, majority voting. 

Fault Model and Failure Semantics 

the same!
faulty value!
perceved by!
all nodes!

different nodes!
may see !
different values!

too early or!
too late!
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Fault Class  affects:   description 
 
fail stop  process  A process crashes and remains inactive. 

    All all participants safely detect this state. 
 
crash   process  A process crashes and remains inactive. 

    Other processes may not detect this state. 
 
omission  channel  A message in the output message buffer of  

    one process never reaches the input message  
    buffer of the other process. 

- send om.  channel  A process completes the send but the respective 
    message is never written in its send output buffer. 

- receive om.  channel  A message is written in the input message buffer 
    of a process but never processed. 

 
byzantine  process  An arbitrary behaviour of a process. 

  
 

Fault Model and Failure Semantics 



17 J. Kaiser, IVS-EOS Embedded Networks 12 

Reliable 1-to-1 Communication: 
 
 
Validity:   every message which is sent (queued in the out-buffer of a  

  correct process) will eventually be received (queued in the  
  in-buffer of an correct process) 

 
 
Integrity:  the message received is identical with the message sent and  

  no message is delivered more than once.  

Validity and integrity are properties of a channel! 

Fault Model and Failure Semantics 
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Fault Model and Failure Semantics 

UDP provides a Channels with Omission Faults and doesn't guarantee any order. 
TCP provides a Reliable FIFO-Ordered Point-to-Point Connection (Channel) 

Mechanisms     Effect 
 
sequence numbers assigned to packets  FIFO between sender and receiver. 

     Allows to detect duplicates. 
 
acknowledge of packets    Allows to detect missing packets on the 

     sender side and initiates retransmission 
 
Checksum for data segments   Allows detection of value failures. 
 
Flow Control     Receiver sends expected "window size"  

     characterizing the amount of data for  
     future transmissions together with ack. 
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How to determine the reliability of a systems? 

Structure-based modelling: 
 
• identifiable independent components 
 
• every component has its individual fixed reliability 
 
• the system is composed from multiple interconnected components 
 
• the construction of the model is based on the connection structure 
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Determining reliability quantitatively by reliability diagrams 

Probability of a correctly working component: 
For every part of the system we distinguish two states: 
 
• intact (correctly working component) 
• failed 
 
C-Probability (probability of working correctly) of a component is defined by: 
Probability that the component exhibits the specified behaviour. 
 
A system is fault-tolerant, if it is showing the overall specified behaviour while some components fail. 

Reliability Diagrams (do not mix up with electrical schematics) : 
Abstracting a system in components. Every component has a specified reliability. 

•  serial dependency: 
 
 
 
•  parallel dependency: 

C1 C2 C3 Cn 

•  serial/parallel dependency: C1 

C2 

Cn 

• 
• 

C1 C2 

C3 



21 J. Kaiser, IVS-EOS Embedded Networks 12 

Pseries = P (C1 intact) and P(C2 intact) and .......P(Cn intact) 
 
Assumption: The properties (Ci intact) (i=1,..,n) are independent. 
 

 Pseries = P (C1 intact) • P(C2 intact) • ....... •P(Cn intact) 
 
with pi : probability of unfailed component (C-probability): 
 

 Pseries = p1•p2• ..... •pn 
 

Examplel: 
 
n identical Components: 
 
Pseries for pi

n,  n = 5, pi = 0,99:  Pseries = 0,995 = 0,95 
Pseries for pi

n,  n = 5, pi = 0,70 :  Pseries = 0,705 = 0,16 

Probability for a correctly working system: 

C1 C2 C3 Cn Serial dependencies!
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Probability of failure (F-probability) = 1 - C-probability 
(correct and failed are complementary events). 
 
Pparallel = P (C1 failed) and P(C2 failed) and .......P(Cn failed) 
 
Assumption: The properties (Ci failed) (i=1,..,n) are independent.. 
 

 Pparallel = P (C1 failed) • P(C2 failed) • ....... •P(Cn failed) 
 
pi : F-probability of component i: 
 

 Pparallel = 1 - (p1•p2• ..... •pn)  
Example F-probability: 
 
n identical Components: 
 
Pparallel for  pi

n,  n = 5, pi = 1 - 0,99 :  Pparallel = 1 - 0,015  =  1- 0,0000000001  = 0,9999999999 
Pparallel for  pi

n,  n = 5, pi = 1-  0,70 :  Pparallel  = 1 - 0,305    = 1 - 0,00243           = 0,99757 

C1 

C2 

Cn 

• 
• 

Probability for a correctly working system: 
parallel dependencies!
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Example TMR (Triple Modular Redundancy: 2-out-of-3 system)!

C1!

C2!

C3!

Voter!

reliability diagram 

P TMR = (p3 + 3 p2 • (1 -p)  ) • pvoter!
!
p = 0,9, pvoter = 0,99: P TMR = (0,93 + 3• 0,92 • (1 -0,9)) • 0,99!

! ! !  !
! ! !  = (0,729 + 3• 0,81 • (1 -0,9)) • 0,99!

!
! ! ! =  (0,729 + 2,43 • 0,1) • 0,99 = 0,972 • 0,99!

!
! ! ! = 0,96228!

(electr.) block schematics 
C1!

C1!

C2!

C2!

C3!

C3!

Voter!

C2! C3! C1!
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Example Pair&Spare ( 3-out-of-4-System) 

K1!

K2!

V1!

(electr.) block schematics 

K3!

K4!

V3!

V2!

K1!

reliability diagram 

K2!

K1!

K1!

K3!

K3!

K2!

K2!

K4!

K4!

K3!

K4!
V3!V1! V2!

K1! K2! K3! K4!
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P P&S = (p4 + 4 p3 • (1 - p)  ) • pvoter!
!
p = 0,9, pvoter = 0,99: P P&S = (0,94 + 4• 0,93 • (1 -0,9)) • 0,99!

! ! !  !
! ! !  = (0,656 + 4• 0,73 • (1 -0,9)) • 0,99!

!
! ! ! =  (0,656 + 2,92 • 0,1) • 0,99 = 0,948 • 0,99!

!
! ! ! = 0,9385!

!
p = 0,9, pv1,2 = 0,99, pv3= 0,999: !

! ! !!
! !      P P&S = (0,94 + 4• 0,93 • (1 -0,9)) • 0,992 • 0,999!
! ! !  !
! ! !  = (0,656 + 4• 0,73 • (1 -0,9)) • 0,979!

!
! ! ! =  (0,656 + 2,92 • 0,1) • 0,99 = 0,948 • 0,9879!

!
! ! ! = 0,928!

Example Pair&Spare ( 3-out-of-4-System) 
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Probability that exactly k defined components are correct!
(components 1,..,k), while the other n-k components failed!
(componenten k+1,...,n) is given by:!
!

!Pk-aus-n = p1 • p2 • .... • pk • (1 - pk+1) • (1 - pi+ 2) • .... • (1- pn)!
!
There are           possibilities, to select i components out of n components:!
!

! Pk-out-of-n = Σ        pi • (1 - p)n- i!
!

!                  !

k-out-of-n - systems 

Systems of n components in which at least k components are working correctly. 

n!
i!(! )!

n!
i!(! )!

i=k!

n!

Example:  2-out-of-3 System:                      p2 • (1 - p)3-2     +                      p3 • (1 - p)3-3 = 3 • p2 •(1 - p) + p3 • 1!
3!
2!(! )! 3!

3!(! )!
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How to derive the probability 
of component failure ? 
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λ(t)!

period of!
constant failure rate!

Infant!
mortality!

Wear out!

t!

Burn in!

failure rate!

The "bath tub" curve!

Typical failure rates:!
VLSI-Chip: 10 -8 failures/h  = 1 failure during 115000 years!

typical failure rate! increased failure rate!
because of aging!

Where to start? Counting the number of failing components over time.!



29 J. Kaiser, IVS-EOS Embedded Networks 12 

Note: !
!
The failure rate is defined relative to the number of correct 
components. In a certain time interval, if always the same number of 
components fail, the failure rate increases relatitively to the number of 
correct components that becomes smaller by every failed component. !
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Dependability measures 

Probability of failure F(t) 
probability to fail in the interval [0,T], T < ti . 

Probability density function  f(t) 
f(t) models how failures probabilities are distributed over time  
f(t) • dt is the probability that a failure occurs in interval (t, t+dt)) 

Lifetime T 
Time interval from the mission start to a non-repairable failure 

for non repairable systems 
R(t) is a monotonely decreasing 
function. R(0) ≤ 1, R(∞) = 0 

Reliability R(t) 
Probability that a component did not fail until time ti.  
F(t) is the complement to R(t).  
 
                                   R(t) = 1 - F(t) 

Failure Rate λ (t) 
number of failures per time unit 

f(t) = 
           dF(t) 
 

             dt 
=    - 

           dR(t) 
 

             dt 
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Dependability measures 

failure rate λ (t) 
number of failures per hour 

R(t) 

F(t) 

λ(t) 

R(t) = e -λt	


F(t) = 1 - e -λt	


100% 

100% 

λ = const. 

f(t) f(t) = λe -λt =	


λ	


Remember: The failure rate is defined 
relativly to the number of correct 
components. In a certain time interval, if 
always the same number of components 
fail, the failure rate increases relatitively 
to the number of correct components 
that becomes smaller by every!
failed component. !
!
If the failure rate remains constant wrt. 
the set of correct components, this 
results in an exponential distribution for 
the reliability R(t).!

           dF(t) 
 

             dt 



32 J. Kaiser, IVS-EOS Embedded Networks 12 

Life time modelling!

t!

f(t)!

F(t2)-F(t1): Probability that the system fails !
between t1 and t2.!

F(t): Area below the curve represents the!
probability that the system has failed!
until t. F(t1) = ∫ f(t1)!

f(t): !PDF: Probability Density Function !
F(t): !CDF: Cumulative Density Function. For t→∞ : F(t) =  ∫ f(t) =1!

t1! t2!

f(t)·dt : Probability that the system fails!
in the interval (t, t+ dt).!

t!

dt!

λ	
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Probability distribution for human life!

failure probablity F(t)!

failure rate λ (t)!

Reliability R(t) !

probability density f(t)!
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Parameter ! ! !Symbol ! !Unit!
!
life time ! ! ! !T ! !h!
failure probability ! ! !F ! !%!
reliability! ! ! !R ! !%!
probability density! ! !f ! !%/h!
failure rate ! ! !λ 	
 	
1/h    
!

Summary of Measures!
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Assuming λ (t) =  const. we have: 
 
    = MTBF = MTTFF = MTTF 

1 
 

λ	


MTBF : Mean Time Between Failures 
 
MTTFF: Mean Time To First Failure 
 
MTTF : Mean Time To Failure 

Dependability measures 
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Availability 
time in which the system works correct 
related to the (down-) time when it is 
repaired.  

A =  U (Up time) 
 

M (Mission time) 

M = U + TR (Repair time) 

A =  
      MTBF 
 

MTBF + MTTR 

Approximation of dependability measures 

R = 1 - F =  M (Mission time) 
 

   MTBF (>> M) ∼  e -λt	
1 -! Reliability!
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Availability Classes 

1 year = 525600 minutes = 8760 h 

system type         non-availability     availability          class 
              minutes/year            % 

 
non-adminitrated             50 000             ~ 90            1 
systems 
 
administrated systems             5 000                 99              2 
   
well admin.  syst.                  500                 99,9           3 
 
fault-tolerant syst.                    50                 99,99           4 
 
high availability syst.   5                 99,999           5 
 
very high avail. syst.                   0,5                 99,9999           6 
 
ultra-high avail. syst.                0,05                 99,99999           7 

class: ⎣log10 (1/(1-A))⎦ 

Dependability measures 
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Fault diagnosis in 
Distributed Systems 
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System diagnosis to detect and localize faults!

I! D!
faulty!

faulty! ?!
Assumptions: !
-  components are either faulty or correct.!
-  a test is complete and correct.!
-  a correct process wil deliver a correct result.!
-  a faulty process will deliver an arbitrary result.!
-  a central correct observer evaluates the result of the test.!

F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem of diagnosable !
systems. IEEE Trans. Electron. Comput., EC--16:848--854, 1967!



40 J. Kaiser, IVS-EOS Embedded Networks 12 

?!
d!

i! d!

Assumptions: !
-  components are either faulty or correct.!
-  a test is complete and correct.!
-  a correct process wil deliver a correct    !
   result.!
-  a faulty process will deliver an arbitrary !
   result.!
- a node is marked as faulty if it has an !
  incoming edge originating from a correct !
  node, which has tested this node as faulty!
- a central correct observer evaluates the !
   result of the test.!

f – diagnosability!

1-diagnosable system!

?!

?!

D ?! I!

D ?!

D?!I ?!

I ?!

I!

I!

f – diagnosable :!
A system with n components is f–diagnosable if!
n≥ 2f +1 and every component test at least f other components.!
The components do not test each other.!
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d!

d!
i!

i!

d!
i!

d!

i!

d!

d!
?!

?!

?!?!

?!

Will diagnosis deliver an unambiguous result?!
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d!

d!
i!

i!

d!
i!

d!

i!

d!

d!

d!

d!i!

i!

i!

2-diagnosable system!

Assumptions: !
-  components are either faulty or correct.!
-  a test is complete and correct.!
-  a correct process wil deliver a correct    !
   result.!
-  a faulty process will deliver an arbitrary !
   result.!
- a node is marked as faulty if it has an !
  incoming edge originating from a correct !
  node, which has tested this node as faulty!
- a central correct observer evaluates the !
   result of the test.!
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d!

i!
i!

i!

d!
d!

d!

d!

i!

d!

d!

d!i!

i!

d!

d!

i!
i!

i!

d!
d!

d!

d!

i!

d!

i!

i!d!

d!

i!

 3 faulty nodes 

fault cannot be detected (obviously) because the!
fault assumption (max. 2 faults) is violated.!
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Assumption:!
Node is the unit of fault-containment and replacement!!
!
Problems:!
1. What kind of faults have to be considered?!

!Fault model.!
!
2. Can we replace the central evaluation component?!

!Distributed consensus.!
!
3. Can fault-detection always successfully be performed?!

!The problem of synchrony.!
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The Network or the Node?!

Fault-assumptions in Distributed Systems!
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Formalisation by Chandra and Tueg (1996):!
!
Strong Acuracy (SA): No correct process ever is considered to be faulty.!
(safety criterion)!
!
Strong Completeness (SC): A faulty process eventually will be detected by every !
correct process (liveness criterion).!

Failure Detectors and Consistency of Distributed Failure Detection!

Intuitive Consistency Criterion:!
!
When a process fails, all correct processes are able to detect the failure!
and achieve consensus about the faulty process.!
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What are the conditions to achieve SA and SC? 

Assumptions: 
1. Transmission delays can be bounded. 
2. Processes can generate and send a "heartbeat" message periodically in a 
    bounded time interval. 
3. We assume a crash failure model, i.e. the network is fault-free.  

Heartbeat-mechanism is a perfect failure detector!

Assumptions: 
1. Transmission delays can be bounded. 
2. Processes can generate and send a "heartbeat" message periodically in a 
    bounded time interval. 
3. We assume an omission failure model, however the omissions may be bounded.  

Apply mechanisms to mask omissions.!
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FT communication - Handling message failures!

P1!

P2!

P3!

P1!
P2!
P3!
P4!

P1!
P2!
P3!
P4!

Static Redundancy: Masking Failures!

component redundancy! time redundancy!

Dynamic Redundancy: Detection + Recovery!
Time-out!

“forward” 
error 
recovery!

“backward” error 
recovery!
!
(requires add.!
ack!)!
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FT Communication - Handling sender failures!

P1!
P2!
P3!
P4!

Unreliable Multicast!

P1!
P2!
P3!
P4!

Best effort Multicast!

P1!
P2!
P3!
P4!

Reliable Multicast!
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Imperfect failure detectors!

Assumptions: !
!
Temporal assumptions:!
1.  the latency of messages cannot be bounded (asynchronous model),!
2.  processes cannot always produce a heartbeat in a bounded interval.!
!
Assmptions about the number of faults:!
3. !The number of omissions cannot be bounded.!
!

No deterministic decision can be derived whether a process has !
failed or not.!
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Consensus in Distributed Systems!

Goal: !A group of processes agree on a common value.!
! !Every process proposes a value once.!
! !Every process decides a value once.!
! !Proposed and decided values are 0 or 1 (simplification).!

The following conditions must be achieved:!
!
Consistency: !All processes eventually agree on the same value and!
(Agreement) !the decision is final.!
!
Non Triviality: !The decided value has been proposed by some process.!
(Validity)!
!
Termination: !Every correct process decides on the common value within!

! !a finite time interval.!

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one!
faulty process. Journal of the ACM, 32(2):374{382, April 1985.!

FLP Impossibility Result!



52 J. Kaiser, IVS-EOS Embedded Networks 12 

Fault-Tolerant Consensus!

P1!

P2!

P3!

P4!

v(w)!

w!

w!

w!

a (w)!

v(w): suggest(w)!
a(w): accepted (w)!
d(w): decided (w)!

a (w)!
a (w)!

d(w)!

Assumptions: !
1.  The latency of messages is bounded.!
2.  Failure detection is reliable.!

3. !Dynamic redundancy with fault treatment.!

d(w)!

P5! w!

d(w)!
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P1!

P2!

P3!

P4!

v(w)!

w!

w!

w!

a (w)!

a (w)!
a (w)!

d(w)!

v(w)!

a (w)! d(w)!

P5! w!
a (w)! d(w)!

w!

w!

Assumptions: !
1.  The latency of messages is bounded.!
2.  Failure detection is reliable.!

3. !Dynamic redundancy with fault treatment.!

Fault-Tolerant Consensus!

v(w): suggest(w)!
a(w): accepted (w)!
d(w): decided (w)!
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How much redundancy is needed to achieve consensus 
about the faulty nodes?!

The results of Preparata, Metze & Chien say:  2f+1!
But: Strong assumptions about testability!
Evaluation centralized!     No consensus is needed. !

Is this majority also enough for distributed consensus?!
Does the fault model influence the redundancy requirements? !

Q!

DETECTION!
DISSEMINATION!
EVALUATION!

3 STEPS!
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Byzantine Faults and Byzantine Agreement!
!
L. Lamport, R. Shostak, M. Pease: „The byzantine generals‘ problem“, ACM TC on Progr. !
Languages and systems, 4(3), 1982!

The Story: !

enemy!
army!

G!

G!

G!
Goal: !
Agreement about a common action.!
Attack or retreat? Only a joint attack will be successful,!
otherwise the allies will be defeated.!
!
Problem:!
A (single) traitor !
!
Assumptions:!
Communication via a reliable point-to-point network.!
!
Under which conditions and by which protocol is it possible to!
derive a correct majority vote?!
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T!

L!

L!

T:  Traitor!
L:  Loyal general!

enemy !
army!

attack!

attack!

retreat!

retreat!

attack!
retreat!

retreat!

Even multiple rounds will not help to achieve agreement because a loyal general 
never knows who is the traitor.!

Byzantine Faults and Byzantine Agreement!
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T!

A/0!

C/1!

0!

0!

B/1!

T!

A/0!

C/1!

0!

1!

1!

B/1!

1!

1!

1! 1. round!

messages, that reach A! messages, that reach B!

Agreement on a value in two rounds!

During the first round no unambiguous decision is possible because A and B!
don't agree.!

Distribution of values!

Byzantine Faults and Byzantine Agreement!
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T!

A!

C!

0!

B!

T!

A!

C!

0!

1!

1!

B!

1!1! 1. case!
sender is the traitor!

1!

1!
0!

maj (0,1,1) = 1!

maj (0,1,1) = 1!

maj (0,1,1) = 1!

T!

A!

C!

B!

T!

A!

C!

0!

1!

1!

B!
1!

1!
2. case!
traitor disseminates a!
faulty value.!

1!

1! 0!

maj (0,1,1) = 1!maj (0,1,1) = 1!

1!

2. round!
agreement on a value proposed by some !
participant.!

1.  round!
distribution of values from some participant!
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- Participants are processes.!
!
- Evenry process locally desides by majority voting on the value that is !
  decided by evera correct process.!
!
- The value decided by the majority of processes is the corect value.!
!
- To detect f byzantine faults, !
!

! !   (3f + 1)    processes are needed.!

Byzantine Faults and Byzantine Agreement!
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In a centralized evaluation, cheating is impossible, i.e. the central 
observer either receives a "good" or "faulty" result. Therefore, simple 
majority 2f+1 is sufficient.!
!
In the distributed case, a faulty node may send different test outcomes 
to different nodes. Informally, the good nodes need to achieve a 
majority without the bad nodes. I.e. even if a good node has a wrong 
view on the state of some other node, it distributes this view 
consistently and no byzantine behaviour has to be considered in the 
subset of good nodes. Therefore in this subset, also simple majority is 
sufficient. !
!
The equation 3f +1 can be written as: (2f + 1) + f    !

Byzantine Faults and Byzantine Agreement!
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Failure Semantics and Coverage 

A supposedly fault-tolerant system may fail if any of the assumptions 
on which its design is based should prove to be false. !

David Powell, Failure Mode Assumptions and Assumption 
Coverage, Research Report 91462, March 1995!

assumption ! !redundancy needed!
!
k fail stop failures !k+1!
k value failures !2k+1!
k arbitrary failures !3k+1!

failure assumptions have to be enforced in the system! !
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Def. 1. Service item si is correct iff: (vsi∈SVi ) ⋀ (tsi∈STi ) where SVi 
and STi are respectively the specified sets of values and times for 
service item . si .!

The service delivered by a system can be defined in terms of a sequence of 
service items, si, i = 1,2,… each characterized by a tuple ⟨vsi ,tsi⟩ where vsi is 
the value or content of service item si and tsi is the time of observation of 
service item si .!

SVi = {svi} : ! ! !Set of correct values ! ! !!
!
STi = [stmin (i), stmax (i)] ! !Correct time interval!

Failure Semantics and Coverage 
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Arbitrary value error: si : vsi ∉ Svi!
!
Noncode value error: si : vsi ∉ CV where CV defines a code.!
!
Arbitrary timing error: si : tsi ∉ Sti !
!
Early timing error: si : tsi < min(STi )!
!
Late timing error (or performance error): si : tsi > max(STi )!
!
Infinitely late timing error or omission error: si : tsi = ∞!
!
Impromptu error:    si : (vsi = ⊥) ⋀ (tsi = ⊥) since the admissible value and time 
sets are undefined si : (vsi ∉ SVi ) ⋀ (tsi ∉ STi )!

Formal Definition of failures 
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Vnone:= ∀i, vsi ∈ Svi  : No value errors occur (every service item is of correct value).!
!
VN:= ∀i, (vsi ∈ Svi ) , (vsi ∉  CV) : The only value errors that occur are non-code value errors!
(every service item value is either correct or noncode).!
!
Varb:= ∀i, (vsi ∈ Svi ) ∨(vsi ∉ Svi ) ≣ true :  Arbitrary value errors can occur.!

Formal definition of failures 

Vnone! VN! Varb!

 Value error implication graph!
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Tnone : !No timing errors occur (every service item is delivered on time).!
TO    : !The only timing errors that occur are omission errors.!

!(every service item is deliverd on time or not at all)!
TL       : !The only timing errors that occur are late timing errors !

!(every service item is delivered on time or too late)!
TE    : !The only timing errors that occur are early timing errors !

!(every service item is delivered on time or too early)!
Tarb  : !Arbitrary timing errors can occur.!
Tp    :    Permanent Timing failure: a component delivers correctly timed service items !

!up to a particular item and then ceases (omits) to deliver service items.!
TBk   :    Bounded ommission degree: a component omits to deliver some service !

!items but, if more than k contiguous items are omitted then all further items !
!are omitted.!

Formal definition of failures 
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TE!

Tnone!

Tarb!

TL!

TO!

TBk!

TP!

Formal definition of failures 

 Timing error implication graph!
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The failure mode assumption coverage (PX ) is defined as the probability 
that the assertion X defining the assumed behavior of a component 
proves to be true in practice conditioned on the fact that the component 
has failed:!
!

! !PX = Pr {X = true⎮ component failed}!

Coverage:!

Varb ⋀ Tarb      = 1!
!
Vnone ⋀ Tnone  = 0!

All intermediate assumptions thus have a 
coverage p∈]0,1[ .!

Coverage 
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Discussion 

Does the highest coverage always lead to 
the most reliable system?!
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Summary and Points to Remember!

•  Strong failure semantics eases distributed system programming.!

•  Redundancy requirements:!

•  In a centralized system and under a non-byzantine fault model,    
2f+1 processes can achieve consistent system diagnosis.!

• Under a distributed system model and byzantine faults 3f+1 
processes are needed. !

•  Synchrony requirements:!

•  Synchronous systems and bounds on the communication delays 
allow deterministic consensus in a distributed system.!

•  In an asynchronous system deterministic consensus is 
impossible if one process may be faulty.!

!
  !


