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Abstract:  This paper compares two novel field-bus protocols for low-
cost single-chip smart sensor and actuator nodes, LIN and TTP/A.
Both protocols are central-master UART protocols, where the master
with its precise oscillator establishes the stable time-base required by
the slaves to synchronize their imprecise on-chip oscillators. While
LIN provides the basic services needed for real-time communication,
the TTP/A standard additionally specifies an interface-file system to
perform on-line configuration, diagnostics and maintenance of smart
sensor nodes.  With TTP/A it is thus possible to produce
preprogrammed simple transducer nodes or generic smart transducer
nodes that can be configured dynamically to the given application
requirements.
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INTRODUCTION

With the development of a new generation of compact low-cost microcontrollers that
contain the frequency oscillator on chip, the need for a new class of field-bus
communication protocols arises, because these new microcontrollers are not in the
position to support any serial communication without a start-up calibration of the on-
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chip oscillator.  The potential for cost saving that can be expected from these new
microcontrollers is significant.  Since all functional blocks that are required to realize
a smart sensor/actuator node, including network access and often a MEMS sensing
element, can be implemented on a single silicon die, the economics of Moore’s law
are leading to very cost-effective smart sensor nodes that will challenge any other
solution in the emerging networked embedded market.

Two new field-bus protocols that address this important future market are LIN (Local
Interconnect Network) and TTP/A (Time-Triggered Protocol for SAE class A
applications).  The LIN protocol was presented to the public at a press conference
(LIN 2000) at the SAE World Congress in Detroit on March 6, 2000 by a consortium
of seven automotive partners (Audi, BMW, DaimlerChrysler, Volvo, Volkswagen,
Motorola and VCT). The LIN activities were initiated by a workgroup of these
companies in October 1998 and a first specification draft was released by this
workgroup in July 1999. The objectives of LIN are to provide a standard low-cost
sensor network below the CAN functionality that results in communication costs per
node that are two to three times lower when compared to CAN. According to the
authors (LIN 2000) "LIN shall complement CAN and not replace CAN".

The TTP/A protocol is the low-cost field-bus protocol that is harmonized with the
fault-tolerant system bus TTP/C of the time-triggered architecture (TTA). It is
intended for the connection of smart sensors and actuators in embedded real-time
systems in different application domains, e.g., industrial, automotive, etc.. It is the
objective of TTP/A to provide all services needed by a smart sensor, including timely
communication, remote on-line diagnostics and plug-and-play capability. In contrast
to LIN, which is driven by industrial sponsors, TTP/A is an academic development
started by the Technical University of Vienna, Austria and then broadened to include
the Technical University of Munich, Germany and the University of Stuttgart,
Germany. The first version of TTP/A was published at the SAE World Congress in
1995 (Kopetz 1995).  In the mean time, a start-up synchronization and an interface-
file system (IFS) has been added to TTP/A (Kopetz, Holzmann et al. 2000).

It is the objective of this paper to compare the two protocols LIN and TTP/A from a
number of different perspectives. The basis of this comparison is the LIN protocol as
described in (Wense 2000) and the TTP/A Protocol Specification (TTP/A 2000). The
paper starts with an elaboration of the three interfaces, the real-time service (RS)
interface, the diagnostic and maintenance (DM) interface, and the configuration
planning (CP) interface that a smart sensor field bus should support.  In Chapter three
the criteria for comparison are established.  Chapter four outlines the principles of
operation of LIN and TTP/A. Chapter five compares the two protocols from the
points of view of timeliness, dependability, on-line diagnostics, "plug-and-play"
capability, physical layer, start-up-synchronization, and cost.  The paper finishes with
a conclusion in Chapter six.

2. THREE INTERFACES OF A SMART SENSOR NODE

An interface is a common boundary between two subsystems. An information
exchange across an interface is only possible if the engaged subsystems share a
common background of concepts and a common coding system.  In the context of a
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distributed control system, the area of concern is a cluster, consisting of a set of
sensor, actuator, and processing nodes connected by a communication medium (see,
e.g., Fig. 4). The set of all nodes of the cluster must thus share the same concepts and
must agree on common code spaces.

In the industrial control industry, the classic 4-20 mA analog current loop interface
has been highly successful for many years because of its simplicity and its
understandability:  The name space of the relevant state variables is formed by the set
of interfacing wires, each wire denoting one particular state variable. Being an analog
system with minimal delay, the time of delivery (reading a value at a receiver) is
about the same as the time of generating the value and is implicit to the reading
operation, resulting in a protocol with negligible delay and jitter. Any value between
0 and 100% of the chosen range is mapped into the standardized 4 to 20 mA current
interval, that denotes the code space of good values. This codespace is extended to
provide an in-band error code, the value 0 mA that denotes an error (no signal). The
4-20 mA interface technology was primarily developed to interface an analog sensing
element with a small amount of local analog processing logic to an (remote) analog
controller. The noise pickup on the analog transmission line is one of the limiting
factors for the accuracy of 4-20 mA signals.

A smart sensor is the combination of an analog or digital sensor or actuator element
and a local microcontroller that contains the interface circuitry, a processor, memory
and a network controller in a single unit. The smart sensor transforms the raw sensor
signal to a standardized digital representation, checks and calibrates the signal, and
transmits this digital signal via a secure communication protocol to its users. More
and more sensor elements are themselves microelectronics mechanical systems
(MEMS) that can be integrated on the same silicon die as the associated
microcontroller.  The smart sensor technology offers a number of advantages from the
points of view of technology, cost and complexity management:

(i) Electrically weak non-linear sensor signals that originate from an MEMS sensor
can be conditioned, transformed into digital form, and calibrated on a single
silicon die without any noise pickup from long external signal transmission lines
(Deirauer and Woolever 1998).

(ii) It is possible to locally monitor the operation of the sensing element and thus
simplify the diagnostics at the system level. In some cases it is possible to build
smart sensors that have a single simple external failure mode--fail-silent, i.e., the
sensor operates correctly or does not operate at all.

(iii) The interface of the smart sensor to its environment is a well-specified digital
communication interface to a sensor bus, offering "plug-and-play" capability if
the sensor contains a reference to its documentation on the INTERNET.

(iv) The internal complexity of the smart-sensor hardware and software and the
internal sensor failure modes can be hidden from the user by well-designed fully
specified smart sensor interfaces that provide just those services that the user is
interested in.  Thus a proper interface design enabled by the smart sensor
technology can contribute to a reduction of the complexity at the system level.

A smart sensor needs a much larger name space than a simple analog sensor.  In
addition to the actual measured values, the parameters for range selection, alarm
limits, signal conditioning, and calibration must be set by the user (see the IEEE
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standard 1452 on "A smart transducer interface for sensor and actuators", IEEE
1997). Information about sensor performance and diagnostic information must be
stored in the sensor and accessed during  maintenance. Furthermore it must be
possible to configure a "generic" smart sensor into a new application context. Many
instances of the same sensor type, e.g., a temperature sensor, may be used in differing
roles within an application. In the emerging market of massively distributed
embedded systems, these configurations should be performed on-line during system
operation.

From the point of view of complexity management and composability, it is useful to
distinguish between three different types of interfaces of a smart sensor: the real-time-
service (RS) interface, the diagnostic and maintenance (DM) interface, and the
configuration planning (CP) interface. In the next section we discuss the properties of
these three different types of interfaces.

2.1  The Real-Time-Service (RS) Interface

In the abstract, the purpose of the RS interface is the timely exchange of
"observations" of real-time (RT) entities between the engaged subsystems.  An RT
entity is a state variable of interest that has a name and a value.  An observation
(Kopetz 1997 p.99) is thus an atomic triple

<RT entity name, instant, value>

where RT entity name is an element of the common namespace of RT entities, instant
is a point on the time-line and value is an element of the chosen domain of values. An
observation thus states that the referenced RT entity possessed the stated value at the
indicated instant.  In control applications, the temporal access pattern of information
at the RS interface is periodic. A small delay and minimal jitter are important for the
quality of control. These temporal parameters must be stable in order to support the
composability at the RS interface. The user of the observations at the RS interface
must only know about the meaning of these observations, but does not need any
knowledge about the internal structure or operation of the smart sensor. If an
observation is produced by a set of replicated sensors, the user is only interested in the
availability of a timely observation, but not which one of the set of replicated sensor
produced this observation. The unit of addressing is thus the name of the observation,
but not the node that produced this observation.

2.2  The Diagnostic and Maintenance (DM) Interface

The DM interface opens a communication channel to the internals of a smart sensor
for the purpose of diagnostic and maintenance.  It is used for setting sensor
parameters and for retrieving information about the internals of the sensor. The
maintenance engineer that accesses the sensor internals via the  DM interface must
have detailed knowledge about the internal structure and behavior of the sensor.  The
end-points of communication are the internals of a sensor on one side and some
maintenance expert sitting on a remote terminal on the INTERNET on the other side.
The communication pattern is thus point-to-point and the messages between the
sensor and the maintenance engineer must be routed transparently through a set of
networks.  Since maintenance is performed on a physical sensor, the addressing
system must reach each physical sensor instance. If, for example, ten identical
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temperature sensors are used in differing roles in an embedded application, it must be
possible to address each one of these physical sensors individually. Ideally, the DM
interface should be independent from the RS interface, since these two interfaces are
directed towards two different user groups.

There is a need to support on-line maintenance while a system is operational.  To
achieve this objective, the sporadic maintenance traffic must coexist with the time-
critical real-time traffic without disturbing the latter. The traffic pattern across the
DM interface is normally sporadic and not time-critical, although precise knowledge
about the point in time when a particular value was observed is important.

2.3 The Configuration Planning  (CP) Interface

The CP interface is used to connect a component to other components of a system.  It
is used during the integration or reconfiguration phase to generate the "glue" between
a generic sensor and the embedded application it is serving.  The use of the CP
interface does not require detailed knowledge about the internal operation of a sensor,
but requires knowledge about the structure of the middleware.  The CP interface is
point-to-point and not time-critical.

The following Table 1 summarizes the characteristics of these three interfaces

RS-Interface DM-Interface CP- Interface

Purpose provide timely real-
time images

perform diagnostics
and maintenance

configure a generic sensor
into an application

Required Knowledge Knowledge about the
role of the sensor
output in the real-time
application

Knowledge about the
internal operation of
the sensor

Knowledge about the
configuration process

End--points of the
communication

Sensor Output and
communication
network interface  of
the master

Internals of the sensor
and service technician
on the INTERNET

Middleware and
Configuration Process

Topology multicast point-to-point point-to-point
Timeliness low latency, small jitter time-of observation of

sensor value
none

Temporal access
pattern

periodic sporadic/periodic sporadic

Unit of addressing real-time image physical node physical node
Relevant for temporal
composability

yes no no

Table 1:  Characteristics of the three interfaces of a smart sensor

3. REQUIREMENTS OF A FIELD BUS

In this section, the requirements for a field bus to smart transducer nodes are outlined.
In the following sections, the two protocols, LIN and TTP/A will be compared with
respect to these requirements.
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3.1 Timeliness

The most important requirements for a sensor bus that is used for the periodic RS
service in embedded control applications are temporal predictability, low latency and
minimal latency jitter.  The latency can be improved if the protocol operates with high
data efficiency.  Since in many scenarios a smart sensor will only deliver a few bits of
information (e.g., the status of a photo-cell or the position of a switch) it is important
that these very short periodic data fields can be transported with a small protocol
overhead.

In a number of control applications precise knowledge about the instant when a RT-
entity has been observed is essential. To meet this requirement, the sensor node must
contain a synchronized global time that can be used to time-stamp the occurrence of a
significant event within the smart sensor node. The time-stamp value is then
transported to the master just as any other data value (time as data, see Kopetz 1997
p.194).

3.2 Dependability

Within the constraints given, a field bus must support a trustworthy level of
dependability and high error-detection coverage.

3.3 On-line Diagnostics

Smart sensors can vary from simple devices (e.g., a photocell that observes a single
RT entity) to large subsystems that encapsulate complicated measurement methods of
an RT entity that can only be measured indirectly by observing a number of state
variables with different sensing elements.  These large sensor subsystems must be
parameterized, calibrated, and diagnosed in case of malfunction. Ideally, it should be
possible to monitor and investigate the internal operation of a sensor subsystem by a
domain expert from a remote terminal (that maybe connected to the sensor via the
INTERNET) while the system is in operation (see also Figure 2).

To meet this diagnostic requirement, it must be possible to address an internal storage
space of sufficient size within each physical  sensor via the network. This storage
space contains the parameters, diagnostic information and intermediate results that are
important for the analysis of the correct operation of a sensor by a domain expert.
Ideally, it should be possible to open a dynamic real-time communication channel
with known bandwidth, guaranteed latency and minimal jitter to the internal storage
space of every sensor in order to provide a real-time monitoring capability.

3.4 "Hot Plug and Play" Capability

Massively distributed embedded systems will contain a very large number of smart
sensor nodes that join and leave a system during the operation of the system (Nesett
1999). This requires the capability to identify new generic sensors, to parameterize
the generic sensor for the given application, to reconfigure sensors and to remove
sensors while the system is operational.
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3.5 Low Complexity and Low Cost

The field-bus must support compact single-chip smart sensor nodes and low wiring
and installation costs. The protocol complexity should be such that the protocol can
be implemented on low-cost microcontrollers.
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4. PRINCIPLES OF OPERATION OF LIN AND TTP/A

In this section the principles of operation of LIN and TTP/A are elaborated.  For a
more detailed description of the protocols, the interested reader is advised to consult
the respective specifications on the INTERNET,  (LIN 2000)  for LIN and (TTP/A
2000) for TTP/A.

4.1 Common Characteristics

Protocols, LIN and TTP/A are UART protocols that require a central master that
communicates with a set of slave nodes. This central master with its stable timebase
provides the signals for the start-up and continuous synchronization of the slave-
nodes and coordinates the traffic on the bus.  Both protocols support a "master-slave"
dialogue that is initiated by the master. This master slave dialogue consists of a
"command frame" sent by the master and a "data frame" that is sent either by the
master (if the data is an output message from the master to the sensor) or by a slave
node (if the data is input message from the sensor to the master). In both protocols,
the master slave dialogue has a structure as shown in Fig.1. There are significant
differences between LIN and TTP/A in the way data is named in the command frame.

Data FrameCommand Frame

Real-TimeInterframe Gap (IG)

Figure 1:  Master -Slave Dialogue

In LIN, the interframe gap is variable, in TTP/A it is constant. This seemingly minor
variance between LIN and TTP/A is caused by a fundamentally different philosophy
of protocol design.  In LIN it is assumed that the temporal predictability of protocol
execution in the slave node is subordinated to the local application task processing
within such a slave. In LIN, local temporal properties of the application tasks are thus
considered more important than global temporal properties of the communication
protocol, resulting in a significant permitted jitter concerning the point in time when a
message must be sent (see the LIN standard LIN 2000).  In TTP/A, the global timing
properties, e.g., the timing specification of the communication protocol, have priority
over the local timing properties within a slave.  In TTP/A the protocol tasks within a
slave node must thus have a higher priority than the node-local applications tasks.  In
the architecture based TTP/A protocol design a good end-to-end timing and minimal
jitter of a distributed transaction has been considered most important (see also Table
2).

The software development for both protocols, LIN and TTP/A, is supported by
software tools.  The software tools specification for LIN includes a standard for the
Configuration File description and a corresponding application program interface
(API).  The TTP/A development tools will be integrated in the TTP tool chain (see
TTTECH 2000).
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Neither the LIN standard, nor the TTP/A standards require that all implementations
support the full protocol functionality.  An implementation is thus free to decide
which functionality to support.  However, if a given functionality is included in an
implementation it must adhere to the standard.

4.2 LIN

LIN supports open master-slave dialogues. In an open master-slave a named data
frame is put on the LIN bus (either by a slave or a slave task within the master) after
the command frame from the master, according to the a priori associated attributes of
the selected identifier. A data frame on the bus can be accessed by any node interested
in this data frame.  In LIN a one-byte identifier names a data frame.  This identifier
consists of two fields, a six-bit address field and a two bit-check field.  The six-bit
address field provides a name space of 64 distinct identifiers within a cluster. The
following attributes are statically (a priori) associated with each identifier:

• Meaning of the data

• Direction of the data (input or output)

• Length of the data field (determined by the two least significant bits of the address
field), allowing for a total of 32 two byte messages,  16 four byte messages and 16
eight byte messages within a cluster

There is no mechanism in LIN to directly name the node that produces or consumes a
data element. An open master slave dialogue in LIN consists of a three byte command
frame (one byte synchronization break, one byte synchronization field, one byte
identifier) and a variable length data frame of between three and nine bytes (two to
eight data bytes and one check byte).

A B C

D E
TTP/C Bus

TTP/A Node

TTP/A Bus TTP/A Bus

A TTP/C Node
Service

Access Point
(Internet)

Dynamic Real-Time 
Channel for  on-line 
Diagnosis and Maintenance

Figure 2:  On-line diagnostic transaction into a TTP/A sensor node

4.3 TTP/A

During the design of TTP/A it has been an objective to provide on the one side a
“function-rich” specification that supports dynamic sensor configuration and
diagnosis, but on the other side the possibility of implementing very simple low-cost
pre-configured sensor nodes that can be implemented in a state machine.

TTP/A supports open master-slave dialogues and multipartner rounds.  Both are
initiated by a command frame (a "fireworks byte") from the master.  The end-points
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of the communication in TTP/A are the records (or part of a record) of a local
interface file system (IFS) that resides in each node.  The union of all local interface
file systems of all nodes in a cluster forms the distributed IFS of the cluster.

The IFS is an index-sequential file system with a constant record length of 5 bytes (4
data bytes and one check byte).  Each node can contain of up to 60 files with 255
records each. The last record of each file is a check record.  TTP/A supports three
operations on files: read a record, write a record, or execute a file.  A command frame
to access a file in TTP/A consists of five bytes as follows

<master-slave ("fireworks"), file op and identifier, record number, logical node name, check byte>

A master slave dialogue in TTP/A consists of two frames, a command frame of five
bytes (4 command bytes and one check byte) followed by a constant length  five-byte
data frame (4 data bytes and one check byte). Master slave dialogues are used in
TTP/A to implement the DM interface and the CP interface. The constant length of a
master-slave frame makes it relatively easy to route this record via a dynamic real-
time channel through a set of interconnected TTP/C clusters to a local INTERNET
WEB site (Fig.2).  Thus it is possible to monitor the internals of any TTP/A sensor
via the master-slave rounds while the system is in operation.

TTP/A provides multipartner rounds to implement the periodic traffic across the time-
critical RS interface. A multipartner round can be up to 64 bytes long. The master
starts a multipartner round in TTP/A by sending a one-byte execute-RODL-file
command. The file-execute operation points to a distributed IFS file in each node that
must contain a round descriptor list (RODL) that specifies the structure of the round.
The RODL determines for each message the message length in bytes, which node has
to send the message and which nodes are listening to the message (and some
additional parameters). Furthermore, the relevant IFS addresses contained in the
RODL specify the sources and the sinks of the data.  Since the specification of the
multipartner round, the RODL, is itself contained in a distributed file of the IFS, it is
possible to reconfigure rounds via the CP interface while the system is in operation.
The one-byte execute-RODL-file command supports a name space of 8 different
RODL files. These RODL names are coded into the "fireworks" byte with a
Hamming distance of 4.

Multipartner Round Multipartner RoundMaster Slave Round Master Slave Round

Real-Time

Figure 3: Traffic on the TTP/A Bus

During normal TTP/A operations there is a regular sequence of multipartner rounds
and master-slave rounds (Fig. 3). The periodic multipartner rounds exchange current
real-time observations for the RS service, while the sporadic master-slave rounds
access a TTP/A file for a DM or CP service, if required.  In case there is a need for an
optimized RS service and no need for the DM or CP service, then the number of
occurrences of master-slave rounds can be reduced (e.g., only one master-slave round
after every tenth multipartner round) or they can be totally omitted during the time-
critical phases of a process.

TTP/A provides an address space for up to four special commands in a master-slave
round.  In addition to the standard "read", "write" and "execute" command on a file,
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one special command is used to send all nodes of a cluster to the "sleep mode.
Another special command is used to "baptize" nodes, i.e., to associate a logical name
(a role name in the cluster) to the physical name of the node. In TTP/A every node
has a physical name and a logical name (see Section 5.4). In low-cost
implementations the logical name can be assigned a priori.  Such a node does not
need to support the baptize command.

The a priori assignment of the logical name, a RODL execute command, and the
position of the output information (the “output” byte) within the specified
multipartner round may lead to a minimal TTP/A node (see Fig. 5c). Such a node
only waits for the appearance of “its” firework byte on the bus and then transmits its
output byte in the a priori specified slot. Such a minimal node will not support file
operations for diagnostics and or dynamic configuration.  If such a minimal node
needs to be synchronized after start-up, then it must also understand the start-up
synchronization command (see Fig. 5b).

Master

Slaves

Figure 4: Sample configuration for response time comparison.

5. COMPARISON

5.1 Timeliness

Both protocols, LIN and TTP/A, require a master to periodically poll the slaves to
learn about an event occurrence in one of the slaves.  The minimum period of such a
polling round is thus the best response time that can be achieved in such architecture.
In order to compare LIN and TTP/A, the configuration of Fig. 4 has been chosen.  A
master is connected to 10 slave nodes.  For the time-critical RS service the slave
nodes need to send (or receive) periodically data from the master.

10 nodes, response time in milliseconds on a 20
kbit bus

Minimum
LIN

Maximum
LIN

Minimum
TTP/A

Maximum
TTP/A

Every nodes sends four bytes of data 46.75 msec 65.4 msec 35.4 msec 35.6 msec

Every nodes sends two bytes of data 35.75 msec 50.05 msec 22.2 msec 22.3 msec

Every node sends one byte of data 35.75 msec 50.05 msec 15.6 msec 15.7 msec

Every node sends four bits of data 35.75 msec 50.05 msec 9 msec 9.1 msec

Every node sends four bits of data, additional
master-slave round for DM service between any
two multipartner rounds in TTP/A

not
supported

not
supported 16.8 msec 16.9 msec

Table 2: Achievable response times of LIN and TTP/A

Response Times: We assume that both protocols operate on a 20kbit/second bus.  If
the bus speed is increased the response times will be reduced about proportionally.
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Five scenarios have been evaluated. Rows two to five denote the response time of the
RS service if the slaves (or the master) send the specified number of data bytes in
each round.  The last row of Table 2 denote the response times of a TTP/A system
when a master/slave dialogue for on-line diagnostics (the DM or the CP service) is
inserted between any two multipartner rounds. In the chosen configuration, such a
master slave dialogue takes 13 bytes, i.e., 7.8 msec (including start-up
synchronization, fireworks, and the necessary intervals of silence). This scenario of
the last row is of particular significance for a TTP/A application.  A multipartner
round with 4 bits of data from each slave allows the master to recognize one (or more)
of four important events that has occurred at the slave. The master can then
communicate with the service-requesting slave by executing a master-slave dialogue
directed to this slave. Both rounds together take less than half of the time of a
comparable LIN round.  Even if a master slave round of 7.8 msec is added after every
multipartner RS round, the response time of TTP/A is lower than that of LIN.

Jitter: A low jitter is important in real-time applications, where control loops are
closed by a field bus, since any jitter results in a degradation of the control quality.
Both protocols, LIN and TTP/A are free of conflict and therefore have small jitter
from the point of view of the communication system. In the LIN standard, the
interframe gap between the frames is variable in the millisecond range, causing a jitter
as shown in Table 2. The LIN standard allows this jitter to be 40% of the duration of a
transmission in order to provide processing capacity to high-priority application tasks
in a LIN node (see also Section 4.1). In TTP/A the interframe gap, which can be
parameterized, must be constant during any protocol execution in order to avoid any
additional jitter. As a consequence in TTP/A the difference between the minimum and
maximum response time is bounded by the maximum clock offset between
synchronization events.  Assuming that the clock drift of an imprecise on-chip
oscillator is less than 10%/second, the jitter in TTP/A, even in the longest
multipartner round of 64 bytes, is less than 1%. If a resynchronization event is
scheduled after every 8 bytes of a multipartner round, then the jitter in TTP/A is less
than 0.1%.

Temporal Awareness: In order to record the occurrence of an event that happens
within a polling period, TTP/A provides a global time-base within each sensor node.
The epoch of this time-base is the start of the command frame of each periodic multi-
partner round.  The precision of this time base is about one third of the bit-cell length.
TTP/A provides a standard time format for the representation of the slave-node local
time. In order to distinguish between overlapping rounds, this time format contains an
alternating bit.

The LIN standard does not contain any information about a local time in a LIN node,
although, according to our view, such a service could be implemented in LIN.

Characteristic LIN TTP/A

Parity on every byte no yes

Protection of command frame ("fireworks") 2 bit check field 5 bit check field

Protection of normal data frame check byte check byte

Protection of short  (4 bit)  data frame not applicable check nibble

Protection of IFS record not applicable check byte
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Protection of IFS file not applicable check record

Table 3: Error detection in LIN and TTP/A

5.2 Dependability

Both protocols, LIN and TTP/A contain a number of comparable mechanisms for
error detection, as shown in Table 3. TTP/A includes a parity bit in every byte,
whereas LIN does not require such a parity bit. While LIN protects each data frame
with a check byte, TTP/A offers the flexibility of byte-protected, nibble-protected, or
unprotected data fields.  It is assumed that the application will provide an application-
specific end-to-end protection for data fields that are not protected by the protocol.
There is also a significant difference in the protection of the command frame: LIN
protects the command frame by a two-bit check field, while TTP/A provides a five-bit
check field.

The IFS design of TTP/A contains enough redundancy to correct single bit errors in
an IFS file by a periodic background file check.  Such a period background check that
corrects single bit errors is very effective for the increase of reliability with respect to
SEUs (single-event upsets).

The TTP/A standard provides recommendations for in-line error codes. Optional
confidence markers are proposed in order that a sensor can express its confidence in
an observed value. No such mechanisms are mentioned in the LIN standard.

5.3 On-line Diagnostics

The most marked differences between LIN and TTP/A are in the areas of on-line
diagnostics and plug-and-play capability.

The topic of smart-sensor diagnostics and maintenance is not addressed in the LIN
standard. The limited identifier name space of LIN (64 different identifier within a
cluster) and the inability to directly address a physical slave node make it difficult for
LIN to access data structures within a node for the purpose of diagnostics and
maintenance.

The design of TTP/A, particularly the interface file system IFS and the addressing
schema of TTP/A, has been driven by the objective to provide an effective framework
for on-line diagnostics of smart sensors while the system is in operation. In
combination with the dynamic real-time channel service of TTP/C it is possible to
monitor from a service access point the internals of any TTP/A sensor connected to a
TTP/C system in real-time, while the system is fully operational (Figure 2). For
example, with TTP/A it is possible to look into every smart sensor of a car (e.g., via
the telephone from a maintenance shop) while the car is operating on the road.

5.4 "Hot Plug-and-Play" Capability

The "hot plug-and-play" capability, i.e., the dynamic insertion of new nodes and the
on-line reconfiguration of nodes are not addressed in the LIN standard.

TTP/A contains a number of mechanisms that support the "plug-and-play" capability.

Naming schema design: A TTP/A node has a universally unique physical name that
refers to the physical identity of the node. The physical name is formed by the
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concatenation of a four-byte series number and a four-byte serial number. The series
number refers to the node-type, while the serial number uniquely identifies each node
within its type. The role of a node within a TTP/A cluster is identified by a cluster-
unique one-byte logical name. From the point of view of the namespace, a cluster can
thus comprise of up to 256 nodes. During normal operation, a node is addressed by its
one-byte logical name.  The assignment of the logical name to the physical name is
called the "baptism" of the node. This assignment can either be done a priori  (then
no "baptize command" has to be implemented in the slave node), after power up, or
dynamically during the operation of the system (by executing the "baptize" command
across the CP interface).

Dynamic configuration: If a set of (unknown) nodes is connected to a TTP/A bus,
then a TTP/A configuration agent can detect the physical names of the newly
connected nodes by executing a binary search algorithm (provided this optional
functionality of the baptize command has been implemented in the node).  Since the
four byte series number characterizes the node type, the configuration agent can then
access a documentation data-base (which can be anywhere in the INTERNET) to
fetch the detailed technical documentation for this node type.  In the next phase the
configuration agent can determine the roles of the nodes and assign a logical name to
each one of the newly attached nodes. After a logical name has been assigned, the
appropriate RODL files can be downloaded to each node from the configuration agent
and the multi-partner rounds of the real-time service can be started.  It is important to
note that all these configuration activities are performed via the DM and CP service
using the master-slave dialogue. Since the master-slave dialogues coexist with the
real-time service, no unintended side effect to the ongoing real-time service of the
cluster will occur.

Recommendations for data encoding: to further enhance the "hot plug-and-play"
capability, the TTP/A standard contains recommendations for encoding the measured
values.  These recommendations also contain a proposal for in-band error codes (that
replace a sensor value in case of an error) and out-of-band confidence markers that
inform the receiver about the confidence the sender has in its delivered value.
Confidence markers are important if replicated sensor or different sensing methods
are used in a fault-tolerant application.

5.5 Physical Layer

The following Table 4 denotes the physical layers of LIN and TTP/A:

Transmission speed up to LIN TTP/A

20 kbits/second ISO 9141 (ISO-K) ISO 9141 (ISO-K)

1 Mbit/second not specified RS 485 or CAN

above 1 Mbit/second not specified fiber optics

Table 4:  Transmission speed of LIN and TTP/A

Both protocols support the sleep and wakeup function on the ISO 9141 physical layer.
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5.6 Start-up Synchronization and Resynchronization

The start-up synchronization in LIN for non-time-aware slave nodes occurs before
each master-slave round by sending a "break" byte and a synchronization byte.  Since
start-up synchronization occurs before every master-slave round, no mechanism for
the resynchronization of already integrated nodes is required.

The start-up synchronization in TTP/A for non-time-aware  slave nodes is performed
during a special  two-byte master-slave synchronization round that contains a defined
synchronization pattern (see Fig. 5).  Such a two-byte synchronization round can be
either inserted before every multipartner round, before every master-slave round, or
instead of some master-slave round, depending on the quality of the available
resonators. For already integrated slave nodes resynchronisation is performed at the
instance when a byte from a node with a precise clock arrives, e.g., the fireworks
byte.. In a multi-partner round those bytes that originate from a node with a precise
clock are marked in the RODL.  The slave can thus consider the arrival instants of
these bytes as precise time-references.  The first byte of every multipartner round, the
"fireworks" byte is always marked (since it originates at the master with a precise
clock). In master-slave rounds, the arrival instants of the first five bytes (sent by the
master) are used as precise synchronization events.

5.7 Complexity and Cost

Figure 5 depicts the simplest messages in LIN and TTP/A. The simplest message in
LIN consists of a break, a synchronization byte, an identifier byte, a variable
interframe gap, two data bytes and a check byte (Figure 5a).  In TTP/A a comparable
minimal message consists of one-byte silence, a synchronization byte, one-byte
silence, an execute-RODL command (fireworks byte), and at least one data byte
(Figure 5b).  If a node does not require start-up synchronization, then the three-byte
sequence of Figure 5c applies.  Of course, in a TTP/A system, the data byte can be in
any timeslot of the round, if so specified.

Sync Identifier Data 1 Data 2 Check

Sync Fireworks Data

Fireworks Data

Real Time

(a)

(b)

(c)

Break

Silence Silence

Silence

Figure 5:  Byte Sequence of the simplest message in LIN (a),  in TTP/A with
start-up  synchronization (b) and in TTP/A without start-up synchronization (c).

In the simplest TTP/A implementation all parameters of the round (e.g., the fireworks
name, the position of the byte in the round) and the meaning of the data byte must be
set a priori,  i.e., outside the protocol. Such an TTP/A implementation does not
support the interface file system.  Similarly in LIN, the contents of the identifier and
the meaning of the data must be set outside the protocol.  The minimal
implementation of LIN and TTP/A are simple enough for implementation by a state
machine.

We do not have any experimental data on the size of LIN implementations.
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The TTP/A protocol, including the interface file system, has been implemented on a
number of low-cost single-chip microcontrollers, e.g., the ATMEL AT90S2313 (with
2 kbytes of flash memory and 64 bytes of RAM), the MICROCHIP PIC16F877 and
the MOTOROLA 68HC711P2.  These implementations, including the logic of the
interface file system (IFS) and a software UART occupy between 1k and 2 k bytes of
ROM and less than 64 bytes of RAM storage, depending on the instruction set of the
particular processor.  This memory requirement does not include the file space itself,
which is application specific. The memory footprint of a low-cost TTP/A that
contains all protocol information in ROM and just supports one RODL, as outlined in
Figure 5c, requires a few hundred bytes of ROM, depending on the architecture of the
processor.

6. CONCLUSIONS

Although both protocols, LIN and TTP/A, address the emerging smart sensor market
and have a number of similar characteristics, they contain significantly different
functionality. LIN focuses on the basic functions needed to communicate in real-time
with a smart sensor. To simplify the sensor implementation, LIN restricts the name
space and does not address the issues related to remote diagnosis of smart sensor
nodes. In addition to providing efficient real-time communication services, the design
of TTP/A has been driven by the objective to establish an architectural framework for
on-line diagnosis of smart sensors and plug-and-play capability.  This results in a
more "function-rich" specification than LIN.

Considering the same bandwidth on the physical channel, the high data-efficiency of
the multipartner-round concept of TTP/A results in a better real-time response
compared to LIN (see Table 2).  However in the area of real-time performance, the
main difference between LIN and TTP/A is in the area of protocol jitter.  The LIN
protocol specification allows a variable interframe gap that can lead to a significant
jitter at the end-to-end level.  TTP/A requires a constant interfame gap in order the
minimize jitter. As a consequence, the jitter in a LIN application is bounded by
duration of 40% of a transmission round, while the jitter in TTP/A is less than 1% of
the duration of a round.

Both protocols, LIN and TTP/A contain a number of comparable mechanisms for
error detection, as shown in Table 3. While TTP/A includes a parity bit in every byte,
LIN does not require such a parity bit.  There is a significant difference in the
protection of the command frame: LIN protects the command frame by a two-bit
check field, while TTP/A provides a five-bit check field.

Both, the LIN and the TTP/A specification allow the implementation of simple nodes
that do not support the full functionality of the respective protocols.  It is thus
possible to build low-cost smart sensors with restricted functionality that implement
the protocol logic in a state machine. The TTP/A specification supports also the
design of generic nodes with the TTP/A logic in ROM memory. It is then possible to
configure such a generic node to the given application requirements after system
power-up, or even to reconfigure a node during system operation.  LIN supports no
such functionality
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