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Order

in


Distributed Systems
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Why Order?


Determine the potential order of events.



 


 Determine the cause-effect relationship 
     

         (causality)in a distributed computation.


Enforce an ordering policy, i.e. an a priori specified 
sequence of events.


 



  Coordination of joint activities.
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Control:

set point


A


C
 B


Comm. network

controller


controller
 controller


Control:

set point


A
controller


Order is important!
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I.

What can be ordered?


In what way order is established in a 
distributed system?
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cone of the future


cone of the past


time


What can be ordered?


space


space


e: event in

the presence


e only has an impact on events

in the future and only can be 

caused by events from the past.


Can we (in principle) establish 

a total temporal order in a 

distributed system?


P. Verissimo , L. Rodrigues nach Stephen Hawking 
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Computational Model 
A distributed computation is performed as the joint activity of local, sequential processes.


The activity of a local sequential process is modelled as a sequence of events.


P1


P2

e2

1


e1
1
 e1

2
 e1
3
 e1

4


e2
2
 e2

3


An event either is local to a process, i.e. it causes an internal, local state change, or


A computation includes the comminication with another process. This will be modelled by a send 
and a receive event. 


Messages are unambiguous single events, i.e. multiple messages with the same contents sent by 
the same process will be modelled as multiple individual events.  


All models of Data Sharing are abstracted as communication. 
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Def.:

The local history of proces  pi  is a (possibly infinite) sequence of events hi = ei

1  ei
2  ei

3  . . . . ei
n . . .  


(canonical enumeration).  It defines a total order of local events.


Def.:

The global history is the set H = h1 ∪ h2  ∪  h3 ∪. . . . . . . ∪ hn .


Note: The global history does not specify any relative time or order between the elements.


Computational Model 
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The Precedence Relation 

Events in a system can be ordered according to their causal relationship in a cause-effect chain

(happens before relation, Lamport 78)).


Def.: Precedence Relation    →      

1. for all ei

k , ei
l ∈  hi , k < l : ei

k → ei
l  (hi is the "history" of process i) (local precedence)


2. If ei = send (m) and ej = receive (m) : ei → ej 

3. If e → e‘  and e‘ → e‘‘ : e → e‘‘ (transitivity)


For concurrent events no causal relationship can be specified, i.e.

neither e → e‘ nor e‘ → e holds.   Notation:   e || e‘ 


A distributed computation can formally be seen as a partially ordered set defined

by the tupel (H, → ) where H is the combined History of all processes.
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P1


P2

e2
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P3

e3

1
 e3
2
 e3
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e1
5
 e1
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e3
4
 e3

5
 e3
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Time-Space Diagram


e3
1 || e1

2


e1
2 → e3

6
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What is the meaning of consistency in a distributed system


?

A system state, that can be established by any possible sequential execution of processes.

Causality must be preserved.
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Global States and Cuts 

Local state:

zi

k : local state of pi after the execution of ei
k 


zi
0 : Initial state of pi 


Global state:     Σ = (z1 , z2 ,. . . . , zn)


Def.: The  Cut C of a distributed computation is the subset C of the global history H with:   


 
  


 
 
 C = h1

C1 ∪ h2
C2

  ∪  h3
C3

 ∪. . . . . . . ∪ hn
Cn .


The tupel of integers (c1 , c2 ,. . . . , cn) represents the resepective index of the last event that has been 

considered for every process. The set of most recent events { e1

C1, e2
C2

, e3
C3. . . . . . ., en

Cn } is called

the front of the cut.


 A global state ( z1
C1, z2

C2
, z3

C3. . . . . . ., zn
Cn ) is associated with every cut (c1 , c2 ,. . . . , cn).
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Runs 

Def.: Run of a distributed computation:


A run of a distributed computation is a totally ordered sequence R, that comprises

all events of the global history and is compliant to every local history.
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Consistency 

1.) A run is consistent, if:

      for all e, e‘ : (e ∈ C) and (e‘ → e)   ⇒   e‘ ∈ C


2.) A consistent (distributed) state is represented by a consistent cut.


Analogies between sequential and distributed computations:

I.   
 The point in time of an event in a sequential computation is equivalent to:


 The front of a consistent cut in a distributed computation.


II.
 e appears before or after a certain point in time of a sequential computation is equivalent to:


 e appears before or after a cut C, if the event is left or right of the front of C in a 


 distributed computation.


The run of a distributed computation is consistent if for all events the following condition holds:

e → e‘    implies that e  appears before e‘. (R defines a total order)
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P3

e3
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6


C = ( 5, 2, 4 )
 Cʻ = ( 3, 2, 6 )


Runs, global states and cuts 

Example: R = (e2
1 , e1

1, e1
2, e3

1, e3
2, e3

3, e3
4, e2

2, e3
5, e1

3, e1
4, e1

5, e1
6, e3

5, e2
2, e2

3, e3
6)
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Ordering messages 

in Distributed Systems
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Temporal 
 messages are ordered in a way that the message m1 sent before

order:
 
 message m2 also will arrive before m2.


FIFO  .........


CAUSAL ...............


TOTAL ................


How to order messages ?
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m1
 m2
 m3
#3
 #4
 #5


m1
 m2
 m3


p1


p2


p3


local  receive message queue


#3
 #4
 #5


FIFO-Receive order for pairs of processes


e2
1
 e2

2
 e2
3
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Idea:
 
 Receive process reorders the messages.


Approach:   
 Distinguish the receiption of the message at the node from the delivery to

                  
 an application process


FIFO-delivery :  sendi(m)  → sendi(m’)    ⇒  deliverj(m)  →deliverj(m’)


FIFO-order for pairs of processes 

FIFO-D prevents a message from overtaking a message sent later between two processes.  
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FIFO-order for pairs of processes 

Overhead:  Process needs to add a sequence number 

FIFO-D is sufficient to guarantee that an observation complies to some run 
because FIFO-D maintains the order of local events. 

BUT: 

Because FIFO-D is defined between pairs of processes only it is not sufficient to 
guarantee that the observation corresponds to a consistent run ! 

Properties: 
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m1


m2


m2
 m1


p1


p2


p3


FIFO-D is insufficient 

The order of events which p1 constructs based on the sequence of messages is inconsistent. 

FIFO-D doesn't reflect causality for messages sent by different processes! 
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Control:

set point


A


C
 B


Comm. network

controller


controller
 controller


Control:

set point


A
controller


Order is important!
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Causal Delivery 

Causal Delivery: 
For all messages m, m’ and all processes pi , pj (send-prozesses) and 
pk (receive-prozess)  holds: 

Causal-D  (CD): sendi(m)  → sendj(m’) ⇒deliverk(m) → deliverk(m’) 

CD maintains the global causal order of all messages in the system. 
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Events e und e’ may be causally dependent. 

To realize causal delivery, we must be able to decide 

Is there any event e’’ with the property: 

                 e → e‘‘ → e‘   


    ? 


Causal Delivery


It is necessary to order the events along causal dependencies.  
The temporal sequence of events only defines a potential causal relationship. 
Note: Temporal order does not violate causal order. 
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Is causal order sufficient ?


Every sensor process si maintains a variable W that represents a global state

e.g. the state of the environment. A new value is calculated from the old value and 

the messages from the other sensors Wt = max (Wt-1 ,  sensor message) + 5


m1


m2


s1


s2


s3


W=4


W=4


W=4


W= max( 4,3) +5 =9


W= max(4, 6) +5 =11


W= max(9, 6) +5 =14

(3)


W= max(11, 3) +5 =16


(3)
(6)


(3)

(6)


(6)


W= max(11, 3) +5 =16
W= max(4, 6) +5 =11
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Requirement: 
All nodes have the same order of messages 

The order should reflect the causal 
relationships correctly. 

1. 

2. 

How to realize? 

Concurrent messages have an arbitrary order. 3. 
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Goal: Observer, which orders all local events in a consisten global stream of events

     ⇒   produce a  totally ordered  event stream.


Intuitive solution:

Use global time.


Assumptions:

1. All processes have access to a global clock and can take timestamps from that. 

2. Communication latencies can be bounded by d .


RC(e) is the value of the global clock when the event e occurs.

RC(e) is added as timestamp TS to the message.


Delivery rule:


DR 1 : 
At time t deliver all received messages in ascending order of the timestamps TS


 with TS = t - d.


Total order 
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Why is global consistency ensured by DR 1? 

Condition I: 
The latency of messages is bound by d. Therefore, at time t all messages sent  
before t-d have been received. No message sent earlier than t-d will ever be received after t. 

Condition II: 
The observation is consistent iff  the clock condition : e  →  e’      ⇒  RC(e) < RC(e’) holds.

This condition is ensured by the global time. 

Disadvantage:  Availability of global time. 
Question:  Can consistency  of ordering be achieved without physical time?  
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Basic Idea:  To achieve a consistent order of messages, we only have to consider 
  the causal relationships. Concurrent messages can be ordered arbitrarily 
  BUT everywhere in the same order.  

i.e. 

The order based on ascending logical time must correspond to the 
causal order.  

Logic Clocks   (Lamport 1978) 
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p1


p2


p3


Total Order 

e1
1
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1
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8
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(9)


(9)


26


(69)


(69)
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W= max(4, 3) +5 = 9
 W= max(9, 6) +5 =14


W= max(9, 6) +5 =14


W= max(9, 6) +5 =14


W= max( 4,3) +5 = 9


m1: 12


m2: 27


s1


s2


s3


W=4


W=4


W=4


W= max(4, 3) +5 = 9


(3)


(3)

(6)


(3)

(6)


(6)


Total Order 
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Every process maintains a variable LC that represents the individual logical clock. 
LC maps local events on positive intergers. 

LC(ei): logical clock value of process pi, when event ei is generated. 

Every message m that is sent carries the timestamp TS(m), which represents  
the logical clock value of the sending process. 

Initialization: Before any event is generated, all logical clocks will be reset to "0". 

The following update rule defines the logical clock modification of process pi when 
event ei occurs: 

            LC + 1            if ei is a local event or a send event  
LC(ei) :=   

  max{LC, TS(m)} + 1    if ei is a receive event 

Logic Clocks 
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Local clocks always produce increasing values


Logic clock values are increasing with respect to causal order


Logic clocks satisfy the condition : e  → eʼ      ⇒  LC(e) < LC(eʼ). 


This is called the weak Clock Condition because:   LC(e) < LC(eʼ)     ⇒     e  → eʼ


Properties of Logic Clocks 

Question: 

Are logic clocks sufficient to guarantee consistent observations?
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p1


p2


p3


Total order is correctly established by logic clocks


e1
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e3
1
 e3

2
 e3
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24
 25


8
 9


67
 68

69


70


70


71


(9)


(9)


26


(69)


(69)


BUT: in an asynchronous system it is impossible to determine

when a message may be delivered.


safety property 

lifeness property 
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Given the events e und eʼ with clock values LC(e) and LC(eʼ).

The condition LC(e) < LC(eʼ) holds. 


GDP denotes the ability to decide whether there exist an event eʼʼ which 

satisfies  LC(e) < LC(eʼʼ) < LC(eʼ)


GDP is needed to guarantee lifeness.


Problem:     Find an algorithm with the following properties:


1. All events are totally ordered

2. On the basis of receive events it can be decided when a message can be delivered


Note:  Real-time clocks don't solve the problem!


Gap-Detection Property  (GDP) 
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Gap-Detection Property  (GDP) 

Matrix Clocks  
Vector Clocks have the GAP detection property 

Synchronous protocols solve the GAP detection 
problem.  
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Synchronous Systems


The communication system has a known and bounded 

maximal message delay d.


All processes have access to a global real-time clock (RC). 


RC(e) is the value of the global clock when event “e” occurs.

RC(e) is added as timestamp TS to the message


Delivery rule:


At time t deliver all messages in ascending order with TS = t - d.
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W= max(4, 3) +5 = 9
 W= max(9, 6) +5 =14


W= max(9, 6) +5 =14


W= max(9, 6) +5 =14


W= max( 4,3) +5 = 9


m1: 12


m2: 13


s1


s2


s3


W=4


W=4


W=4


W= max(4, 3) +5 = 9


(3)


(3)

(6)


(3)

(6)


(6)


Total Order in a Synchronuous System 
10 15 20 25 30 

max.delay 
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Temporal order


A message m1 is temporally preceding a message m2 

if m1 is sent at least δ before m2 , i.e. :



 
 t(send(m1)) - t(send(m2)) > δ


According to this definition, a protocol that delivers messages  
in temporal order also guarantees causal order. 
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Problem # 1: 

How big is the max. difference of message propagation of ONE message?


 Tightness


Problem #2:

How big is the max. difference of message propagation of DIFFERENT messages?


 Steadyness


Synchrony Metrics
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Definition: Delivery time of a message


ΔtD,p =   t (deliver p(m))- t (send(m))


ΔtD,p : Interval between the send event of message m its delivery

          at prozess p


p


s


q


ΔtD,p


ΔtD,q


Synchrony Metrics
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Definition: Tightness 


τ  = maxm,p,q (tD,p – tD,q )


for every message m, τ is the maximal difference of transmission times that occurs 
for arbitrary receivers p and q. 


Tightness  τ


Tightness is a measure for the difference of transmission times of ONE 
message to DIFFERENT nodes.


Synchrony Metrics
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Tightness τ 


r


s


q

m2


m1


tD,r – tD,s


τ = tD,r – tD,q


tD,s
 tD,r


tD,q

tD,r


Synchrony Metrics
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Definition: Steadyness 


σ  = maxp (tp
Dmax – tp

Dmin )


σ  is the maximal difference that can be observed between the maximum tp
Dmax and 

the minimum tp
Dmin delivery times of different message (to some process p).


steadyness σ


Steadyness measures the maximal difference of delivery times of DIFFERENT 
mesages to the same process. 


Synchrony Metrics
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Steadyness σ


r


s


q

m2


m1


σ = maxp (tp
Dmax – tp

Dmin )


tr
Dmin
ts

Dmax


Synchrony Metrics


ts
Dmin
 tr

Dmax


tq
Dmax
tq

Dmin
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Temporal 

uncertainty ε


r


s


q

m2


m1


ε = maxp,q (tp
Dmax – tq

Dmin )


tDmin
 tDmax

tDmin


tDmax


Synchrony Metrics


Temporal uncertainty describes the absolute max difference between the minimal 
delivery time and the maximal delivery time of all messages. 
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What is ordered by logic order?


P2
 P3


P4
P1
control computer


m1
 m2


alarm-monitor


valve
 flow sensor


P1


P2


P3


P4


m1


m2


delay by fluid medium


valve

broken


The problem of hidden physical channels
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