
1 J. Kaiser, IVS-EOS Embedded Networks 10

Order

in

Distributed Systems

2 J. Kaiser, IVS-EOS Embedded Networks 10

Why Order?

Determine the potential order of events.

 Determine the cause-effect relationship

 (causality)in a distributed computation.

Enforce an ordering policy, i.e. an a priori specified
sequence of events.

 Coordination of joint activities.

3 J. Kaiser, IVS-EOS Embedded Networks 10

Control:

set point

A

C
 B

Comm. network

controller

controller
 controller

Control:

set point

A
controller

Order is important!

4 J. Kaiser, IVS-EOS Embedded Networks 10

I.

What can be ordered?

In what way order is established in a
distributed system?

5 J. Kaiser, IVS-EOS Embedded Networks 10

cone of the future

cone of the past

time

What can be ordered?

space

space

e: event in

the presence

e only has an impact on events

in the future and only can be

caused by events from the past.

Can we (in principle) establish

a total temporal order in a

distributed system?

P. Verissimo , L. Rodrigues nach Stephen Hawking

6 J. Kaiser, IVS-EOS Embedded Networks 10

Computational Model
A distributed computation is performed as the joint activity of local, sequential processes.

The activity of a local sequential process is modelled as a sequence of events.

P1

P2

e2

1

e1
1
 e1

2
 e1
3
 e1

4

e2
2
 e2

3

An event either is local to a process, i.e. it causes an internal, local state change, or

A computation includes the comminication with another process. This will be modelled by a send
and a receive event.

Messages are unambiguous single events, i.e. multiple messages with the same contents sent by
the same process will be modelled as multiple individual events.

All models of Data Sharing are abstracted as communication.

7 J. Kaiser, IVS-EOS Embedded Networks 10

Def.:

The local history of proces pi is a (possibly infinite) sequence of events hi = ei

1 ei
2 ei

3 ei
n . . .

(canonical enumeration). It defines a total order of local events.

Def.:

The global history is the set H = h1 ∪ h2 ∪ h3 ∪. ∪ hn .

Note: The global history does not specify any relative time or order between the elements.

Computational Model

8 J. Kaiser, IVS-EOS Embedded Networks 10

The Precedence Relation

Events in a system can be ordered according to their causal relationship in a cause-effect chain

(happens before relation, Lamport 78)).

Def.: Precedence Relation →

1. for all ei

k , ei
l ∈ hi , k < l : ei

k → ei
l (hi is the "history" of process i) (local precedence)

2. If ei = send (m) and ej = receive (m) : ei → ej

3. If e → e‘ and e‘ → e‘‘ : e → e‘‘ (transitivity)

For concurrent events no causal relationship can be specified, i.e.

neither e → e‘ nor e‘ → e holds. Notation: e || e‘

A distributed computation can formally be seen as a partially ordered set defined

by the tupel (H, →) where H is the combined History of all processes.

9 J. Kaiser, IVS-EOS Embedded Networks 10

P1

P2

e2

1

e1
1
 e1

2
 e1
3
 e1

4

e2
2
 e2

3

P3

e3

1
 e3
2
 e3

3

e1
5
 e1

6

e3
4
 e3

5
 e3
6

Time-Space Diagram

e3
1 || e1

2

e1
2 → e3

6

10 J. Kaiser, IVS-EOS Embedded Networks 10

What is the meaning of consistency in a distributed system

?

A system state, that can be established by any possible sequential execution of processes.

Causality must be preserved.

11 J. Kaiser, IVS-EOS Embedded Networks 10

Global States and Cuts

Local state:

zi

k : local state of pi after the execution of ei
k

zi
0 : Initial state of pi

Global state: Σ = (z1 , z2 ,. . . . , zn)

Def.: The Cut C of a distributed computation is the subset C of the global history H with:

 C = h1

C1 ∪ h2
C2

 ∪ h3
C3

 ∪. ∪ hn
Cn .

The tupel of integers (c1 , c2 ,. . . . , cn) represents the resepective index of the last event that has been

considered for every process. The set of most recent events { e1

C1, e2
C2

, e3
C3., en

Cn } is called

the front of the cut.

 A global state (z1
C1, z2

C2
, z3

C3., zn
Cn) is associated with every cut (c1 , c2 ,. . . . , cn).

12 J. Kaiser, IVS-EOS Embedded Networks 10

Runs

Def.: Run of a distributed computation:

A run of a distributed computation is a totally ordered sequence R, that comprises

all events of the global history and is compliant to every local history.

13 J. Kaiser, IVS-EOS Embedded Networks 10

Consistency

1.) A run is consistent, if:

 for all e, e‘ : (e ∈ C) and (e‘ → e) ⇒ e‘ ∈ C

2.) A consistent (distributed) state is represented by a consistent cut.

Analogies between sequential and distributed computations:

I.
 The point in time of an event in a sequential computation is equivalent to:

 The front of a consistent cut in a distributed computation.

II.
 e appears before or after a certain point in time of a sequential computation is equivalent to:

 e appears before or after a cut C, if the event is left or right of the front of C in a

 distributed computation.

The run of a distributed computation is consistent if for all events the following condition holds:

e → e‘ implies that e appears before e‘. (R defines a total order)

14 J. Kaiser, IVS-EOS Embedded Networks 10

P1

P2

e2

1

e1
1
 e1

2
 e1
3
 e1

4

e2
2
 e2

3

P3

e3

1
 e3
2
 e3

3

e1
5
 e1

6

e3
4
 e3

5
 e3
6

C = (5, 2, 4)
 Cʻ = (3, 2, 6)

Runs, global states and cuts

Example: R = (e2
1 , e1

1, e1
2, e3

1, e3
2, e3

3, e3
4, e2

2, e3
5, e1

3, e1
4, e1

5, e1
6, e3

5, e2
2, e2

3, e3
6)

15 J. Kaiser, IVS-EOS Embedded Networks 10

Ordering messages

in Distributed Systems

16 J. Kaiser, IVS-EOS Embedded Networks 10

Temporal
 messages are ordered in a way that the message m1 sent before

order:

 message m2 also will arrive before m2.

FIFO

CAUSAL

TOTAL

How to order messages ?

17 J. Kaiser, IVS-EOS Embedded Networks 10

m1
 m2
 m3
#3
 #4
 #5

m1
 m2
 m3

p1

p2

p3

local receive message queue

#3
 #4
 #5

FIFO-Receive order for pairs of processes

e2
1
 e2

2
 e2
3

18 J. Kaiser, IVS-EOS Embedded Networks 10

Idea:

 Receive process reorders the messages.

Approach:
 Distinguish the receiption of the message at the node from the delivery to

 an application process

FIFO-delivery : sendi(m) → sendi(m’) ⇒ deliverj(m) →deliverj(m’)

FIFO-order for pairs of processes

FIFO-D prevents a message from overtaking a message sent later between two processes.

19 J. Kaiser, IVS-EOS Embedded Networks 10

FIFO-order for pairs of processes

Overhead: Process needs to add a sequence number

FIFO-D is sufficient to guarantee that an observation complies to some run
because FIFO-D maintains the order of local events.

BUT:

Because FIFO-D is defined between pairs of processes only it is not sufficient to
guarantee that the observation corresponds to a consistent run !

Properties:

20 J. Kaiser, IVS-EOS Embedded Networks 10

m1

m2

m2
 m1

p1

p2

p3

FIFO-D is insufficient

The order of events which p1 constructs based on the sequence of messages is inconsistent.

FIFO-D doesn't reflect causality for messages sent by different processes!

21 J. Kaiser, IVS-EOS Embedded Networks 10

Control:

set point

A

C
 B

Comm. network

controller

controller
 controller

Control:

set point

A
controller

Order is important!

22 J. Kaiser, IVS-EOS Embedded Networks 10

Causal Delivery

Causal Delivery:
For all messages m, m’ and all processes pi , pj (send-prozesses) and
pk (receive-prozess) holds:

Causal-D (CD): sendi(m) → sendj(m’) ⇒deliverk(m) → deliverk(m’)

CD maintains the global causal order of all messages in the system.

23 J. Kaiser, IVS-EOS Embedded Networks 10

Events e und e’ may be causally dependent.

To realize causal delivery, we must be able to decide

Is there any event e’’ with the property:

 e → e‘‘ → e‘

 ?

Causal Delivery

It is necessary to order the events along causal dependencies.
The temporal sequence of events only defines a potential causal relationship.
Note: Temporal order does not violate causal order.

24 J. Kaiser, IVS-EOS Embedded Networks 10

Is causal order sufficient ?

Every sensor process si maintains a variable W that represents a global state

e.g. the state of the environment. A new value is calculated from the old value and

the messages from the other sensors Wt = max (Wt-1 , sensor message) + 5

m1

m2

s1

s2

s3

W=4

W=4

W=4

W= max(4,3) +5 =9

W= max(4, 6) +5 =11

W= max(9, 6) +5 =14

(3)

W= max(11, 3) +5 =16

(3)
(6)

(3)

(6)

(6)

W= max(11, 3) +5 =16
W= max(4, 6) +5 =11

25 J. Kaiser, IVS-EOS Embedded Networks 10

Requirement:
All nodes have the same order of messages

The order should reflect the causal
relationships correctly.

1.

2.

How to realize?

Concurrent messages have an arbitrary order. 3.

26 J. Kaiser, IVS-EOS Embedded Networks 10

Goal: Observer, which orders all local events in a consisten global stream of events

 ⇒ produce a totally ordered event stream.

Intuitive solution:

Use global time.

Assumptions:

1. All processes have access to a global clock and can take timestamps from that.

2. Communication latencies can be bounded by d .

RC(e) is the value of the global clock when the event e occurs.

RC(e) is added as timestamp TS to the message.

Delivery rule:

DR 1 :
At time t deliver all received messages in ascending order of the timestamps TS

 with TS = t - d.

Total order

27 J. Kaiser, IVS-EOS Embedded Networks 10

Why is global consistency ensured by DR 1?

Condition I:
The latency of messages is bound by d. Therefore, at time t all messages sent
before t-d have been received. No message sent earlier than t-d will ever be received after t.

Condition II:
The observation is consistent iff the clock condition : e → e’ ⇒ RC(e) < RC(e’) holds.

This condition is ensured by the global time.

Disadvantage: Availability of global time.
Question: Can consistency of ordering be achieved without physical time?

28 J. Kaiser, IVS-EOS Embedded Networks 10

Basic Idea: To achieve a consistent order of messages, we only have to consider
 the causal relationships. Concurrent messages can be ordered arbitrarily
 BUT everywhere in the same order.

i.e.

The order based on ascending logical time must correspond to the
causal order.

Logic Clocks (Lamport 1978)

29 J. Kaiser, IVS-EOS Embedded Networks 10

p1

p2

p3

Total Order

e1
1
 e1

2
 e1
3
 e1

4

e2
1
 e2

2

e2

3
 e2
4

e3
1
 e3

2
 e3
3

24
 25

8
 9

67
 68

69

70

70

71

(9)

(9)

26

(69)

(69)

30 J. Kaiser, IVS-EOS Embedded Networks 10

W= max(4, 3) +5 = 9
 W= max(9, 6) +5 =14

W= max(9, 6) +5 =14

W= max(9, 6) +5 =14

W= max(4,3) +5 = 9

m1: 12

m2: 27

s1

s2

s3

W=4

W=4

W=4

W= max(4, 3) +5 = 9

(3)

(3)

(6)

(3)

(6)

(6)

Total Order

31 J. Kaiser, IVS-EOS Embedded Networks 10

Every process maintains a variable LC that represents the individual logical clock.
LC maps local events on positive intergers.

LC(ei): logical clock value of process pi, when event ei is generated.

Every message m that is sent carries the timestamp TS(m), which represents
the logical clock value of the sending process.

Initialization: Before any event is generated, all logical clocks will be reset to "0".

The following update rule defines the logical clock modification of process pi when
event ei occurs:

 LC + 1 if ei is a local event or a send event
LC(ei) :=

 max{LC, TS(m)} + 1 if ei is a receive event

Logic Clocks

32 J. Kaiser, IVS-EOS Embedded Networks 10

Local clocks always produce increasing values

Logic clock values are increasing with respect to causal order

Logic clocks satisfy the condition : e → eʼ ⇒ LC(e) < LC(eʼ).

This is called the weak Clock Condition because: LC(e) < LC(eʼ) ⇒ e → eʼ

Properties of Logic Clocks

Question:

Are logic clocks sufficient to guarantee consistent observations?

33 J. Kaiser, IVS-EOS Embedded Networks 10

p1

p2

p3

Total order is correctly established by logic clocks

e1
1
 e1

2
 e1
3
 e1

4

e2
1
 e2

2

e2

3
 e2
4

e3
1
 e3

2
 e3
3

24
 25

8
 9

67
 68

69

70

70

71

(9)

(9)

26

(69)

(69)

BUT: in an asynchronous system it is impossible to determine

when a message may be delivered.

safety property

lifeness property

34 J. Kaiser, IVS-EOS Embedded Networks 10

Given the events e und eʼ with clock values LC(e) and LC(eʼ).

The condition LC(e) < LC(eʼ) holds.

GDP denotes the ability to decide whether there exist an event eʼʼ which

satisfies LC(e) < LC(eʼʼ) < LC(eʼ)

GDP is needed to guarantee lifeness.

Problem: Find an algorithm with the following properties:

1. All events are totally ordered

2. On the basis of receive events it can be decided when a message can be delivered

Note: Real-time clocks don't solve the problem!

Gap-Detection Property (GDP)

35 J. Kaiser, IVS-EOS Embedded Networks 10

Gap-Detection Property (GDP)

Matrix Clocks
Vector Clocks have the GAP detection property

Synchronous protocols solve the GAP detection
problem.

36 J. Kaiser, IVS-EOS Embedded Networks 10

Synchronous Systems

The communication system has a known and bounded

maximal message delay d.

All processes have access to a global real-time clock (RC).

RC(e) is the value of the global clock when event “e” occurs.

RC(e) is added as timestamp TS to the message

Delivery rule:

At time t deliver all messages in ascending order with TS = t - d.

37 J. Kaiser, IVS-EOS Embedded Networks 10

W= max(4, 3) +5 = 9
 W= max(9, 6) +5 =14

W= max(9, 6) +5 =14

W= max(9, 6) +5 =14

W= max(4,3) +5 = 9

m1: 12

m2: 13

s1

s2

s3

W=4

W=4

W=4

W= max(4, 3) +5 = 9

(3)

(3)

(6)

(3)

(6)

(6)

Total Order in a Synchronuous System
10 15 20 25 30

max.delay

38 J. Kaiser, IVS-EOS Embedded Networks 10

Temporal order

A message m1 is temporally preceding a message m2

if m1 is sent at least δ before m2 , i.e. :

 t(send(m1)) - t(send(m2)) > δ

According to this definition, a protocol that delivers messages
in temporal order also guarantees causal order.

39 J. Kaiser, IVS-EOS Embedded Networks 10

Problem # 1:

How big is the max. difference of message propagation of ONE message?

 Tightness

Problem #2:

How big is the max. difference of message propagation of DIFFERENT messages?

 Steadyness

Synchrony Metrics

40 J. Kaiser, IVS-EOS Embedded Networks 10

Definition: Delivery time of a message

ΔtD,p = t (deliver p(m))- t (send(m))

ΔtD,p : Interval between the send event of message m its delivery

 at prozess p

p

s

q

ΔtD,p

ΔtD,q

Synchrony Metrics

41 J. Kaiser, IVS-EOS Embedded Networks 10

Definition: Tightness

τ = maxm,p,q (tD,p – tD,q)

for every message m, τ is the maximal difference of transmission times that occurs
for arbitrary receivers p and q.

Tightness τ

Tightness is a measure for the difference of transmission times of ONE
message to DIFFERENT nodes.

Synchrony Metrics

42 J. Kaiser, IVS-EOS Embedded Networks 10

Tightness τ

r

s

q

m2

m1

tD,r – tD,s

τ = tD,r – tD,q

tD,s
 tD,r

tD,q

tD,r

Synchrony Metrics

43 J. Kaiser, IVS-EOS Embedded Networks 10

Definition: Steadyness

σ = maxp (tp
Dmax – tp

Dmin)

σ is the maximal difference that can be observed between the maximum tp
Dmax and

the minimum tp
Dmin delivery times of different message (to some process p).

steadyness σ

Steadyness measures the maximal difference of delivery times of DIFFERENT
mesages to the same process.

Synchrony Metrics

44 J. Kaiser, IVS-EOS Embedded Networks 10

Steadyness σ

r

s

q

m2

m1

σ = maxp (tp
Dmax – tp

Dmin)

tr
Dmin
ts

Dmax

Synchrony Metrics

ts
Dmin
 tr

Dmax

tq
Dmax
tq

Dmin

45 J. Kaiser, IVS-EOS Embedded Networks 10

Temporal

uncertainty ε

r

s

q

m2

m1

ε = maxp,q (tp
Dmax – tq

Dmin)

tDmin
 tDmax

tDmin

tDmax

Synchrony Metrics

Temporal uncertainty describes the absolute max difference between the minimal
delivery time and the maximal delivery time of all messages.

46 J. Kaiser, IVS-EOS Embedded Networks 10

What is ordered by logic order?

P2
 P3

P4
P1
control computer

m1
 m2

alarm-monitor

valve
 flow sensor

P1

P2

P3

P4

m1

m2

delay by fluid medium

valve

broken

The problem of hidden physical channels

47 J. Kaiser, IVS-EOS Embedded Networks 10

