Time Triggered CAN TTCAN

Time Triggered CAN: TTCAN (Führer, Müller, Dieterle, Hartwich, Hugel, Walther, (Bosch))

Reference message	Exclusive Windows	e S	Arbitrating Window	Free Window	Exclu Wind	isive ows	Reference message
4							→

TTCAN Basic Cycle

reference message:	indicates the start of a cycle,
exclusive window :	used for critical periodic state messages,
arbitrating window:	used for spontaneous state and event messages,
free window :	window for further extensions and gap to the next exclusive window.

RETRANSMISSIONS ARE GENERALLY NOT ALLOWED IN TTCAN !!

Scheduling a Basic cycle on a node

Node n

Concatenating Basic Cycles to a MATRIX CYCLE

Time and clock synchronization in TTCAN

TT-CAN adds predictability to CAN

TT-CAN considers periodic message transfer

Fault handling differs substantially from Standard CAN

Clock synchronization is supported by hardware

Hybrid approaches are available in the scientific community

Coexistence of time-triggered and event-triggered mechanisms on the CAN-Bus

???

Is it possible and what are the trade-offs?

- 1. Time Triggered CAN: TTCAN (Führer, Müller, Dieterle, Hartwich, Hugel, Walther, (Bosch))
- 2. Dynamic Priorities (Kaiser, Livani)

Integration of TT- and ET- communication

by dynamic priorities

Basic Idea: Reserve slots for hard real-time traffic and schedule soft real-time traffic in the remaining slots

The priority scheme is used to enforce high priority message transmission in the exclusive slots.

What is the advantage over TDMA?

Mapping Deadlines to Priorities

- Messages have deadlines
- Deadlines can be transformed into priorities

Structuring the CAN-ID

 ΔC_{max} max. time interval (possibly under failure assumptions), which is neccessary to safely transmit a message to the destination

 $\Delta \boldsymbol{C}_{max}$ is a worst case assumption under all anticipated load and failure conditions

 δ_{clock} $% \beta_{\text{clock}}$ max. offset, i.e. the difference between any two local clocks

CAN Inaccessibility Times*

Data Rate 1 Mbps , Standard Format

Scenario	t _{inacc} (μs)	
Bit Errors	155.0	✓ worst case
Bit Stuffing Errors	145.0	single
CRC Errors	148.0	Single
Form Errors	154.0	
Ack. Errors	147.0	
Overload Errors	40.0	
Reactive Overload Errors	23.0	
Overload Form Errors	60.0	
Multiple Consecutive Errors (n=3)	195.0	
Multiple Successive Errors (n=3)	465.0	
Transmitter Failure	2480.0	worst case
Receiver Failure	2325.0	multiple

P. Verissimo, J. Ruffino, L. Ming:" How hard is hard real-time communication on field-busses?"

Utilization of CAN for HRT-messages

fault as n	sumption m	ΔC _{max} + 50 μs δ _{clock} (μs)	HRT messages / sec. #
0	0	358	2793
0	1	532	1880
0	3	880	1136
1	0	2988	335
1	3	3664	273

Benefits of the approach

Media access controlled by global time <u>only</u> (TDMA)

All nodes need global time Unused slots remain unused

Media access in a system controlled by our priority scheme

Cost-Performance Trade-off

Figure 1: Major Network Protocols in Vehicles

Protocols for less critical, simple sensor-actuator networks:

TTP/A (Time Triggered Protocol for SAE class A applications) LIN (Local Interconnect Network)

- Master/Slave protocols
- low dependability requirements
- free-runing low cost oscillators should be possible
- physical "Single-Wire-Network" (asynch. serial interface)
- low bandwidth requirements
- low cost

Transmission speed up to	LIN	TTP/A
20 kbits/second	ISO 9141 (ISO-K)	ISO 9141 (ISO-K)
1 Mbit/second	not specified	RS 485 or CAN
above 1 Mbit/second	not specified	fiber optics

Table 4: Transmission speed of LIN and TTP/A

TTP/A

H. Kopetz: Lit. Einführung,

H. Kopetz, W. Elemenreich, C. Mack: A Comparison of LIN and TTP/A, Research report 4/2000, Institut für Technische Informatik, TU Wien

3 different interfaces for slaves:

- RMI : Real-Time message Interface
- DMI: Diagnostic message Interface
- CMI: Configuration Message Interface

master-slave dialogue

data centric communication model

- real time frames contain data only!

Multipartner Round

- all data is stored in the Interface File System (IFS).
- addresses to data are specified as IFS addresses.
- addresses are specified in the round description list (RODL), i.e. the time slot in which the message is transmitted is fixed according to the TT model

baf: byte after fireworks op: operation **IFS: IFS-Adresse** p: protection (checksum)

Round Description List: RODL

The RODL is also stored in the IFS and can be configured via the CMI. There are max. 8 RODLs. RODL# is transmitted with a Hamming Distance of 4 (high protection against failures).

Programming model for smart transducers in the IFS

Address contains: < file, record, byte, checksum> 2^6 2^8 2^2

every node in the IFS supports:

up to	64	files
up to	256	records
with	4	bytes each

i.e. an address space of 2¹⁶ bytes/node.

and how to address the nodes ?

Every Smart Transducer has a unique physical name (8 bytes) consisting of:

- a node type name (series number)
- a node name within series (serial number)

During operation a node is addressed by a one-byte logical name that is unique within a cluster (i.e. up to 256 nodes/cluster).

The assignment of a logical name to a node is called baptizing and can be performed on-line. Low cost nodes can have preprogrammed logical names.

During operation a node is addressed by:

<Cluster Name, Node Name, File Name, Record Name>

General architecture of a TTP/A system

global name of a data item: <cluster name, node name, file name, record name>

Embedded Networks 10

Integrating a TTP/A system in CORBA

LIN (Local Interconnect Network)

LIN Specification Package, Revision 1.2, Nov. 17, 2000

- . single-master / multiple-slave concept
- . low cost silicon implementation based on common UART/SCI interface hardware, an equivalent in software, or as pure state machine.
- . self synchronization without quartz or ceramics resonator in the slave nodes
- . guarantee of latency times for signal transmission
- . low cost single-wire implementation
- . speed up to 20kbit/s.

Master-Slave communication in LIN

Header:

- serves for the synchronisation of slaves
- specifies the sequence and length of the fields in the data frame

LIN (Local Interconnect Network)

LIN Specification Package, Revision 1.2, Nov. 17, 2000

LIN Specification Package, Revision 1.2, Nov. 17, 2000

clock tolerance	Name	$\Delta F / F_{Master}$
master node	FTOL_RES_MASTER	< ±0.5%
slave node with quartz or ceramic resonator (without the need to synchronize)	F _{TOL_RES_SLAVE}	<±1.5%
slave without resonator, lost synchronization	F _{TOL_UNSYNCH}	<±15%
slave without resonator, synchronized and for a complete message	F _{TOL_SYNCH}	<±2%

Table 8.1: Oscillator Tolerance

LIN Specification Package, Revision 1.2, Nov. 17, 2000

LIN Specification Package, Revision 1.2, Nov. 17, 2000

Slaves can be added or removed without changing any software in the other slaves.

LIN frame format

reserved IDs: Master request Frame (0x3C), Slave Response Frame (0x3D) Extended Frames (User 0x3E, Reserved 0x3F)

LIN Master Request Frame

Download of data to the slave. Request of data from the slave.

Multiple 8 byte fields possible! Slave address is part of the command fields.

slaves, whiche are not addressed (interested resp.) wait until the next SyncBreak!

LIN Extended Frame

Bit-Error

Checksum-Error

Identifier-Parity-Error

Slave-Not-Responding-Error

Inconsistent-Synch-Field-Error

No-Bus-Activity

Comparison LIN und TTP/A (response time and protocol efficiency)

Kopetz, Elmenreich, Mack, TU Wien, 2000

10 nodes, response time in milliseconds on a 20 kbit bus	Minimum LIN	Maximum LIN	Minimum TTP/A	Maximum TTP/A
Every nodes sends four bytes of data	46.75 msec	65.4 msec	35.4 msec	35.6 msec
Every nodes sends two bytes of data	35.75 msec	50.05 msec	22.2 msec	22.3 msec
Every node sends one byte of data	35.75 msec	50.05 msec	15.6 msec	15.7 msec
Every node sends four bits of data	35.75 msec	50.05 msec	9 msec	9.1 msec
Every node sends four bits of data, additional master-slave round for DM service between any two multipartner rounds in TTP/A	not supported	not supported	16.8 msec	16.9 msec

Table 2: Achievable response times of LIN and TTP/A

Real Time

Figure 5: Byte Sequence of the simplest message in LIN (a), in TTP/A with start-up synchronization (b) and in TTP/A without start-up synchronization (c).

overhead

protocol

response time Automotive and highly dependable Networks

TTP/C Byteflight FlexRay Braided Ring Time Triggered CAN (TTCAN) TTP/A LIN

