Arbeitsgruppe Eingebettete
Systeme und Betriebssysteme

Prof. Jorg Kaiser, Sebastian Zug

Seminar Mobile Service Robotik (MSR)
Kooperative verteilte Systeme

1. Uberblick iiber kooperative Robotikanwendungen [2, 9]
2. (Entwicklungs)Frameworks fiir verteilte Robotiksysteme

(a) Ubersicht [§]
(b) ROCT - Framework for perception and control [3]
(¢) OROCOS - Development Framework [1]

3. Anwendungen

(a) Koordination heterogener Roboter [6]

(b) Lokalisierung in instrumentierten Umgebungen [7]

(¢) Gemeinsame Umgebungserfassung mittels Virtueller Sensoren [5]
(d) Lokalisation mittels unterschiedlicher fehlerbehafteter Sensoren [11]
(e) Kooperative Kartenerstellung [10]
(f)

f) Interaction fliegender Roboter mit Sensornetzen [4]

Literatur

[1] H. Bruyninckx. Open robot control software: the OROCOS project. Lan-
guage, 551:14.

[2] Y.U. Cao, A.S. Fukunaga, and A. Kahng. Cooperative mobile robotics:
Antecedents and directions. Autonomous robots, 4(1):7-27, 1997.

[3] L. Chaimowicz, A. Cowley, V. Sabella, and C.J. Taylor. ROCI: A distri-
buted framework for multi-robot perception and control. In Proceedings
of the 2003 IEEE/RJS International Conference on Intelligent Robots and
Systems, pages 266—271. Citeseer, 2003.

[4] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme.
Deployment and connectivity repair of a sensor net with a flying robot.
Ezperimental Robotics 1X, pages 333-343.

5]

[6]

7]

18]

9]

[10]

[11]

R. Grabowski, P. Khosla, and H. Choset. Development and deployment of
a line of sight virtual sensor for heterogeneous teams. In IEEE Internatio-
nal Conference on Robotics and Automation, volume 3, pages 3024-3029.
Citeseer, 2004.

L. Tocchi, D. Nardi, M. Piaggio, and A. Sgorbissa. Distributed coordination
in heterogeneous multi-robot systems. Autonomous Robots, 15(2):155-168,
2003.

B. Jung and G.S. Sukhatme. Cooperative tracking using mobile robots and
environment-embedded, networked sensors. In the 2001 IEEE Internatio-
nal Symposium on Computational Intelligence in Robotics and Automation,
pages 206-211. Citeseer, 2001.

J. Kramer and M. Scheutz. Development environments for autonomous
mobile robots: A survey. Autonomous Robots, 22(2):101-132, 2007.

L.E. Parker et al. Current state of the art in distributed autonomous mobile
robotics. Distributed Autonomous Robotic Systems, 4:3-12, 2000.

S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, and M. Hebert. Distri-
buted robotic mapping of extreme environments. In Proceedings of SPIE,
volume 4195. Citeseer, 2000.

R. Tinos, L. Navarro-Serment, and C. Paredis. Fault tolerant localizati-
on for teams of distributed robots. In IEEE International Conference on
Intelligent Robots and Systems, pages 2-1061. Citeseer, 2001.

0-7803-6475-9/01/$10.000 2001 IEEE

Proceedings of the 2001 IEEE

International Conference on Robotics & Automation

Seoul, Korea « May 21-26, 2001

Open Robot Control Software: the OROCOS project

Herman Bruyninckx*
Mechanical Engineering, Katholieke Universiteit Leuven, Belgium
http://www.mech.kuleuven.ac.be/~bruyninc

Abstract

This paper introduces the OROCOS project (www.
orocos.org), that aims at becoming a general-purpose
and open robot control software package. OROCOS
follows the Open Source development model that has
been proven to work in many other general-purpose
software packages, such as Linux, Apache, Perl, or
TEX. The paper focuses on the long-term vision of
this start-up project, motivates which strategic and in-
novative design decisions are to be taken (a CORBA(-
like) component architecture being the most impor-
tant one, [14]), and lists other projects on which ORO-
COS could build. The success of OROCOS depends
critically on how many researchers and engineers can
be motivated to contribute code, documentation and
feedback to the project.

1 Introduction

The robot industry is about half a century old, and
has always been keen to adapt standards and high-tech
evolutions from electronics and mechanics, especially
materials, acutators, and electronic communication.
However, the industry’s current software practices are
very similar to those in the computer business some
20 years ago: every manufacturer has its own propri-
etary software, algorithms, data structures, as well as
programming languages. Efforts to define open data
format standards or programming languages have had
very minor success, such that software exchange pos-
sibilities are really extremely low.

There are many reasons for this lack of interoper-
ability and openness in the robotics industry; some
of the more important ones are: (i) all manufacturers
operate in niche markets (that is, a niche in scope, cer-
tainly not in size!) such as manufacturing or assembly;
(ii) the largest share of the market is covered by large
corporate customers that make long-term investments

*Postdoctoral Fellow of the F.W.O—-Vlaanderen. The finan-
cial support by the Belgian State—Prime Minister’s Office—
Science Policy Programme (IUAP), and by K.U.Leuven’s Con-
certed Research Action GOA/99/04 are gratefully acknowl-
edged.

2523

and demand high reliability, and not by very price-
sensitive individual consumers with rapidly varying
tastes; (iii) the academic “customers,” interested in
the development of robotic systems with a much wider
and ambitious scope, represent only negligable market
share.

As a result, robotics is still an industry with a
very high “user lock-in,” leading to the correspond-
ing huge investment threshold for newcomers and low
cross-fertilization rate of innovations. This situation
has only become worse after the worldwide mergers of
the last ten years or so, with only a handful of gen-
eral purpose manufacturers remaining. On the other
hand, many relatively small companies have appeared,
which offer a wide range of innovative (but mutually
incompatible) robotics products, that are aimed at
the (growing) academic, special-purpose or home mar-
kets; for example, RWI/iRobot [7, 16], Nomadic [13],
Khepera/CyberBotics [8, 27], etc. The repercussions
of this commercial situation on academic robotics in-
stitutes is that exchange of software research results
is almost inexistant, and independent “benchmark”
comparisons of results are impossible.

In contrast to what has happened in robotics, the
computer business scene has gone through a radically
different evolution during the last couple of years: the
appearance and growing maturity of the Linux operat-
ing system and other Free Software and Open Source
software packages (the GNU tools, Apache, Gnome
and KDE, Perl, etc.), together with the massive em-
ployment of the Internet and its open communication
standards (TCP/IP, HTML, CORBA, etc.), has dras-
tically lowered the monetary threshold for newcomers
and consumers, and (or rather, because!) it has al-
lowed the easy, cheap, instantaneous, and worldwide
exchange of software and data.

There is no reason why this “democratization pro-
cess” of the computer industry could not be applied to
the robotics area too. However, until now, no (propri-
etary or Open) general-purpose robot control software
package exists. The goal of this paper is to present
such an emerging and ambitious effort, that goes un-
der the name of OROCOS (Open RObot COntrol
Software).

The following Sections explain the long-term goals
of OROCOS, the modern software engineering prin-
ciples the project will use, the Open Standards with
which its software and data formats will work, the
business model companies will be able to use to gen-
erate an income based on OROCOS (in synergy with
the project’s Open Source nature!), and the practical,
Internet-based day-to-day management and

organisation of the project.

2 Goals and vision

The OROCOS project is all about developing robot
control software

e under Open Source license, [15]. That is, the
source code is freely available for study, use and
modification. The GPL license (GNU General
Public License, [21]) is a major candidate be-
cause it has proven to work for Linux. However,
it forces all “derived code” to be released under
the GPL too. Linux Torvalds solved this prob-
lem for the Linux kernel by explicitly allowing
proprietary code to be linked to the kernel code;
another possibility are less stringent licenses such
as the LGPL (Lesser However, OROCOS has a
competitive advantage over proprietary libraries
(simply because the latter don’t exist) so that a
more compliant license is not really necessary [22].

e with extreme modularity and flexibility. Such
that (i) users can build their own system a la
carte, and (ii) developers can contribute to the
modules they are interested in, without the need
to delve into the code of the whole system.

e of the highest quality, from both the technical,
documentation, and software engineering points
of view. The education and documentation as-
pects receive special attention within the project:
the OROCOS documentation should not be lim-
ited to the classical user and reference guides for
the software, but, due to its Open Source nature,
it can serve as a basis for educational purposes
too, e.g., classroom notes illustrated with the ex-
amples from the OROCOS code and OROCOS
projects. By starting the project with an exten-
sive design brainstorming phase, we want to in-
crease the chances that documentation is avail-
able together with the code, or even before it!

e independently of (but if possible compatible with)
commercial robot manufacturers. Initially, espe-

2524

cially the smaller and/or service-oriented busi-
nesses will be interested in using the OROCOS
code, and in contributing to it. In the long run,
the OROCOS code should become an inevitable
de facto “Open Standard,” comparable to the ac-
ceptance of Linux in the mainstream computer
industry. One of the major gaps in the current
robot industry is the lack of a common program-
ming API (Application Programming Interface),
and trajectory generation and motion control li-
braries; an independent project such as OROCOS
is ideal to suggest roadmaps to fill this gap.

e for all sorts of robotic devices and computer plat-
forms. (Note that the large majority of Open
Source projects are not at all limited to the Linux
platform, but run on Windows, MacOS, Unices,
etc.) The largest obstacle in this context are the
“off the shelf” robot hardware systems, because
their software architecture seldom provides suffi-
cient openness. However, many of those systems
have already been “hacked” by the robotics re-
search community, and the results can easily be
added as the “Open Hardware” part of OROCOS.
As soon as OROCOS proves to be a viable and
reliable software project, new robotic systems will
adapt it as (one possible) default control environ-
ment.

o Jocalized for all languages. That means that the
software should be straightforward to configure
in such a way that all dialogues with users take
place in the users’ preferred language.

o featuring software components for kinematics, dy-
namics, planning, sensing, control, hardware in-
terfacing, etc. The meaning of “component” in
this context corresponds to what is described
in so-called “middleware” software (CORBA,
DCOM, or RIM), [4], i.e., a software object that
can dynamically be added or removed from a
network and that offers its services through a
neutral, programming language independent in-
terface (such as CORBA’s Interface Description
Language IDL, [14]).

The project aims at becoming much more than just a
copy of existing commercial robot controllers or robot
simulation/programming packages: these commercial
offerings are, up to now, always limited to niches in the
market (although these niches often represent billion
euros economies!) and are very difficult to extend, to
combine, or to run on any hardware or over a network.
The difficulties come not only from limits on the scope

of the projects, but often also from the limitations
imposed by commercial licenses.

The OROCOS project on the other hand, starts
out from the opposite side: it wants to develop share-
able libraries that are platform independent, imple-
ment stand-alone component examples that can be
adapted and extended by end-users, and develop a
configurable run-time environment from which to sim-
ulate and control all possible distributed robotic sys-
tems. The result should be able to appeal to all roboti-
cists, whether they are students interested in extend-
ing the soccer server of RoboCup, [17], or a multina-
tional team of engineers from different companies that
have to get a five-finger robot hand work together with
a redundant manipulator on a planetary rover under
vision-guided teleoperation, where all parts come from
different manufacturers.

These aims are very ambitious (but realistic), but
they are only achievable in an Open Source effort: no
proprietary developer can (or wants to, or has the man
power to) cover the same broad scope. However, noth-
ing prevents commercial companies from using (part
of) the OROCOS software, or even contributing to
it. It might be a cliché, but the Linux project is a
proven example of a very ambitious undertaking that
now receives contributions from both volunteers and
professional software engineers, working in isolation or
in the framework of multinational corporations.

The goals of this paper are: (i) to introduce the
OROCOS project to the public, (ii) to explain the
motivations behind its long-term strategy, (iii) to in-
vite colleagues from all over the world to brainstorm
about its design; and (vi) to raise the interest of “robot
hackers” to contribute, review and extend code. In-
deed, experience has learned that two requirements
should be fulfilled before an Open Source project will
succeed: (i) it should start with a clear vision of what
it want to achieve; and then (ii) it needs a critical
mass of skilled contributors to make that vision hap-
pen. Both requirements are surely fulfilled in robotics!
The only(?) problem will be to manage these hetero-
geneous forces such that they share the same long-
term goals.

3 Modules

A huge software project such as OROCOS should
rely on a “divide and conquer” approach, in order
to keep complexity manageable. The OROCOS code
(and documentation!) base is to be divided into mod-
ules, or libraries. There are roughly three major types
of modules:

2525

e Supporting modules. That is, the software with-
out functional robotics contents, but that is nev-
ertheless needed to build a working robot con-
trol system. For example, 3D visualisation and
simulation; numerical library; software compo-
nent configuration tools; real-time operating sys-
tem; inter-process communication; documenta-
tion writing tools; etc. These modules can al-
most completely be “recycled” from already ex-
isting Open Source projects, see Sect. 7.

e Robotics modules. That is, the software that im-
plements specific robotics algorithms: kinemat-
ics and dynamics of (both general and specific)
kinematic chains; servo controllers; Baysian and
Neural Network estimators; motion planners for
mobile robots, serial and parallel manipulators;
etc. The Robotics modules make use of one or
more of the Supporting modules.

e Components. That is, the CORBA objects with
their IDL descriptions. These components are
constructed out of the previous two types of mod-
ules, and they are the building blocks with which
users “assemble” their (distributed) robot control
software environment.

4 Software engineering approach

The Robotics and Component modules are the in-
novative core of the OROCOS project. “Innovative
core” has two complementary meanings, i.e., in the
areas of

1. Research: novel ideas and/or algorithms, i.e., not
yet available in academic or commercial robot sys-
tems. Much novelty also lies in the ambitious
scope of the applications.

2. Software engineering: many algorithms are, in
one form or another, already in use in com-
mercial robot systems for many years, but they
cannot be accessed for improvement or reuse in
other applications. However, pouring them in a
sofware module that will function as, for exam-
ple, a CORBA component, requires creative soft-
ware engineering, and, in most cases, re-creation
of the source code. This is an excellent occa-
sion to apply modern software engineering prin-
ciples, i.e., object-orientation, software patterns,
and distributed components.

The common design strategy underlying the devel-
opment of each OROCOS module is as follows: in

a first step, the long-term vision is openly discussed
by means of the OROCOS mailinglist; the developers
look for possible Software Patterns that are transfer-
able from other domains or have emerged in robotics
over the last couple of decades; and, finally, imple-
mentation starts and is iterated. Of course, in prac-
tice these steps occur most often in parallel. Open
Source projects have proven their enormous flexibility
in this respect: whenever rational arguments exist to
recreate code or redesign parts of the system, there
are no marketing or “backwards compatibility” limits
to keep the community from doing it. In contrast to
the commercial software industry, backwards compat-
ibility is not such a big constraint, because (i) all older
versions remain available, and (ii) the cost to upgrade
is marginal.

A large component-based software system such as
OROCOS will profit maximally from two of the major
evolutions in software engineering: object-orientation
and software patterns. The latter in particular will
get much emphasis, because it is still almost com-
pletely absent from the robotics research scene, while
a project such as OROCOS is the perfect initiative
to fill this gap in an innovative way. The following
paragraphs explain the major features of both soft-
ware engineering concepts, but the interested reader
is refered to the abundant literature for more details.

1. Object orientation. A large software system is di-
vided into smaller “objects,” with well-described
interfaces, that other objects can use. The ob-
jects themselves are responsible for how they im-
plement these interfaces.

2. Software patterns. The development of a new

software system becomes faster and more reliable,
whenever one can find a part of the whole system
that shows the same behaviour as previously im-
plemented software systems, or as a well-known
behaviours from everyday life in human society.
Such a recognizable behaviour is called a “pat-
tern,” [5].
Well-known examples that are immediately useful
in a robotics context are [1, 5]: the Model-View—
Control pattern for graphical user interfaces; the
Producer—Consumer model for distributing data
over different, dynamically changing clients on a
network.

A software pattern is a set of objects and meth-
ods, whose functionality and inter-relationships
have been proven to work in common software
practice or in real human life. A pattern exists in
a possibly very different domain than the one in

2526

which the software system is to be implemented.
It need even not exist in the form of a software
module at all, as long as the expected behaviour
of the whole system is intuitively clear to the hu-
man developer and/or user, because they recog-
nize it from their everyday experiences. The goal
of introducing Software Patterns is to have users
recognize these patterns in the system at hand, by
giving the pattern a suitable, intuitive name, and
then to implement the code in such a way that
it satisfies the (often implicit) expectations that
users have in the context of the intuitively named
pattern. That is, the name of a pattern brings
to live a whole context within the user’s mind,
and this context makes it easier to (i) understand
the functionality of the different methods imple-
mented in the software that comes with the pat-
tern, and hence (ii) extend and/or maintain the
current implementation of the pattern, even for
people that were not involved in the original cod-
ing.

Very few of the Patterns that implicitly appear
in many robotic systems have already been made
explicit, which means that there is still a large
unexplored research area to be covered by ORO-
COS.

5 Standards

Open standards (in programming languages, data
formats, communication protocols, and documenta-
tion) are of paramount importance for efficient sharing
of software and for its cooperative development. Only
an Open Source project can guarantee the optimal use
of, and respect for, open standards; commercial soft-
ware producers are often tempted to introduce propri-
etary protocols to keep competitors out of the market.

Here is a list of some of the most important (and
most powerful) standards that the OROCOS project
will use:

e The CORBA IDL for object embedding, [14].
Through the IIOP (Internet Inter-Orb Protocol),
all different implementations of CORBA are in-
teroperable. CORBA also has a real-time exten-
sion, which is very important for robot control;
TAO, [19] is an open source implementation.

e The structured document language XML [26] for
configuration and data files.

e Modelica [12] for modeling of dynamical systems.
Most of the commercial packages for the simula-

tion of dynamical systems are co-developing and
supporting this modeling format as their future
open data format standard for the vendor-neutral
exchange of models.

e DocBook [2] and KTEX[9] for documentation.
Both are platform-independent, Open Source,
can be translated into many other formats, and
as such they are the preferred text processing ve-
hicles of the Linux Documentation Project too.
DocBook is ideally suited for software manuals,
while X TEXis best for the advanced mathematics
that occur everywhere in robotics.

The OROCOS does not want to impose a “standard”
programming language. The philosophy behind this
strategy is that the best tool for the job should be
used. This can be C for real-time control, C++ for
numerical algorithms, a scripting language such as
Tcl/Tk for graphical interfaces or robot programs, etc.
Anyway, the CORBA middleware is, by design, able
to work in an heterogeneous programming language
environment.

6 Business model

The previous Sections could give the false impres-
sion that only the robotics researchers in academia
are to be interested in OROCOS. This is certainly not
true, because all arguments behind proven business
models in “classical” Open Source projects hold for
OROCOS too:

e Robot service companies and robot users have less
costs when they have to learn a “universal” pro-
gramming paradigm and API. So, the investment
threshold for OROCOS is lower than for propri-
etary alternatives.

e (Especially) small start-up businesses can focus
on their core competencies (services or products)
without having to invest enormous amounts of
money in software.

e The above-mentioned companies (and many oth-
ers that are mainly users of robot software) will
pay developers to extend the existing code base
with particular drivers, algorithms or features
that they need for their own businesses. Through
the open source license principle, this code will
flow back into the major code tree, and can serve
other people’s needs too.

2527

e The professional packaging and distribution of
software is also a valid business model, as proven
by the Red Hats, SuSEs and other players in the
Linux market. Also professional documentation
is a viable source of income.

e Companies that want to buy service contracts
for their robots have more control: they are not
“locked-in” by the proprietary software from one
particular provider, and they can judge the qual-
ity of a given service company from looking at the
code this company has already contributed to the
project’s code tree. In contrast to the commer-
cial software world, Open Source developers are
known by their individual names, because these
occur in the copyright statements in the code or
documentation.

The only “loss” resulting from Open Sourcing a large
project is that no company will get tremendously rich
from just writing and selling the software. . .

7 Supporting projects

OROCOS is very ambitious in its goals, but it can
begin with an enormous head-start: almost all of its
Supporting Modules (Sect. 3) are already available in
other Open Source projects. Indeed, the re-use (of
code, as well as of project management tools and ex-
periences) is, almost by definition, the strong point of
Open Source. Some (but certainly not alll) of the
projects that OROCOS can built on are:

e Octave, [3], is a very rich numerical library, that
uses the same foundations as, and in its scripting
form is very compatible with, Matlab. It also con-
tains ODE and DAE solvers, for the simulation of
dynamical systems.

e Real-Time Linuz [28] and/or RTAI [11], which
are real-time kernel extensions to Linux; or the
Linux-independent eCos [6].

e Comedi, [18], is a library for real-time device
drivers, such as AD/DA cards.

e Various packages and open formats for 3D visual-
isation: VRML [25], Java3D [23], OpenGL with
OpenlInventor [20] or Coin3D [24], etc.

8 Organisation

Also for the practical organisation of a large soft-
ware project such as OROCOS, one can profit maxi-

mally from the experiences and tools originating from
other projects. In fact, a certain project management
“Pattern” has arisen over the last couple of years,
which describes the necessary components needed to
successfully run an Open Source project: the project
needs a small group of people that outline the strate-
gic vision, and it needs a web page (www.orocos.org)
for efficient communication with the core body of code
developers. That web page carries a CVS code repos-
itory, one or more mailinglists (together with their
archives!), a bug tracking tool (such as Bugzilla or
GNATS), and lots of documentation (for example, in
the form of an HOWTO guide, as is common practice
in the Linux Documentation Project, [10]).

The major responsibilities of the project manage-
ment team members are not in the first place writing
code themselves, but rather: being responsive to con-
tributing users; making their valid contributions to
the code, the webpage, the documentation, etc., ap-
pear on the web page as soon as possible; keeping a
low profile in (inevitable) “flame wars” on the mailing
list while reminding participants of the common long-
term goals; and being pro-active but moderate in the
“advocacy” efforts.

9 Conclusions

Time has come to start with an Open Source robot
control software project: the current commercial cul-
ture in robotics is still to “lock-in” users to propri-
etary software that uses no open software standards to
work with code from other sources; the academic (and
other!) robotics research community offers enough
skilled users, not only to reach the critical mass needed
for successful code writing, but also to provide long-
term and long-reach design vision; there are many ex-
isting Open Source projects on which to build; and,
last but not least, the concepts and practices behind
running an Open Source project have been proven
many times already, with, among many others, the
Linux and Apache developments as prime examples.

This paper has introduced and motivated the long-
term strategy behind OROCOS, the Open RObot
COntrol Software project. This strategy encompasses
innovative research subjects, as well as advanced soft-
ware engineering goals.

References

[1] Patterns home page. http://hillside.net/patterns/.

2528

[2] DocBook Technical Committee. Docbook. http://
www.oasis-open.org/docbook/.

[3] J. W. Eaton. GNU Octave. http://www.che.wisc.
edu/octave/.

[4] W. Emmerich. Engineering distributed objects. Wiley
Chichester, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley, Reading, MA, 1995.

[6] R. Hat. Embedded Configurable Operating System.
http://sources.redhat.com/ecos/.
[7] iRobot. http://www.irobot.com/ir/index.htm.
[8] K-Team. http://www.k-team.com/.
[9] L. Lamport. BTEX: A document preparation system.
http://www.latex-project.org/.
[10] D. S. Lawyer. Linux documentation project. http:
//www.linuxdoc.org/.
[11] P. Mantegazza. RTAI: the Real-Time Applications
Interface. http://server.aero.polimi.it/projects/rtai/.
[12] Modelica Association. Modelica: Language design for
multi-domain modeling. http://www.modelica.org/.
[13] Nomadic Technologies. http://www.robots.com/.
[14] Open Management Group. CORBA: Common Ob-
ject Request Broker Architecture. http://www.corba.
org/.
[15] OpenSource.org. The open source page. http://www.
opensource.org/.
[16] Real World Interface. http://www.irobot.com/rwi/.
[17] RoboCup. Soccer server. http://ci.etl.go.jp/~noda/
soccer/server/.
[18] D. Schleef. Comedi: Linux control and measurement
device interface. http://stm.lbl.gov/comedi/.
[19] D. C. Schmidt. TAO, The Ace Orb. http://www.cs.
wustl.edu/~schmidt/TAO.html.

[20] SGI. Open inventor. http://oss.sgi.com/projects/
inventor/.

[21] R. M. Stallman. GNU Public Licence. http://www.
fsf.org/copyleft/gpl.html.

[22] R. M. Stallman. Why you shouldn’t use the Li-
brary GPL for your next library. http://www.fsf.org/
philosophy /why-not-1gpl.html.

[23] Sun Microsystems. Java3D. http://java.sun.com/
products/java-media/3D/.

[24] Systems in Motion AS. Coin3D. http://www.coin3d.
org/.

[25] The Web3D Consortium. The VRML repository.
http://www.web3d.org/vrml/vrml.htm.

[26] W3C. XML: Extensible Markup Language. http://
www.w3.org/XML/.

[27] Webots. http://www.cyberbotics.com/.

[28] V. Yodaiken and M. Barabanov. Real-time linux.
http://www.rtlinux.org.

Cooperative Mobile Robotics: Antecedents and Directions®

Y. Uny Cao, Alex S. Fukunaga, and Andrew B. Kahng

UCLA Computer Science Department, Los Angeles, CA 90024-1596

Abstract

There has been increased research interest in systems composed of multiple autonomous mobile robots exhibiting
cooperative behavior. Groups of mobile robots are constructed, with an aim to studying such issues as group
architecture, resource conflict, origin of cooperation, learning, and geometric problems. As yet, few applications
of cooperative robotics have been reported, and supporting theory is still in its formative stages. In this paper,
we give a critical survey of existing works and discuss open problems in this field, emphasizing the various
theoretical issues that arise in the study of cooperative robotics. We describe the intellectual heritages that
have guided early research, as well as possible additions to the set of existing motivations.

1 Preliminaries

There has been much recent activity toward achieving systems of multiple mobile robots engaged in

collective behavior. Such systems are of interest for several reasons:

e tasks may be inherently too complex for a single robot to accomplish, or performance benefits

can be gained from using multiple robots;

e building and using several simple robots can be easier, cheaper, more flexible and more fault-

tolerant than having a single powerful robot for each separate task; and

e the constructive, synthetic approach inherent in cooperative mobile robotics can possibly yield in-
sights into fundamental problems in the social sciences (organization theory, economics, cognitive

psychology), and life sciences (theoretical biology, animal ethology).

The study of multiple-robot systems naturally extends research on single-robot systems, but is also a
discipline unto itself: multiple-robot systems can accomplish tasks that no single robot can accomplish,

since ultimately a single robot, no matter how capable, is spatially limited. Multiple-robot systems are

*This is an expanded version of a paper which originally appeared in the proceedings of the 1995 IEEE/RSJ TIROS
conference.

also different from other distributed systems because of their implicit “real-world” environment, which
is presumably more difficult to model and reason about than traditional components of distributed

system environments (i.e., computers, databases, networks).

The term collective behavior generically denotes any behavior of agents in a system having more than
one agent. Cooperative behavior, which is the subject of the present survey, is a subclass of collective
behavior that is characterized by cooperation. Webster’s dictionary [Merriam-Webster, 1963] defines
“cooperate” as “to associate with another or others for mutual, often economic, benefit”. Explicit

definitions of cooperation in the robotics literature, while surprisingly sparse, include:

1. “joint collaborative behavior that is directed toward some goal in which there 1s a common interest

or reward” [Barnes and Gray, 1991];
2. “a form of interaction, usually based on communication” [Mataric, 1994a]; and

3. “[joining] together for doing something that creates a progressive result such as increasing per-

formance or saving time” [Premvuti and Yuta, 1990].

These definitions show the wide range of possible motivating perspectives. For example, definitions
such as (1) typically lead to the study of task decomposition, task allocation, and other distributed
artificial intelligence (DAT) issues (e.g., learning, rationality). Definitions along the lines of (2) re-
flect a concern with requirements for information or other resources, and may be accompanied by
studies of related issues such as correctness and fault-tolerance. Finally, definition (3) reflects a con-
cern with quantified measures of cooperation, such as speedup in time to complete a task. Thus, in
these definitions we see three fundamental seeds: the task, the mechanism of cooperation, and system

performance.

We define cooperative behavior as follows: Given some task specified by a designer, a multiple-robot
system displays cooperative behavior if, due to some underlying mechanism (i.e., the “mechanism of
cooperation”), there is an increase in the total utility of the system. Intuitively, cooperative behavior
entails some type of performance gain over naive collective behavior. The mechanism of cooperation
may lie in the imposition by the designer of a control or communication structure, in aspects of the

task specification, in the interaction dynamics of agent behaviors, etc.

In this paper, we survey the intellectual heritage and major research directions of the field of
cooperative robotics. For this survey of cooperative robotics to remain tractable, we restrict our
discussion to works involving mobile robots or simulations of mobile robots, where a mobile robot is
taken to be an autonomous, physically independent, mobile robot. In particular, we concentrated

on fundamental theoretical issues that impinge on cooperative robotics. Thus, the following related

subjects were outside the scope of this work:

e coordination of multiple manipulators, articulated arms, or multi-fingered hands, etc.

e human-robot cooperative systems, and user-interface issues that arise with multiple-robot systems

[Yokota et al., 1994] [Arkin and Ali, 1994] [Noreils and Recherche, 1991] [Adams et al., 1995].

o the competitive subclass of collective behavior, which includes pursuit-evasion [Reynolds, 1994,
Miller and CIliff, 1994] and one-on-one competitive games [Asada et al., 1994]. Note that a co-
operative team strategy for, e.g., work on the robot soccer league recently started in Japan

[Kitano, 1994] would lie within our present scope.

e emerging technologies such as nanotechnology [Drexler, 1992] and Micro Electro-Mechanical Sys-
tems [Mehregany et al., 1988] that are likely to be very important to cooperative robotics are

beyond the scope of this paper.

Even with these restrictions, we find that over the past 8 years (1987-1995) alone, well over 200
papers have been published in this field of cooperative (mobile) robotics, encompassing theories from
such diverse disciplines as artificial intelligence, game theory/economics, theoretical biology, distributed

computing/control, animal ethology and artificial life.

We are aware of two previous works that have surveyed or taxonomized the literature. [Asama, 1992]
is a broad, relatively succinct survey whose scope encompasses distributed autonomous robotic systems
(i.e., not restricted to mobile robots). [Dudek et al., 1993] focuses on several well-known “swarm” ar-
chitectures (e.g., SWARM and Mataric’s Behavior-based architecture — see Section 2.1.5) and proposes
a taxonomy to characterize these architectures. The scope and intent of our work differs significantly
from these, in that (1) we extensively survey the field of cooperative mobile robotics, and (2) we provide
a taxonomical organization of the literature based on problems and solutions that have arisen in the
field (as opposed to a selected group of architectures). In addition, we survey much new material that

has appeared since these earlier works were published.

Towards a Picture of Cooperative Robotics

In the mid-1940’s Grey Walter, along with Wiener and Shannon, studied turtle-like robots equipped
with light and touch sensors; these simple robots exhibited “complex social behavior” in responding
to each other’s movements [Dorf, 1990]. Coordination and interactions of multiple intelligent agents
have been actively studied in the field of distributed artificial intelligence (DAT) since the early 1970’s
[Bond and Gasser, 1988], but the DAT field concerned itself mainly with problems involving software

agents. In the late 1980’s, the robotics research community became very active in cooperative robotics,

beginning with projects such as CEBOT [Fukuda and Nakagawa, 1987], SWARM [Beni, 1988], AC-
TRESS [Asama et al., 1989], GOFER [Caloud et al., 1990], and the work at Brussels [Steels, 1990].
These early projects were done primarily in simulation, and, while the early work on CEBOT, AC-
TRESS and GOFER have all had physical implementations (with < 3 robots), in some sense these
implementations were presented by way of proving the simulation results. Thus, several more recent
works (cf. [Kube and Zhang, 1992, Mataric, 1992b, Parker, 1992]) are significant for establishing an
emphasis on the actual physical implementation of cooperative robotic systems. Many of the recent
cooperative robotic systems, in contrast to the earlier works, are based on a behavior-based approach
(cf. [Brooks, 1986]). Various perspectives on autonomy and on the connection between intelligence
and environment are strongly associated with the behavior-based approach [Brooks, 1991], but are not
intrinsic to multiple-robot systems and thus lie beyond our present scope. Also note that a recent
incarnation of CEBOT, which has been implemented on physical robots, is based on a behavior-based

control architecture [Cai et al., 1995].

The rapid progress of cooperative robotics since the late 1980°s has been an interplay of sysiems,
theories and problems: to solve a given problem, systems are envisioned, simulated and built; theories of
cooperation are brought from other fields; and new problems are identified (prompting further systems
and theories). Since so much of this progress is recent, it is not easy to discern deep intellectual
heritages from within the field. More apparent are the intellectual heritages from other fields, as well

as the canonical task domains which have driven research. Three examples of the latter are:

e Traffic Control. When multiple agents move within a common environment, they typically
attempt to avoid collisions. Fundamentally, this may be viewed as a problem of resource conflict,
which may be resolved by introducing, e.g., traffic rules, priorities, or communication architec-
tures. From another perspective, path planning must be performed taking into consideration
other robots and the global environment; this multiple-robot path planning is an intrinsically
geometric problem in configuration space-time. Note that prioritization and communication pro-
tocols — as well as the internal modeling of other robots — all reflect possible variants of the
group architecture of the robots. For example, traffic rules are commonly used to reduce planning
cost for avoiding collision and deadlock in a real-world environment, such as a network of roads.
(Interestingly, behavior-based approaches identify collision avoidance as one of the most basic
behaviors [Brooks, 1986], and achieving a collision-avoidance behavior is the natural solution
to collision avoidance among multiple robots. However, in reported experiments that use the

behavior-based approach, robots are never restricted to road networks.)

¢ Box-Pushing/Cooperative Manipulation. Many works have addressed the box-pushing

(or couch-pushing) problem, for widely varying reasons. The focus in [Parker, 1994b] is on

task allocation, fault-tolerance and (reinforcement) learning. By contrast, [Donald et al., 1994]
studies two box-pushing protocols in terms of their intrinsic communication and hardware re-
quirements, via the concept of information invariants. Cooperative manipulation of large ob-
jects 1s particularly interesting in that cooperation can be achieved without the robots even
knowing of each others’ existence [Sen et al., 1994, Tung and Kleinrock, 1993]. Other works in
the class of box-pushing/object manipulation include [Wang et al., 1994] [Stilwell and Bay, 1993]
[Johnson and Bay, 1994] [Brown and Jennings, 1995] [Kube and Zhang, 1992] [Kube et al., 1993]
[Kube and Zhang, 1993] [Mataric et al., 1995] [Rus et al., 1995] [Hara et al., 1995] [Sasaki et al., 1995].

¢ Foraging. In foraging, a group of robots must pick up objects scattered in the environment; this
is evocative of toxic waste cleanup, harvesting, search and rescue, etc. The foraging task is one
of the canonical testbeds for cooperative robotics [Brooks et al., 1990] [Steels, 1990] [Arkin, 1992]
[Goss and Deneubourg, 1992] [Lewis and Bekey, 1992] [Drgoul and Ferber, 1993] [Mataric, 1994a]
[Arkin and Hobbs, 1993] [Beckers et al., 1994]. The task is interesting because (1) it can be
performed by each robot independently (i.e., the issue is whether multiple robots achieve a
performance gain), and (2) as discussed in Section 3.2, the task is also interesting due to mo-
tivations related to the biological inspirations behind cooperative robot systems. There are
some conceptual overlaps with the related task of materials handling in a manufacturing work-
cell [Doty and Aken, 1993]. A wide variety of techniques have been applied, ranging from sim-
ple stigmergy (essentially random movements that result in the fortuitous collection of objects
[Beckers et al., 1994] to more complex algorithms in which robots form chains along which ob-
jects are passed to the goal [Drgoul and Ferber, 1993]. [Beckers et al., 1994] defines stigmergy
as “the production of a certain behaviour in agents as a consequence of the effects produced in
the local environment by previous behaviour”. This is actually a form of “cooperation without
communication” | which has been the stated object of several foraging solutions since the corre-
sponding formulations become nearly trivial if communication is used. On the other hand, that
stigmergy may not satisfy our definition of cooperation given above, since there is no performance
improvement over the “naive algorithm” — in this particular case, the proposed stigmergic algo-
rithm s the naive algorithm. Again, group architecture and learning are major research themes

in addressing this problem.

Other interesting task domains that have received attention in the literature include multi-robot
security systems [Everett et al., 1993], landmine detection and clearance [Franklin et al., 1995], robotic
structural support systems (i.e., keeping structures stable in case of, say, an earthquake) [Ma et al., 1994],

map making [Singh and Fujimura, 1993], and assembly of objects using multiple robots [Wang et al., 1994].

Organization of Paper

With respect to our above definition of cooperative behavior, we find that the great majority of the
cooperative robotics literature centers on the mechanism of cooperation (i.e., few works study a task
without also claiming some novel approach to achieving cooperation). Thus, our study has led to the
synthesis of five “Research Axes” which we believe comprise the major themes of investigation to date

into the underlying mechanism of cooperation.

Section 2 of this paper describes these axes, which are: 2.1 Group Architecture, 2.2 Resource
Conflict, 2.3 Origin of Cooperation, 2.4 Learning, and 2.5 Geometric Problems. In Section 3, we
present more synthetic reviews of cooperative robotics: Section 3.1 discusses constraints arising from
technological limitations; and Section 3.2 discusses possible lacunae in existing work (e.g., formalisms
for measuring performance of a cooperative robot system), then reviews three fields which we believe
must strongly influence future work. We conclude in Section 4 with a list of key research challenges

facing the field.

2 Research Axes

Seeking a mechanism of cooperation may be rephrased as the “cooperative behavior design problem”:
Given a group of robots, an environment, and a task, how should cooperative behavior arise? In some
sense, every work in cooperative robotics has addressed facets of this problem, and the major research
axes of the field follow from elements of this problem. (Note that certain basic robot interactions are
not task-performing interactions per se, but are rather basic primitives upon which task-performing
interactions can be built, e.g., following ([Connell, 1987, Donald et al., 1994] and many others) or
flocking [Reynolds, 1987, Mataric, 1994a]. It might be argued that these interactions entail “control
and coordination” tasks rather than “cooperation” tasks, but our treatment does not make such a

distinction).

First, the realization of cooperative behavior must rely on some infrastructure, the group archi-
tecture. This encompasses such concepts as robot heterogeneity /homogeneity, the ability of a given
robot to recognize and model other robots, and communication structure. Second, for multiple robots
to inhabit a shared environment, manipulate objects in the environment, and possibly communicate
with each other, a mechanism is needed to resolve resource conflicts. The third research axis, ori-
gins of cooperation, refers to how cooperative behavior is actually motivated and achieved. Here, we
do not discuss instances where cooperation has been “explicitly engineered” into the robots’ behavior
since this is the default approach. Instead, we are more interested in biological parallels (e.g., to social

insect behavior), game-theoretic justifications for cooperation, and concepts of emergence. Because

adaptability and flexibility are essential traits in a task-solving group of robots, we view learning as
a fourth key to achieving cooperative behavior. One important mechanism in generating cooperation,
namely, task decomposition and allocation, is not considered a research axis since (i) very few works in
cooperative robotics have centered on task decomposition and allocation (with the notable exceptions
of [Noreils, 1993, Lueth and Laengle, 1994, Parker, 1994b]), (ii) cooperative robot tasks (foraging, box-
pushing) in the literature are simple enough that decomposition and allocation are not required in the
solution, and (iii) the use of decomposition and allocation depends almost entirely on the group archi-
tectures (e.g. whether it is centralized or decentralized). Note that there is also a related, geometric
problem of optimizing the allocation of tasks spatially. This has been recently studied in the context
of the division of the search of a work area by multiple robots [Kurabayashi et al., 1995]. Whereas
the first four axes are related to the generation of cooperative behavior, our fifth and final axis — ge-
ometric problems — covers research issues that are tied to the embedding of robot tasks in a two-
or three-dimensional world. These issues include multi-agent path planning, moving to formation, and

pattern generation.

2.1 Group Architecture

The architecture of a computing system has been defined as “the part of the system that remains
unchanged unless an external agent changes it” [VanLehn, 1991]. The group archilecture of a coop-
erative robotic system provides the infrastructure upon which collective behaviors are implemented,
and determines the capabilities and limitations of the system. We now briefly discuss some of the
key architectural features of a group architecture for mobile robots: centralization/decentralization,
differentiation, communications, and the ability to model other agents. We then describe several rep-

resentative systems that have addressed these specific problems.

2.1.1 Centralization/Decentralization

The most fundamental decision that is made when defining a group architecture is whether the system is
centralized or decentralized, and if it is decentralized, whether the system is hierarchical or distributed.
Centralized architectures are characterized by a single control agent. Decentralized architectures lack
such an agent. There are two types of decentralized architectures: distributed architectures in which
all agents are equal with respect to control, and hizerarchical architectures which are locally centralized.

Currently, the dominant paradigm is the decentralized approach.

The behavior of decentralized systems is often described using such terms as “emergence” and

“self-organization.” Tt is widely claimed that decentralized architectures (e.g., [Beckers et al., 1994,

Arkin, 1992, Steels, 1994, Mataric, 1994a]) have several inherent advantages over centralized architec-
tures, including fault tolerance, natural exploitation of parallelism, reliability, and scalability. However,
we are not aware of any published empirical or theoretical comparison that supports these claims di-
rectly. Such a comparison would be interesting, particularly in scenarios where the team of robots is
relatively small (e.g., two robots pushing a box), and it is not clear whether the scaling properties of

decentralization offset the coordinative advantage of centralized systems.

In practice, many systems do not conform to a strict centralized/decentralized dichotomy, e.g.,
many largely decentralized architectures utilize “leader” agents. We are not aware of any instances
of systems that are completely centralized, although there are some hybrid centralized/decentralized
architectures wherein there is a central planner that exerts high-level control over mostly autonomous

agents [Noreils, 1993, Lueth and Laengle, 1994, Aguilar et al., 1995, Causse and Pampagnin, 1995].

2.1.2 Differentiation

We define a group of robots to be homogeneous if the capabilities of the individual robots are iden-
tical, and heterogeneous otherwise. In general, heterogeneity introduces complexity since task alloca-
tion becomes more difficult, and agents have a greater need to model other individuals in the group.
[Parker, 1994b] has introduced the concept of task coverage, which measures the ability of a given team
member to achieve a given task. This parameter is an index of the demand for cooperation: when task
coverage 18 high, tasks can be accomplished without much cooperation, but otherwise, cooperation is
necessary. Task coverage is maximal in homogeneous groups, and decreases as groups become more

heterogeneous (i.e., in the limit only one agent in the group can perform any given task).

The literature is currently dominated by works that assume homogeneous groups of robots. How-
ever, some notable architectures can handle heterogeneity, e.g., ACTRESS and ALLTANCE (see Section
2.1.5 below). In heterogeneous groups, task allocation may be determined by individual capabilities,
but in homogeneous systems, agents may need to differentiate into distinct roles that are either known

at design-time, or arise dynamically at run-time.

2.1.3 Communication Structures

The communication structure of a group determines the possible modes of inter-agent interaction. We
characterize three major types of interactions that can be supported. ([Dudek et al., 1993] proposes a

more detailed taxonomy of communication structures).

Interaction via environment

The simplest, most limited type of interaction occurs when the environment itself is the commu-
nication medium (in effect, a shared memory), and there is no explicit communication or interaction
between agents. This modality has also been called “cooperation without communication” by some
researchers. Systems that depend on this form of interaction include [Goss and Deneubourg, 1992

Beckers et al., 1994, Arkin, 1992, Steels, 1990, Tung and Kleinrock, 1993, Tung, 1994, Sen et al., 1994].
Interaction via sensing

Corresponding to arms-length relationships in organization theory [Hewitt, 1993], interaction via
sensing refers to local interactions that occur between agents as a result of agents sensing one an-
other, but without explicit communication. This type of interaction requires the ability of agents to
distinguish between other agents in the group and other objects in the environment, which is called
“kin recognition” in some literatures [Mataric, 1994a]. Interaction via sensing is indispensable for
modeling of other agents (see Section 2.1.4 below). Because of hardware limitations, interaction via
sensing has often been emulated using radio or infrared communications. However, several recent
works attempt to implement true interaction via sensing, based on vision [Kuniyoshi el al., 1994a,
Kuniyoshi et al., 1994b, Sugie et al., 1995]. Collective behaviors that can use this kind of interaction

include flocking and pattern formation (keeping in formation with nearest neighbors).
Interaction via communications

The third form of interaction involves explicit communication with other agents; by either directed
or broadcast intentional messages (i.e. the recipient(s) of the message may be either known or un-
known). Because architectures that enable this form of communication are similar to communication
networks, many standard issues from the field of networks arise, including the design of network topolo-
gies and communications protocols. For example, in [Wang, 1994] a media access protocol (similar to
that of Ethernet) is used for inter-robot communication. In [Ichikawa et al., 1993], robots with limited
communication range communicate to each other using the “hello-call” protocol, by which they estab-
lish “chains” in order to extend their effective communication ranges. [Gage, 1993] describes methods
for communicating to many (“zillions”) robots, including a variety of schemes ranging from broadcast
channels (where a message is sent to all other robots in the system) to modulated retroreflection (where
a master sends out a laser signal to slaves and interprets the response by the nature of the reflection).
[Wang et al., 1995] describes and simulates a wireless CSMA /CD (Carrier Sense Multiple Access with

Collision Detection) protocol for the distributed robotic systems.

There are also communication mechanisms designed specially for multiple-robot systems. For exam-
ple, [Wang and Beni, 1990] proposes the “sign-board” as a communication mechanism for distributed

robotic systems. [Arai et al., 1993] gives a communication protocol modeled after diffusion, wherein

local communication similar to chemical communication mechanisms in animals is used. The commu-
nication is engineered to decay away at a preset rate. Similar communications mechanisms are studied
in [Lewis and Bekey, 1992, Drgoul and Ferber, 1993, Goss and Deneubourg, 1992]. Additional work on
communication can be found in [Yoshida et al., 1994], which analyzes optimal group sizes for local com-
munications and communication delays. In a related vein, [Yoshida et al., 1995a, Yoshida et al., 1995b]

analyzes optimal local communication ranges in broadcast communication.

2.1.4 Modeling of Other Agents

Modeling the intentions, beliefs; actions, capabilities, and states of other agents can lead to more
effective cooperation between robots. Communications requirements can also be lowered if each agent
has the capability to model other agents. Note that the modeling of other agents entails more than
implicit communication via the environment or perception: modeling requires that the modeler has
some representation of another agent, and that this representation can be used to make inferences

about the actions of the other agent.

In cooperative robotics, agent modeling has been explored most extensively in the context of ma-
nipulating a large object. Many solutions have exploited the fact that the object can serve as a common

medium by which the agents can model each other.

The second of two box-pushing protocols in [Donald et al., 1994] can achieve “cooperation without
communication” since the object being manipulated also functions as a “communication channel”
that is shared by the robot agents; other works capitalize on the same concept to derive distributed
control laws which rely only on local measures of force, torque, orientation, or distance, i.e., no explicit
communication is necessary (cf. [Stilwell and Bay, 1993] [Hashimoto and Oba, 1993]). In a two-robot
bar carrying task, Fukuda and Sekiyama’s agents [Fukuda and Sekiyama, 1994] each uses a probabilistic
model of the other agent. When a risk threshold is exceeded, an agent communicates with its partner
to maintain coordination. In [Donald, 1993a, Donald, 1993b], the theory of information invariants is
used to show that extra hardware capabilities can be added in order to infer the actions of the other
agent, thus reducing communication requirements. This is in contrast to [Sen et al., 1994], where the
robots achieve box pushing but are not aware of each other at all. For a more complex task involving
the placement of five desks in [Sugie et al., 1995], a homogeneous group of four robots share a ceiling
camera to get positional information, but do not communicate with each other. Each robot relies on
modeling of other agents to detect conflicts of paths and placements of desks, and to change plans

accordingly.

10

2.1.5 Representative Architectures

All systems implement some group architecture. We now describe several particularly well-defined
representative architectures, along with works done within each of their frameworks. It is interesting to
note that these architectures encompass the entire spectrum from traditional Al to highly decentralized

approaches.
CEBOT

CEBOT (CEllular roBOTics System) is a decentralized, hierarchical architecture inspired by the cel-
lular organization of biological entities (c¢f. [Fukuda and Nakagawa, 1987] [Fukuda and Kawauchi, 1993],
[Ueyama and Fukuda, 1993b] [Ueyama and Fukuda, 1993a] [Fukuda and Tritani, 1995]). The system is
dynamically reconfigurable in that basic autonomous “cells” (robots), which can be physically coupled
to other cells, dynamically reconfigure their structure to an “optimal” configuration in response to
changing environments. In the CEBOT hierarchy there are “master cells” that coordinate subtasks
and communicate with other master cells. A solution to the problem of electing these master cells
was discussed in [Ueyama et al., 1993b]. Formation of structured cellular modules from a population
of initially separated cells was studied in [Ueyama and Fukuda, 1993b]. Communications requirements
have been studied extensively with respect to the CEBOT architecture, and various methods have been
proposed that seek to reduce communication requirements by making individual cells more intelligent
(e.g., enabling them to model the behavior of other cells). [Fukuda and Sekiyama, 1994] studies the
problem of modeling the behavior of other cells, while [Kawauchi et al., 1993a, Kawauchi et al., 1993b]
present a control method that calculates the goal of a cell based on its previous goal and on its master’s
goal. [Fukuda et al., 1990] gives a means of estimating the amount of information exchanged between
cells, and [Ueyama et al., 1993a] gives a heuristic for finding master cells for a binary communication
tree. A new behavior selection mechanism is introduced in [Cai et al., 1995], based on two matrices, the
priority matrix and the interest relation matrix, with a learning algorithm used to adjust the priority
matrix. Recently, a Micro Autonomous Robotic System (MARS) has been built consisting of robots

of 20 cubic mm and equipped with infrared communications [Mitsumoto et al., 1995].
ACTRESS

The ACTRESS (ACTor-based Robot and Equipments Synthetic System) project [Asama et al., 1989]
[Ishida et al., 1991] [Asama et al., 1992] is inspired by the Universal Modular ACTOR Formalism
[Hewitt et al., 1973]. In the ACTRESS system, “robotors”, including 3 robots and 3 workstations
(one as interface to human operator, one as image processor and one as global environment manager),
form a heterogeneous group trying to perform tasks such as object pushing [Asama et al., 1991a] that

cannot be accomplished by any of the individual robotors alone [Ishida et al., 1994, Suzuki et al., 1995].

11

Communication protocols at different abstraction levels [Matsumoto et al., 1990] provide a means upon
which “group cast” and negotiation mechanisms based on Contract Net [Smith, 1980] and multi-
stage negotiation protocols are built [Asama et al., 1994]. Various issues are studied, such as efficient
communications between robots and environment managers [Asama et al., 1991b], collision avoidance

[Asama et al., 1991c¢].
SWARM

A SWARM is a distributed system with a large number of autonomous robots [Jin et al., 1994].
(Note that the work on SWARM systems began as work on Cellular Robotic Systems [Beni, 1988],
where many simple agents occupied one- or two-dimensional environments and were able to perform
tasks such as pattern generation and self-organization). SWARM intelligence is “a property of sys-
tems of non-intelligent robots exhibiting collectively intelligent behavior” [Hackwood and Beni, 1991].
Self-organization in a SWARM is the ability to distribute itself “optimally” for a given task, e.g., via
geometric pattern formation or structural organization. SWARM exhibits a distributed architecture,
usually with no differentiation among members (an exception is [Hackwood and Beni, 1992], where two
different types of robots were used). Interaction takes place by each cell reacting to the state of its near-
est neighbors. Mechanisms for self-organization in SWARM are studied in [Hackwood and Beni, 1992]
[Beni and Wang, 1991] [Beni and Hackwood, 1992] [Hackwood and Beni, 1991] [Liang and Beni, 1995]
[Jin et al., 1994]. Examples for possible applications include large-scale displays and distributed sens-
ing [Hackwood and Wang, 1988]. Communication primitives have been an important part of research

in SWARM [Wang and Beni, 1988, Wang and Premvuti, 1995] (see Section 3.2 below for more details).
GOFER

The GOFER architecture [Caloud et al., 1990, LePape, 1990] was used to study distributed problem
solving by multiple mobile robots in an indoor environment using traditional Al techniques. In GOFER,
a central task planning and scheduling system (CTPS) communicates with all robots and has a global
view of both the tasks to be performed and the availability of robots to perform the tasks. The CTPS
generates a plan structure (template for an instance of a plan) and informs all available robots of
the pending goals and plan structures. Robots use a task allocation algorithm like the Contract Net
Protocol [Smith, 1980] to determine their roles. Given the goals assigned during the task allocation
process, they attempt to achieve their goals using fairly standard Al planning techniques. The GOFER
architecture was successfully used with three physical robots for tasks such as following, box-pushing,

and wall tracking in a corridor.

Other architectures that make significant use of concepts studied within the classical distributed

paradigm are described in [Lueth and Laengle, 1994] [Noreils, 1990] [Noreils, 1993] [Noreils, 1992a]

12

[Noreils, 1992b] [Alani et al., 1995] [Albus, 1993].
ALLTANCE/L-ALLIANCE

The ALLIANCE architecture was developed by Parker [Parker, 1994b, Parker, 1994a] in order
to study cooperation in a heterogeneous, small-to-medium-sized team of largely independent, loosely
coupled robots. Robots are assumed able to, with some probability, sense the effects of their own actions
and the actions of other agents through perception and explicit broadcast communications. Individual
robots are based on a behavior-based controller with an extension for activating “behavior sets” that
accomplish certain tasks. These sets are activated by motivational behaviors whose activations are
in turn determined by the robots’ awareness of their teammates. L-ALLIANCE [Parker, 1994b] is
an extension to ALLIANCE that uses reinforcement learning to adjust the parameters controlling
behavior set activation. The ALLIANCE/L-ALLIANCE architecture has been implemented both on
real robots and in simulation, and has been successfully demonstrated for tasks including box-pushing,
puck-gathering, marching in formation, and simulations of hazardous waste cleanup and janitorial

service.
Behavior-Based Cooperative Behavior

Mataric [Mataric, 1992¢, Mataric, 1992a, Mataric, 1993, Mataric, 1994a] proposes a behavior-based
architecture for the synthesis of collective behaviors such as flocking, foraging, and docking based on
the direct and temporal composition of primitive basic behaviors (safe-wandering, following, aggre-
gation, dispersion, homing). A method for automatically constructing composite behaviors based on
reinforcement learning is also proposed. The architecture has been implemented both on groups of up

to 20 real robots (the largest group reported in the works we surveyed) and in simulation.

Similar behavior-based architectures include the work by Kube et al, which is based on an Adaptive
Logic Network, a neural network [Kube and Zhang, 1992, Kube and Zhang, 1993, Kube et al., 1993,
Kube and Zhang, 1994], the Tropism-Based Cognitive Architecture [Agah and Bekey, 1994], and an

architecture based on “instinctive behaviors” [Dario et al., 1991].

2.2 Resource Conflict

When a single indivisible resource is requested by multiple robots, resource conflict arises. This issue has
been studied in many guises, notably the mutual exclusion problem in distributed algorithms and the
multiaccess problem in computer networks. With multiple robots, resource conflict occurs when there
is a need to share space, manipulable objects or communication media. Few works have dealt specif-
ically with object sharing or sharing of communication media (i.e., sharing of communication media

1s usually achieved using very basic techniques — wireless LAN, straightforward time-division multi-

13

plexing, or broadcast over an RF channel; recently, [Wang and Premvuti, 1994, Yoshida et al., 1995b,
Yoshida et al., 1995a] have considered some problems in sharing communications channels). We there-
fore center on the space sharing problem, which has been studied primarily via multiple-robot path
planning (the “traffic control” formulation from above) and the collision and deadlock avoidance prob-

lems.

In a multi-robot system, each robot can conceivably plan a path that accounts for other robots and
the global environment via configuration space-time, explicit models of other agents, or other tech-
niques For example, [Fukuda and Sekiyama, 1994] proposes a “hierarchical prediction model” which
essentially uses simulation to achieve collision avoidance. [Rude, 1994] considers the problem of cross-
ing an intersection: event transforms into the local space-time coordinate frame of a robot are applied,
and each robot (i) iteratively updates the local frame and its objects, (ii) evaluates collision risk,
and (iii) generates a modified path depending on the collision risk. (See also Section 2.5). How-
ever, researchers considering real-world multi-robot systems typically conclude that planning paths
in advance is impossible. Thus. robots are often restricted to prescribed paths or roads, with rules
(much like traffic laws in the human world) and communications used to avoid collision and deadlock

[Caloud et al., 1990, Asama et al., 1991a].

Grossman [Grossman, 1988] classifies instances of the traffic control problem into three types: (i)
restricted roads, (ii) multiple possible roads with robots selecting autonomously between them, and
(iii) multiple possible roads with centralized traffic control. When individual robots possess unique
roads from one point to another, no conflict is possible; when there is global knowledge and centralized
control, it is easy to prevent conflict. Thus, the interesting case is (ii), where robots are allowed
to autonomously select roads. Analysis in [Grossman, 1988] shows that restricted roads are highly
suboptimal, and that the autonomous road choice coupled with a greedy policy for escaping blocked
situations is far more effective (cf. “modest cooperation” [Premvuti and Yuta, 1990], where robots are

assumed to be benevolent for the common good of the system).

Solutions to the traffic control problem range from rule-based solutions to approaches with an-
tecedents in distributed processing. In [Kato et al., 1992], robots follow pre-planned paths and use rules
for collision avoidance. Example rules include “keep-right”, “stop at intersection”, and “keep sufficient
space to the robot in front of you”. [Asama et al., 1991c] solves collision avoidance using two simple
rules and a communication protocol that resolves conflict by transmitting individual priorities based
on the task requirement, the environment, and the robot performance. In [Yuta and Premvuti, 1992],
the robots stop at an intersection and indicate both the number of robots at the intersection and the
directions in which they are traveling. If deadlock is possible, each robot performs “shunting” (trying

to obtain high priority) and proceeds according to the agreed-upon priorities. [Wang, 1991] takes a

14

distributed computing approach to traffic control, where the particular problem solved is to keep the
number of robots traveling on any given path below a threshold value. Robots use a mutual exclusion
protocol to compete for the right to travel on each path. Wang and Beni [Wang and Beni, 1990] adapt
two distributed algorithms to solve two problems in their CRS/SWARM architecture. The “n-way in-
tersection problem” is solved using an algorithm similar to mutual exclusion, and the “knot detection

problem” is solved using an algorithm similar to distributed deadlock detection.

2.3 The Origin of Cooperation

In almost all of the work in collective robotics so far, it has been assumed that cooperation is explicitly
designed into the system. An interesting research problem is to study how cooperation can arise

without explicit human motivation among possibly selfish agents.

McFarland [McFarland, 1994] distinguishes between two significantly different types of group be-
haviors that are found in nature: eusocial behavior and cooperative behavior. Fusocial behavior is
found in many insect species (e.g., colonies of ants or bees), and is the result of genetically determined
individual behavior. In eusocial societies, individual agents are not very capable, but seemingly intelli-
gent behavior arises out of their interactions. This “cooperative” behavior is necessary for the survival
of the individuals in the colonies. [Werner and Dyer, 1992] studies the evolution of herding behavior
in “prey” agents in a simulated ecology, where there is no a prior: drive for cooperation. Recently,
[McFarland, 1994, Steels, 1994] have laid the initial groundwork to address the problem of emergent
cooperation in an ecological system inhabited by actual mobile robots. In their ecosystem, individual

robots are selfish, utility-driven agents that must cooperate in order to survive (i.e., maintain some

minimal energy level).

On the other hand, [McFarland, 1994] defines cooperative behavior as the social behavior observed
in higher animals (vertebrates); i.e., cooperation is the result of interactions between selfish agents. Un-
like eusocial behavior, cooperative behavior is not motivated by innate behavior, but by an intentional

desire to cooperate in order to maximize individual utility.

Inspired by economics and game-theoretic approaches, [Bond and Gasser, 1988] [Genesereth et al., 1986]
[Rosenschein and Genesereth, 1985] [Rosenschein and Zlotkin, 1994] and others have studied the emer-
gence of cooperation in selfish rational agents in the field of distributed artificial intelligence (DAT). A

recent work in the robotics literature that adopts this game-theoretic approach is [Numaoka, 1993].

15

2.4 Learning

Finding the correct values for control parameters that lead to a desired cooperative behavior can be a
difficult, time-consuming task for a human designer. Therefore, it is highly desirable for multiple-robot
systems to be able to learn control parameter values in order to optimize their task performance, and
to adapt to changes in the environment. Reinforcement learning [Barto et al., 1983, Kaelbling, 1993]

has often been used in cooperative robotics.

[Mataric, 1994a, Mataric, 1994b] propose a reformulation of the reinforcement learning paradigm
using higher levels of abstraction (conditions, behaviors, and heterogeneous reward functions and
progress estimators instead of states, actions, and reinforcement) to enable robots to learn a com-
posite foraging behavior. [Parker, 1994b] uses standard reinforcement algorithms to improve the per-
formance of cooperating agents in the L-ALLIANCE architecture by having the agents learn how to
better estimate the performance of other agents. [Sen et al., 1994] uses reinforcement learning in a
two-robot box-pushing system, and [Yanco and Stein, 1992] applies reinforcement learning to learn a
simple, artificial robot language. Other relevant works in multiagent reinforcement learning (done
in simulation, in contrast to the above works which were implemented on actual robots) include

[Whitehead, 1991, Tan, 1993, Littman, 1994].

In addition, techniques inspired by biological evolution have also been used in cooperative robotics.
[Werner and Dyer, 1992] uses a genetic algorithm [Goldberg, 1989] to evolve neural network controllers
for simulated “prey” creatures that learn a herding behavior to help avoid predators. [Reynolds, 1992]

uses genetic programming [Koza, 1990] to evolve flocking behavior in simulated “boids.”

2.5 Geometric Problems

Because mobile robots can move about in the physical world and must interact with each other physi-
cally, geometric problems are inherent to multiple-robot systems. This is a fundamental property that
distinguishes multiple-robot systems from traditional distributed computer systems in which individual
nodes are stationary. Geometric problems that have been studied in the cooperative robotics literature

include multiple-robot path planning, moving to (and maintaining) formation, and pattern generation.
(Multiple-Robot) Path Planning

Recall that multiple-robot path planning requires agents to plan routes that do not intersect. This
is a case of resource conflict, since the agents and their goals are embedded in a finite amount of
space. However, we note path planning separately because of its intrinsic geometric flavor as well as

its historical importance in the literature.

16

Detailed reviews of path planning are found in [Fujimura, 1991, Latombe, 1991, Arai and Ota, 1992].
Fujimura [Fujimura, 1991] views path planning as either centralized (with a universal path-planner
making decisions) or distributed (with individual agents planning and adjusting their paths). Arai
and Ota [Arai and Ota, 1992] make a similar distinction in the nature of the planner, and also allow
hybrid systems that can be combinations of on-line, off-line, centralized, or decentralized. Latombe
[Latombe, 1991] gives a somewhat different taxonomy: his “centralized planning” is planning that
takes into account all robots, while “decoupled” planning entails planning the path of each robot in-
dependently. For centralized planning, several methods originally used for single-robot systems can be
applied. For decoupled planning, two approaches are given: (i) prioritized planning considers one robot
at a time according to a global priority, while (ii) the path coordination method essentially plans paths
by scheduling the configuration space-time resource. The work of [Erdmann and Lozano-Perez, 1986]
is a typical decoupled approach where every robot is prioritized and robots plan global paths with
respect to only higher-priority robots (e.g., the highest-priority robot plans only around the obsta-
cles in the environment). Note that this is still a centralized method according to the terminology
of [Fujimura, 1991, Arai and Ota, 1992]. On the other hand, [Yeung and Bekey, 1987] presents a dis-
tributed approach (per Fujimura’s taxonomy) where each robot initially attempts a straight-line path
to the goal; if an interfering obstacle is seen, then the robot will scan the visible vertices of the obstacle
and move toward the closest one. In general, this continues until the goal is reached. Dynamically
varying priorities are given to each robot (based on current need) to resolve path intersection conflicts,
and conflicting robots can either negotiate among themselves or allow a global blackboard manager to

perform this function.

Some recent works have addressed some nontraditional motion planning problems. For example,
[Hert and Lumelsky, 1995] proposes an algorithm for path planning in tethered robots, and [Ota et al., 1995]

consider the problem of moving while grasping large objects.
The Formation and Marching Problems

The Formation and Marching problems respectively require multiple robots to form up and move
in a specified pattern. Solving these problems i1s quite interesting in terms of distributed algorithms
[Sugihara and Suzuki, 1990], balancing between global and local knowledge [Parker, 1994b], and in-
trinsic information requirements for a given task. Solutions to Formation and Marching are also useful
primitives for larger tasks, e.g., moving a large object by a group of robots [Stilwell and Bay, 1993]
[Chen and Luh, 1994a] [Chen and Luh, 1994b] or distributed sensing [Wang and Beni, 1988].

The Formation problem seems very difficult, e.g., no published work has yet given a distributed
“circle-forming” algorithm that guarantees the robots will actually end up in a circle. For this problem,

the best known solution is the distributed algorithm of [Sugihara and Suzuki, 1990], which guarantees

17

only that the robots will end up in a shape of constant diameter (e.g., a Reuleaux triangle can be the
result). Tt is assumed that the it" mobile robot knows the distances D; and d; to its farthest and nearest
neighbors, respectively; the algorithm attempts to match the ratios D;/d; to a prescribed constant.
No method of detecting termination was given. [Chen and Luh, 1994a, Chen and Luh, 1994b] extend
the method of [Sugihara and Suzuki, 1990] to incorporate collision avoidance when the robots are
moving. [Yamaguchi and Arai, 1994] approaches the shape-generation problem using systems of linear
equations; starting at some initial location, each robot changes its (#, y) position according to a linear
function of its neighbors’ positions and some fixed constant. Simulations of the method show that a

group of initially collinear robots will converge into the shape of an arc.

We observe that the circle-forming problem, while quite simple to state, reveals several pitfalls
in formulating distributed geometric tasks. For example, the ability of an individual agent to sense
attributes of the formation must be carefully considered: too much information makes the problem
trivial, but too little information (e.g., returns from localized sensors) may prevent a solution (e.g.,
robots may never find each other). Information lower bounds, e.g., for robots to be able to realize that
they have achieved the prescribed formation, are also largely unexplored in the literature. Interestingly,
we note that the algorithm of [Sugihara and Suzuki, 1990] can be slightly modified: rather than each
robot seeking to achieve a prescribed ratio D/d, each robot could seek to achieve a prescribed angle
(close to 90 degrees) subtended by its farthest neighbor and its closest neighbor to the right. This uses

very similar sensing capabilities but guarantees the desired circular shape.

For Marching, [Chen and Luh, 1994a] employs positional constraint conditions in a group of robots
that makes turns while maintaining an array pattern. In [Chen and Luh, 1994b] a leader-follower ap-
proach is used to solve a similar task. [Parker, 1993] studies the problem of keeping four marching
robots in a side-by-side formation; this increases in difficulty when the leader has to perform obsta-
cle avoidance or other maneuvers. Parker also defines the concepts of global goals and global/local
knowledge. To study the effects of different distributions of global goals and global knowledge, four
strategies are compared both in simulation and on mobile robots. Simplified instances of the Marching
problem require robots to reliably follow each other and to move in a group (without tight con-
straints on their relative positions). Some works that address this problem (sometimes referred to
as the herding/flocking problem) include [Reynolds, 1987, Mataric, 1994a, Hodgins and Brogan, 1994,
Brogan and Hodgins, 1995, Milios and Wilkes, 1995]. A somewhat related problem is the problem of
cooperative positioning (determining the locations of the robots in a group using limited information)

[Kurazume and Nagata, 1994].

Related to the Formation problem is the pattern generation problem in Cellular Robotic Sys-

tems, multiple-robot systems which can “encode information as patterns of its own structural units”

18

[Beni, 1988]. Typically, one- or two-dimensional grids constitute the workspace, and sensing of neigh-
boring cells 1s the only input. Within these constraints, a set of rules is devised and applied to all agents;
a standard result is to show in simulation that convergence to some spatial pattern is guaranteed. The
meaningful aspect of this work lies in providing a system with the capability of spatial self-organization:

a CRS will reconfigure itself without intervention in certain situations or under certain conditions.

In [Wang and Beni, 1988, Liang and Beni, 1995], a CRS is characterized as an arbitrary number
of robots in a one- or two-dimensional grid. The robots are able to sense neighboring cells and com-
municate with other robots via a signboard mechanism. Protocols are presented for creating different
patterns, e.g., alternating robots and spaces in a one-dimensional grid; covering the top row of a two-
dimensional grid by robots; or covering the boundary of a two-dimensional grid by robots. Egecioglu
and Zimmermann [Egecioglu and Zimmermann, 1988] pose the “Random Pairing” problem, and seek a
set of rules by which for any given number, a CRS will converge to a pattern such that there is a group
of two robots with that number of vacant spaces between them (see also [Beni and Hackwood, 1992]).
An analogous cellular approach is adopted by Genovese et al. [Genovese et al., 1992], who describe
the simulation of a system of pollutant-seeking mobile robots. The simulation uses a potential field

mechanism to attract robots to the pollutant and to repulse robots from each other. The combined

effect of these two forces yields a gradient pattern that “points” toward the source of the pollutant.

3 Perspectives

As an integrative engineering discipline, robotics has always had to confront technological constraints
that limit the domains that can be studied. Cooperative robotics has been subject to these same
constraints, but the constraints tend to be more severe because of the need to cope with multiple robots.
At the same time, cooperative robotics is a highly interdisciplinary field that offers the opportunity to
draw influences from many other domains. In this section, we first outline some of the technological
constraints that face the field. We then mention some directions in which cooperative robotics might

progress, and describe related fields that have provided and will continue to provide influences.

3.1 Technological Constraints

It is clear that technological constraints have limited the scope of implementations and task domains

attempted in multiple-robot research systems.

One obvious problem that arises is the general problem of researchers having to solve various
instances of the vision problem before being able to make progress on “higher-level” problems. Often,

difficulties arising from having to solve difficult perceptual problems can limit the range of tasks that

19

can be implemented on a multiple-robot platform. For example, in cooperative robotics systems where
modeling of other agents (see Section 2.1.4) is used, the lack of an effective sensor array can render
the system unimplementable in practice. In addition, robot hardware is also notoriously unreliable; as
a result, it is extremely difficult to maintain a fleet of robots in working condition. Again, collective
robotics must deal with all of the hardware problems of single-robotic systems, exacerbated by the

multiplicity of agents.

Due to the difficulties (such as those outlined above) encountered when working with real robots,
much of collective robotics has been studied exclusively in simulation. Some researchers have argued
(cf. [Brooks, 1991]) that by ignoring most of the difficulties associated with perception and actuation,
simulations ignore the most difficult problems of robotics. By making overly simplistic assumptions,
it 1s possible to generate “successful” systems in simulation that would be infeasible in the real world.
(Conversely, mobile research robots can also come to “look like the simulator”, i.e., circular footprint,
sonar ring, synchro-drive is a common configuration.) Nevertheless, simulation must inevitably play
a role in multi-agent robotics at some level. Although it is currently possible for researchers to study
groups of 10-20 robots, it is unlikely that truly large-scale collective behavior involving hundreds or
thousands of real robots will be feasible at any time in the near future. Thus. cooperative mobile
robot researchers have used a variety of techniques to simulate perception, while using physical robots.
For instance, the use of a global positioning system can in part compensate for the lack of vision, but
can place severe environmental constraints under which robots can operate (because many objects and
acoustic features of the environment can interfere with the GPS). For the basic problem of differentiat-
ing between other agents and all other objects in the environment. some researchers [Parker, 1994b] use
radio communication to solve this problem. In other works [Donald, 1993a, Parker, 1994b] interaction
via sensing is done by explicit radio communication. There are recent attempts to perform recognition

via vision [Kuniyoshi et al., 1994a, Kuniyoshi et al., 1994b].

An approach taken by some researchers 1s to use simulations as prototypes for larger-scale studies,
and small numbers of real robots as a proof-of-concept demonstration [Mataric, 1994a, Parker, 1994b].
On the other hand, some researchers, citing the necessity of working in the real world domain,
have chosen to eschew simulations altogether and implement their theories directly on actual robots
[Beckers et al., 1994] [McFarland, 1994] [Steels, 1994]. In studies of locomotion in large herds of (upto
100) one-legged robots and simulated human cyclists, [Hodgins and Brogan, 1994] [Brogan and Hodgins, 1995]
take an alternate approach of design a very physically realistic simulation. While this approach brings
realism to actuation, the issue of perception is still simulated away; it is still unclear whether it will
be feasible to realistically model sophisticated agents in more complex environments, or whether the

effort will outweigh the benefits.

20

3.2 Towards a Science of Cooperative Robotics

The field of cooperative mobile robotics offers an incredibly rich application domain, integrating a huge
number of distinct fields from the social sciences, life sciences, and engineering. That so many theories
have been brought to bear on “cooperative robotics” clearly shows the energy and the allure of the field.
Yet, cooperative robotics is still an emerging field, and many open directions remain. In this subsection,
we point out some promising directions that have yet to be fully explored by the research community.
By way of a preface, we also point out three “cultural” changes which may come as the field matures:
(1) Because of the youth of the field, cooperative robotics research has been necessarily rather informal
and “concept” oriented. However, the development of rigorous formalisms 1s desirable to clarify various
assumptions about the systems being discussed, and to obtain a more precise language for discussion
of elusive concepts such as cooperation (there are some exceptions, such as [Parker, 1994b], which
presents a formalization of motivational behavior in the ALLIANCE architecture). (2) Formal metrics
for cooperation and system performance, as well as for grades of cooperation, are noticeably missing
from the literature. While the notion of cooperation is difficult to formalize, such metrics will be very
useful in characterizing various systems, and would improve our understanding of the nature of agent
interactions. Although [Mataric, 1994a] has suggested parameters such as agent density for estimating
interference in a multi-robot system, much more work in this area is necessary. (3) Experimental studies
might become more rigorous and thorough, e.g., via standard benchmark problems and algorithms.
This is challenging in mobile robotics, given the noisy, system-specific nature of the field. Nevertheless,
it is necessary for claims about “robustness” and “near-optimality” to be appropriately quantified,
and for dependencies on various control parameters to be better understood. For example, we have
noted that despite a number of claims that various decentralized approaches are superior to centralized
approaches, we have not seen any thorough, published experimental comparisons between the major
competing paradigms on a particular task. However, we note that recently, researchers have begun
to empirically study quantitative measures of cooperation, trying to identify conditions under which

mechanisms for cooperation are beneficial [Arkin et al., 1993, Arkin and Hobbs, 1993, Parker, 1995].

Finally, several basic analogies remain incomplete, and must be revisited and resynthesized as the
field matures. For instance, many multi-robot problems are “canonical” for distributed computation
and are interesting primarily when viewed in this light. A typical example is moving to formation,
which has been solved optimally in the computational geometry literature (it is the “geometric matching
under isometry” problem [P.J. Heffernan, 1992]), but which is difficult in the distributed context due
to issues like synchronization, fault-tolerance, leader election, etc. However, the distributed context
can be selectively ignored, e.g., [Sugihara and Suzuki, 1990] use “human intervention” to perform what

is essentially leader election (breaking symmetry in a circle of robots to choose vertices of the desired

21

polygonal formation). The introduction of such devices runs counter to the implicit assumption that

it 1s the distributed problem that holds research interest.

More generally, it is likely that more structural and less superficial analogies with other disciplines
will be needed in order to obtain “principled” theories of cooperation among (mobile) robots; inte-
gration of formalisms and methodologies developed in these more mature disciplines is likely to be an
important step in the development of cooperative robotics. Disciplines most critical to the growth of

cooperative robotics are: distributed artificial intelligence, biology, and distributed systems.
Distributed Artificial Intelligence

The field of distributed artificial intelligence (DAT) concerns itself with the study of distributed
systems of intelligent agents. As such, this field is highly relevant to cooperative robotics. Bond and
Gasser [Bond and Gasser, 1988] define DAT as “the subfield of artificial intelligence (AI) concerned
with concurrency in Al computations, at many levels.” Grounded in traditional symbolic Al and the

social sciences, DAT is composed of two major areas of study: Distributed Problem Solving (DPS) and

Multiagent Systems (MAS).

Research in DPS is concerned with the issue of solving a single problem using many agents. Agents
can cooperate by independently solving subproblems (task-sharing), and by periodically communicating
partial solutions to each other (result-sharing). DPS involves three possibly overlapping phases: (i)
problem decomposition (task allocation), (ii) subproblem solution, and (iii) solution synthesis. Of
these, problem decomposition has attracted the greatest interest among DAI researchers. The critical
issue in task sharing is finding the appropriate agent to assign to a subproblem. This is nontrivial, since
if the most appropriate agent for a subtask is not obvious, then the system must try to determine which
of the many eligible agents should be assigned the task, and often there are too many eligible agents to
attempt an exhaustive search. Perhaps the best known scheme for task allocation is the Contract Net

Protocol [Smith, 1980], which has been used in the ACTRESS [Ishida et al., 1994, Asama et al., 1994,
Ozaki et al., 1993] and GOFER [Caloud et al., 1990] projects.

One important assumption in DPS is that the agents are predisposed to cooperate. Research in
DPS is thus concerned with developing frameworks for cooperative behavior between willing agents,
rather than developing frameworks to enforce cooperation between potentially incompatible agents; as

is the case with multiagent systems and distributed processing.

Multiagent Systems (MAS) research is the study of the collective behavior of a group of possibly
heterogeneous agents with potentially conflicting goals. In other words, researchers in MAS discard
the “benevolent agent” assumption of DPS [Genesereth et al., 1986]. [Genesereth et al., 1986] states

the central problem of MAS research as follows: “in a world in which we get to design only our own

22

intelligent agent, how should it interact with other intelligent agents?” Therefore, areas of interest in
MAS research include game-theoretic analysis of multi-agent interactions (cf. [Genesereth et al., 1986,
Rosenschein and Genesereth, 1985, Rosenschein and Zlotkin, 1994]), reasoning about other agents’ goals,
beliefs, and actions (cf. [Rosenschein, 1982, Georgeff, 1983, Georgeff, 1984]), and analysis of the com-
plexity of social interactions [Shoham and Tennenholtz, 1992].

Work in MAS has tended to be theoretical and in very abstract domains. A common underlying
assumption is that although the agents may be selfish, they are rational and highly deliberative. This
is in stark contrast with research in swarm intelligence (see Section 2.5), in which individual agents are

assumed to be relatively unintelligent.

However, the influence of DAI on cooperative robotics has been limited. This 1s in part because
researchers in DAI have mostly concentrated on domains where uncertainty is not as much of an 1ssue
as it is in the physical world. Work in MAS has tended to be theoretical and in very abstract domains
where perfect sensing is usually assumed; typical DPS domains are in disembodied, knowledge-based
systems. Another assumption of DAI that has prevented its application in cooperative robotics is the
assumption 1s that although agents may be selfish, they are rational and highly deliberative. However,
achieving strict criteria of rationality and deliberativeness can often be prohibitively expensive in
current robotic systems. Thus, it has been argued that DAI, while suited for unsituated, knowledge-
based systems,; will not succeed in the domain of cooperative robotics [Parker, 1994b, Mataric, 1994a].
However, we observe that direct comparisons of DAI and alternative paradigms are notably missing
from the literature; such comparisons are needed to evaluate the true utility of DAI techniques in
cooperative robotics. Also, as lower-level processes (perception and actuation) are better understood
and implemented, and as computational power increases, the high-level results of DAI research may

become increasingly applicable to collective mobile robotics.
Distributed Systems

A multiple-robot system is in fact a special case of a distributed system. Thus, the field of dis-
tributed systems is a natural source of ideas and solutions. [Beni, 1988] describes cellular robotics as
belonging to the general field of distributed computing. It is noted, however, that distributed com-
puting can only contribute general theoretical foundations and that further progress needs to be made
concerning the application of such methods to collective robotics. [Wang and Beni, 1990] states, “a
distributed computing system contains a collection of computing devices which may reside in geo-
graphically separated locations called sites.” By noting the similarities with distributed computing,
theories pertaining to deadlock [Wang and Beni, 1988 Wang and Beni, 1990, Lin and Hsu, 1995], mes-
sage passing [Wang and Beni, 1990] and resource allocation [Wang, 1991], and the combination of the

above as primitives [Wang, 1995, Wang and Premvuti, 1995], have been applied to collective robotics

23

in a number of works.

In work done on multiple AGV systems and Distributed Robotic Systems, deadlock detection and
resource allocation methods are applied to allow many robots to share the limited resource of path
space [Wang and Beni, 1990, Wang, 1991]. Pattern generation in a CRS may also rely on distributed
computing to resolve conflicts [Wang, 1991, Wang and Beni, 1990]. Finally, [Wang, 1993, Wang, 1994]
describe a task allocation algorithm where the robots vie for the right to participate in a task. See also

the discussion in Section 2.1.1 and Section 2.5.

Broadcast communication, which is widely assumed in cooperative robotics, exhibits poor scal-
ing properties. As robots become more numerous and widely distributed, techniques and issues from
the field of computer networks become relevant. A rich body of research on algorithms, protocols,
performance modeling and analysis in computer networks can be applied to cooperative robotics.
There is currently a great amount of effort being put into studying networking issues related to mo-
bile/nomadic/ubiquitous computing (cf. [Awerbuch and Peleg, 1991, Weiser, 1993, Kleinrock, 1995,
Badrinath et al., 1994]). Results from this field could be applied in a straightforward way to multi-

robot systems.

Finally, distributed control is a promising framework for the coordination of multiple robots. Due
to difficulty of sensing and communication, a parsimonious formulation which can coordinate robots
having minimal sensing and communication capabilities is desirable. In an ideal scenario, maximal fault
tolerance 1s possible, modeling of other agents is unnecessary, and each agent is controlled by a very
simple mechanism. A distributed control scheme (known as the GUR game) developed originally by
[Tsetlin, 1964] and recently studied in [Tung and Kleinrock, 1993, Tung, 1994] provides a framework in
which groups of agents with minimal sensing capability and no communication are controlled by simple
finite state automata and converge to optimal behaviors. [Tung, 1994] describes possible cooperative

robotics applications in moving platform control and perimeter guarding.
Biology

Biological analogies and influences abound in the field of cooperative robotics. The majority of
existing work in the field has cited biological systems as inspiration or justification. Well-known
collective behaviors of ants, bees, and other eusocial insects [Wilson, 1971] provide striking exis-
tence proofs that systems composed of simple agents can accomplish sophisticated tasks in the real
world. It is widely held that the cognitive capabilities of these insects are very limited, and that
complex behaviors emerge out of interactions between the agents, which are individually obeying
simple rules. Thus, rather than following the Al tradition of modeling robots as rational, delib-

erative agents, some researchers in cooperative robotics have chosen to take a more “bottom-up”

24

approach in which individual agents are more like ants — they follow simple rules, and are highly re-
active (this is the approach taken in the field of Artificial Life). Works based on this insect-colony
analogy include [Mataric, 1994a, Beckers et al., 1994, Stilwell and Bay, 1993, Doty and Aken, 1993,
Johnson and Bay, 1994, Deneubourg et al., 1991a, Deneubourg et al., 1991b]. The pattern generation
of CRS’s can also be considered as bottom-up (see Section 2.5), since each robot is designed as a very

simple agent which follows a set of prespecified rules.

A more general, biological metaphor that is often used in cooperative robotics is the concept of a self-
organizing system [Nicolis and Prigogine, 1977, Yates, 1987]. (Note that researchers from many fields
have studied self-organization; it is by no means an exclusively biological concept. However, in the field
of cooperative robotics, references to self-organization have often been made in a biological context.)
The behavior of insect colonies described above can be characterized more generally as that of self-
organizing systems. Representative work that is based on this concept includes [Wang and Beni, 1988,
Steels, 1990, Hackwood and Beni, 1991, Hackwood and Beni, 1992, Beni and Hackwood, 1992]. Self-
organization in multi-cellular biological systems has been an inspiration for [Hackwood and Wang, 1988,
Beni, 1988, Egecioglu and Zimmermann, 1988, Genovese et al., 1992]. Hierarchical organization of bi-
ological multi-cellular organisms (i.e., from cellular to tissue to organism level) has been used as a

guiding metaphor for cellular robotics in the CEBOT project [Fukuda and Nakagawa, 1987].

Biological analogies have also influenced the choice of task domains studied in cooperative robotics.
While foraging is a natural abstraction of some practical applications such as waste retrieval and search
and rescue, one major reason that it has become identified as the canonical cooperative robotic task
is that it is a natural task, given the group architectures resulting from analogies to insect colonies.
Another example of this phenomenon is the flocking/herding task. It seems no accident that biolog-
ical inspirations led to “natural” models of group motion, as opposed to more structured models of

coordinated motion (such as moving in some arbitrary formation).

Finally, as we noted in Section 2.4, there have been some biological influences on the learning and

optimization algorithms used to tune control parameters in multiple-robot systems.

4 Conclusions

We have synthesized a view of the theoretical bases for research in cooperative mobile robotics. Key
research axes in the field were identified, particularly with respect to achieving a “mechanism of co-
operation”, and existing works were surveyed in this framework. We then discussed technological
constraints and interdisciplinary influences that have shaped the field, and offered some general pre-

cepts for future growth of the field. Finally, we identified distributed artificial intelligence, biology, and

25

distributed systems as disciplines that are most relevant to cooperative robotics, and which are most
likely to continue to provide valuable influences. Based on our synthesis, a number of open research
areas become apparent. We believe that the following are among the major, yet tractable, challenges

for the near future:

1. robust definitions and metrics for various forms of cooperation,

2. achieving a more complete theory of information requirements for task-solving in spatial domains,
perhaps for the canonical tasks of pattern formation or distributed sensing (e.g., measures of pat-
tern complexity, information lower bounds for pattern recognition and maintenance, abstraction
of sensor models from the solution approach). The works of [Donald et al., 1994, Rus et al., 1995,
Brown and Jennings, 1995] have begun to address this issue, in the context of object manipula-
tion tasks; interestingly, [Brown and Jennings, 1995] observes that given a robot system, some
tasks are strongly cooperative — the robots must act in concert to achieve the goal, and the strategy

for the task is not trivially serializable.

3. principled transfer of the concepts of fault-tolerance and reliability from the field of distributed

and fault-tolerant computing,

4. incorporation of recent ideas in distributed control to achieve oblivious cooperation, or coop-
eration without communication (e.g., when robots have minimal sensing and communication

capabilities)

5. achieving cooperation within competitive situations (e.g., for robot soccer, or pursuit-evasion
with multiple pursuers and evaders). An interesting open problem is how well solutions that have
been developed in discretized abstractions of these domains (cf. [Levy and Rosenschein, 1991,

Korf, 1992]) translate to the physical world.

Acknowledgements

Partial support for this work was provided by NSF Young Investigator Award MIP-9257982; the UCLA
Commotion Laboratory is supported by NSF CDA-9303148. The authors would like to thank B.
Donald, T. Fukuda, M. Anthony Lewis, M. Mataric, J. Wang, and members of the UCLA Commotion
Lab for helpful comments, suggestions, and discussions. Frank Meng assisted in the preparation of a

previous version of this paper.

26

References

[Adams et al., 1995] J.A. Adams, R. Basjcsy, J. Kosecka, V. Kumar, R. Mandelbaum, M. Mintz, R. Paul,
C. Wang, Y. Yamamoto, and X. Yun. Cooperative material handling by human and robotic agents: Module
development and system synthesis. In ITEFEE/RSJ IROS, pages 200-205, 1995.

[Agah and Bekey, 1994] A. Agah and G. A. Bekey. Autonomous mobile robot teams. In Conf. on Intelligent
Robotics in Filed, Factory, Service and Space (CIRFFS5594), 1994.

[Aguilar et al., 1995] L. Aguilar, R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Ten autonomous
mobile robots (and even more). In IEEE/RSJ IROS, pages 260-267, 1995.

[Alani et al., 1995] R. Alani, F. Robert, F. Ingrand, and S. Suzuki. Multi-robot cooperation through incre-
mental plan-merging. In /EEE ICRA, pages 2573-2579, 1995.
[Albus, 1993] J. S. Albus. A Control Architecture for Cooperative Intelligent Robots, pages 713-743. 1993.

[Arai and Ota, 1992] T. Arai and J. Ota. Motion planning of multiple robots. In IEEE/RSJ IROS, pages
1761-1768, 1992.

[Arai et al., 1993] T. Arai, E. Yoshida, and J. Ota. Information diffusion by local communication of multiple
mobile robots. In IEEE Conference on Systems, Man and Cybernetics, pages 535-540, 1993.

[Arkin and Ali, 1994] R. Arkin and K. Ali. Integration of reactive and telerobotic control in multi-agent robotic
systems. In Proc. Simulation of Adaptive Behavior, 1994,
[Arkin and Hobbs, 1993] R. Arkin and J. Hobbs. Dimensions of communication and social organization in

multi-agent robotic systems. In Proc. Simulation of Adaptive Behavior, 1993.

[Arkin et al., 1993] R. C. Arkin, T. Balch, and E. Nitz. Communication of behavioral state in multi-agent
retrieval tasks. In JTFEF ICRA, volume 3, pages 588-594, 1993.

[Arkin, 1992] R. C. Arkin. Cooperation without communication: Multiagent schema-based robot navigation.
Journal of Robotic Systems, 9(3):351-364, 1992.

[Asada et al., 1994] M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, and K. Hosoda. Coordination of multiple
behaviors acquired by a vision-based reinforcement learning. In IEEE/RSJ IROS, 1994.

[Asama ef al., 1989] H. Asama, A. Matsumoto, and Y. Ishida. Design of an autonomous and distributed robot
system: ACTRESS. In IEEE/RSJ IROS, pages 283-290, 1989.

[Asama ef al., 1991a] H. Asama, M. K. Habib, I. Endo, K. Ozaki, A. Matsumoto, and Y. Ishida. Functional
distribution among multiple mobile robots in an autonomous and decentralized robot system. In IEEFE
ICRA, pages 1921-6, 1991.

[Asama ef al., 1991b] H. Asama, K. Ozaki, Y. Ishida, M. K. Habib, A. Matsumoto, and I. Endo. Negotiation
between multiple mobile robots and an environment manager. In /FEFE ICRA, pages 533-538, 1991.

[Asama et al., 1991c] H. Asama, K. Ozaki, H. Ttakura, A. Matsumoto, Y. Ishida, and I. Endo. Collision
avoidance among multiple mobile robots based on rules and communication. In IEFE/RSJ IROS, pages
1215-1220, 1991.

[Asama ef al., 1992] H. Asama, Y. Ishida, K. Ozaki, M. K. Habib, A. Matsumoto, H. Kaetsu, and I. Endo.
A communication system between multiple robotic agents. In M. Leu, editor, Proc. the Japan U.S.A.
Symposium on Flexible Automation, pages 647-654, 1992.

[Asama ef al., 1994] H. Asama, K. Ozaki, Y. Ishida, K. Yokita, A. Matsumoto, H. Kaetsu, and I. Endo.
Collaborative team organization using communication in a decentralized robotic system. In IFFE/RSJ
IROS, 1994.

[Asama, 1992] H. Asama. Distributed autonomous robotic system configurated with multiple agents and its
cooperative behaviors. Journal of Robotics and Mechatronics, 4(3), 1992.

[Awerbuch and Peleg, 1991] B. Awerbuch and D. Peleg. Concurrent online tracking of mobile users. Computer
Communication Review, 21(4):221-233, 1991.

[Badrinath et al., 1994] B.R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed algorithms for
mobile hosts. In Proceedings of the 14th International Conference on Distributed Computing Systems, pages
21-24, June 1994.

[Barnes and Gray, 1991] D. Barnes and J. Gray. Behaviour synthesis for co-operant mobile robot control. In
International Conference on Control, pages 1135-1140, 1991.

27

[Barto et al., 1983] A.G. Barto, R.S. Sutton, and C.J.C.H. Watkins. Learning and sequential decision making.
In M. Gabriel and J. Moore, editors, Learning and Computational Neuroscience: Foundations of Adaptive
Networks, pages 539-603. MIT Press, 1983.

[Beckers et al., 1994] R. Beckers, O. E. Holland, and J. L. Deneubourg. From local actions to global tasks:
Stigmergy and collective robotics. In Proc. A-Life IV. MIT Press, 1994.

[Beni and Hackwood, 1992] G. Beni and S. Hackwood. Stationary waves in cyclic swarms. In /EEE Interna-
tional Symposium on Intelligent Control, pages 234-242, 1992.

[Beni and Wang, 1991] G. Beni and J. Wang. Theoretical problems for the realization of distributed robotic
systems. In IEFE ICRA, pages 1914-1920, 1991.

[Beni, 1988] G. Beni. The concept of cellular robotic system. In IEEFE International Symposium on Intelligent
Control, pages 57-62, 1988.

[Bond and Gasser, 1988] A. H. Bond and L. Gasser. Readings in Distributed Artificial Intelligence. Morgan
Kaufmann Publishers, 1988.

[Brogan and Hodgins, 1995] D.C. Brogan and J.C. Hodgins. Group behaviors for systems with significant
dynamics. In IEEE/RSJ IROS, pages 528-534, 1995.

[Brooks et al., 1990] R. A. Brooks, P. Maes, M. J. Mataric, and G. More. Lunar base construction robots. In
IEEE/RSJ IROS. IEEE, July 1990.

[Brooks, 1986] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation, RA-2(1):14-23, 1986.

[Brooks, 1991] R. A. Brooks. Intelligence without reason. In Proc. Inél. Joint Conf. Artificial Intelligence,
pages 569-595, 1991.

[Brown and Jennings, 1995] R.G. Brown and J.S. Jennings. A pusher/steerer model for strongly cooperative
mobile robot cooperation. In IEEE/RSJ IROS, pages 562-568, 1995.

[Cai et al., 1995] A.-H. Cai, T. Fukuda, F. Arai, T. Ueyama, and A. Sakai. Hierarchical control architecture
for cellular robotic system. In IEFE ICRA, pages 1191-1196, 1995.

[Caloud et al., 1990] P. Caloud, W. Choi, J.-C. Latombe, C. Le Pape, and M. Yin. Indoor automation with
many mobile robots. In IEEE/RSJ IROS, pages 67-72, 1990.

[Causse and Pampagnin, 1995] O. Causse and L.H. Pampagnin. Management of a multi-robot system in a
public environment. In IEEE/RSJ IROS, pages 246-252, 1995.

[Chen and Luh, 1994a] Q. Chen and J. Y. S. Luh. Coordination and control of a group of small mobile robots.
In IFEFE ICRA, pages 2315-2320, 1994.

[Chen and Luh, 1994b] Q. Chen and J. Y. S. Luh. Distributed motion coordination of multiple robots. In
IEEE/RSJ IROS, pages 1493-1500, 1994.

[Connell, 1987] J. Connell. Creature design with the subsumption architecture. In Proc. AAAI pages 1124—
1126, 1987.

[Dario et al., 1991] P. Dario, F. Ribechini, V. Genovese, and G. Sandini. Instinctive behaviors and personalities

in societies of cellular robots. In IFEF ICRA, pages 1927-1932, 1991.

[Deneubourg et al., 1991a] J. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chretien.
The dynamics of collective sorting: Robot-like ants and ant-like robots. In Proc. Simulation of Adaptive
Behavior, 1991.

[Deneubourg et al.,, 1991b] J-L. Deneubourg, G. Theraulaz, and R. Beckers. Swarm-made architectures. In
Verela and Bourgine, editors, Proc. Furopean Conference on Artificial Life, pages 123-133. MIT Press, 1991.

[Donald et al., 1994] B. R. Donald, J. Jennings, and D. Rus. Analyzing teams of cooperating mobile robots.
In IFEFE ICRA, pages 1896-1903, 1994.

[Donald, 1993a] B. R. Donald. Information invariants in robotics: 1. state, communication, and side-effects. In

IFEE ICRA, pages 276-283, 1993.

[Donald, 1993b] B. R. Donald. Information invariants in robotics: II. sensors and computation. In JEEE ICRA,
volume 3, pages 284-90, 1993.

[Dorf, 1990] R. Dorf. Concise International Encyclopedia of Robotics: Applications and Automation. Wiley-
Interscience, 1990.

28

[Doty and Aken, 1993] K. L. Doty and R. E. Van Aken. Swarm robot materials handling paradigm for a
manufacturing workcell. In J/EFE ICRA, volume 1, pages 778-782, 1993.

[Drexler, 1992] K.E. Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Computation. John
Wiley and Sons, Inc., 1992.

[Drgoul and Ferber, 1993] A. Drgoul and J. Ferber. From tom thumb to the dockers: Some experiments with
foraging robots. In Proc. Simulation of Adaptive Behavior, 1993.

[Dudek et al., 1993] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for swarm robots. In
IEEE/RSJ IROS, pages 441-447, 1993.

[Egecioglu and Zimmermann, 1988] O. Egecioglu and B. Zimmermann. The one dimensional random pairing
problem in a cellular robotic system. In TEFE International Symposium on Intelligent Control, pages 76-80,
1988.

[Erdmann and Lozano-Perez, 1986] M. Erdmann and T. Lozano-Perez. On multiple moving objects. In IEEE
ICRA, pages 1419-1424, 1986.

[Everett et al., 1993] H. Everett, G.A. Gilbreath, T.A. Heath-Pastore, and R.T. Laird. Coordinated control of
multiple security robots. Mobile Robots VIII, 2058:292-305, 1993.

[Franklin et al., 1995] D.E. Franklin, A.B. Kahng, and M.A. Lewis. Distributed sensing and probing with
multiple search agents: toward system-level landmine detection solutions. In Detection Technologies for
Mines and Minelike Targets, Proceedings of SPIE, Vol.2496, pages 698-709, 1995.

[Fujimura, 1991] K. Fujimura. Motion Planning in Dynamic Environments. Springer-Verlag, New York, NY,
1991.

[Fukuda and Iritani, 1995] T. Fukuda and G. Iritani. Construction mechanism of group behavior with coop-
eration. In IEEE/RSJ IROS, pages 535-542, 1995.

[Fukuda and Kawauchi, 1993] T. Fukuda and Y. Kawauchi. Cellular Robotics, pages 745-782. Springer-Verlag,
1993.

[Fukuda and Nakagawa, 1987] T. Fukuda and S. Nakagawa. A dynamically reconfigurable robotic system
(concept of a system and optimal configurations). In International Conference on Industrial Electronics,
Control, and Instrumentation, pages 588-95, 1987.

[Fukuda and Sekiyama, 1994] T. Fukuda and K. Sekivama. Communication reduction with risk estimate for
multiple robotic system. In [FEF ICRA, pages 2864-2869, 1994.

[Fukuda et al., 1990] T. Fukuda, Y. Kawauchi, and H. Asama. Analysis and evaluation of cellular robotics
(CEBOT) as a distributed intelligent system by communication amount. In IEEE/RSJ IROS, pages 827-
834, 1990.

[Gage, 1993] D. Gage. How to communicate to zillions of robots. In Mobile Robots VIII, SPIE, pages 250-257,
1993.

[Genesereth et al., 1986] M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein. Cooperation without
communication. In Proc. AAAI pages 51-57, 1986.

[Genovese et al., 1992] V. Genovese, P. Dario, R. Magni, and L. Odetti. Self organizing behavior and swarm
inteligence in a pack of mobile miniature robots in search of pollutants. In IEFE/RSJ IROS, pages 1575-1582,
1992.

Georgeff, 1983] M. Georgeff. Communication and interaction in multi-agent planning. In Proc. AAAI pages
g g g g g
125-129, 1983.

[Georgefl, 1984] M. Georgeff. A theory of action for multi-agent planning. In Proc. AAAIL pages 121-125,
1984.

[Goldberg, 1989] D. Goldberg. Genetic Algorithms in search, optimization, and machine learning. Addison
Wesley, 1989.

[Goss and Deneubourg, 1992] S. Goss and J. Deneubourg. Harvesting by a group of robots. In Proc. Furopean
Conference on Artificial Life, 1992.

[Grossman, 1988] D. Grossman. Traffic control of multiple robot vehicles. IEEE Journal of Robotics and
Automation, 4:491-497, 1988.

[Hackwood and Beni, 1991] S. Hackwood and G. Beni. Self-organizing sensors by deterministic annealing. In

IEEE/RSJ IROS, pages 1177-1183, 1991.

29

[Hackwood and Beni, 1992] S. Hackwood and G. Beni. Self-organization of sensors for swarm intelligence. In
IFEE ICRA, pages 819-829, 1992.

[Hackwood and Wang, 1988] S. Hackwood and J. Wang. The engineering of cellular robotic systems. In IEEE
International Symposium on Intelligent Control, pages T0-75, 1988.

[Hara et al.,, 1995] F. Hara, Y. Yasui, and T. Aritake. A kinematic analysis of locomotive cooperation for two
mobile robots along a genereal wavy road. In IEFE ICRA, pages 1197-1204, 1995.

[Hashimoto and Oba, 1993] M. Hashimoto and F. Oba. Dynamic control approach for motion coordination of
multiple wheeled mobile robots transporting a single object. In IEEE/RSJ IROS, pages 1944-1951, 1993.

[Hert and Lumelsky, 1995] S. Hert and V. Lumelsky. Moving multiple tethered robots between arbitrary con-
figurations. In IFEE/RSJ IROS, pages 280-285, 1995.

[Hewitt et al., 1973] C. Hewitt, P. Bishop, I. Greif, B. Smith, T. Matson, and R. Steiger. Actor induction and
meta-evaluation. In ACM Symposium on Principles of Programming Languages, pages 153-168, 1973.

[Hewitt, 1993] C. Hewitt. Toward an open systems architecture. In Information Processing 89. Proceedings of
the IFIP 11th World Computer Congress, pages 389-92, 1993.

[Hodgins and Brogan, 1994] J. Hodgins and D. Brogan. Robot herds: Group behaviors for systems with
significant dynamics. In Proc. A-Life IV, 1994.

[Ichikawa et al., 1993] S. Ichikawa, F. Hara, and H. Hosokai. Cooperative route-searching behavior of multi-
robot system using hello-call communiction. In ITEEE/RSJ IROS, pages 1149-1156, 1993.

[Tshida et al., 1991] Y. Ishida, I. Endo, and A. Matsumoto. Communication and cooperation in an autonomous
and decentralized robot system. In IFAC int. Symp. on Distributed Intelligent Systems, pages 299-304, 1991.

[Ishida et al., 1994] Y. Ishida, H. Asama, S. Tomita, K. Ozaki, A. Matsumoto, and I. Endo. Functional
complement by cooperation of multiple autonomous robots. In IEEFFE ICRA, pages 2476-2481, 1994.

[Jin et al., 1994] K. Jin, P. Liang, and G. Beni. Stability of synchronized distributed control of discrete swarm
structures. In I/EFE ICRA, pages 1033-1038, 1994.

[Johnson and Bay, 1994] P. J. Johnson and J. S. Bay. Distributed control of autonomous mobile robot col-
lectives in payload transportation. Technical report, Virginia Polytechnic Institute and State University,
Bradley Dept. of Elec. Engr., 1994.

[Kaelbling, 1993] L. P. Kaelbling. Learning in Embedded Systems. MIT Press, 1993.

[Kato et al., 1992] S. Kato, S. Nishiyama, and J. Takeno. Coordinating mobile robots by applying traffic rules.
In IEEE/RSJ IROS, pages 1535-1541, 1992.

[Kawauchi et al., 1993a] Y. Kawauchi, M. Inaba, and T. Fukuda. A principle of distributed decision making
of cellular robotic system (CEBOT). In IEEE ICRA, volume 3, pages 833-838, 1993.

[Kawauchi et al., 1993b] Y. Kawauchi, M. Inaba, and T. Fukuda. A relation between resource amount and
system performance of the cellular robotic system. In IEEE/RSJ IROS, pages 454-459, 1993.

[Kitano, 1994] H. Kitano. personal communication, 1994.

[Kleinrock, 1995] L. Kleinrock. Nomadic computing - an opportunity. Computer Communications Review,
Computer Communications Review 1995.

[Korf, 1992] R. Korf. A simple solution to pursuit games. In Proc. 11th International Workshop on Distributed
Artificial Intelligence, 1992.

[Koza, 1990] J. Koza. Genetic Programming: On the Programming of Computers By the Means of Natural
Selection. MIT Press, 1990.

[Kube and Zhang, 1992] C. R. Kube and H. Zhang. Collective robotic intelligence. In Proc. Simulation of
Adaptive Behavior, pages 460-468, 1992.

[Kube and Zhang, 1993] C. R. Kube and H. Zhang. Collective robotics: From social insects to robots. Adaptive
Behavior, 2(2):189-219, 1993.

[Kube and Zhang, 1994] C. R. Kube and H. Zhang. Stagnation recovery behaviours for collective robotics. In
IEEE/RSJ IROS, pages 1883-1890, 1994.

[Kube et al., 1993] C. R. Kube, H. Zhang, and X. Wang. Controlling collective tasks with an ALN. In
IEEE/RSJ IROS, pages 289-293, 1993.

30

[Kuniyoshi et al., 1994a] Y. Kuniyoshi, N. Kita, S. Rougeaux, S. Sakane, M. Ishii, and M. Kakikura. Cooper-
ation by observation - the framework and basic task patterns. In IEFEF ICRA, pages 767-774, 1994.

[Kuniyoshi et al., 1994b] Y. Kuniyoshi, J. Riekki, M. Tshii, S. Rougeaux, N. Kita, S. Sakane, and M. Kakikura.
Vision-based behaviors for multi-robot cooperation. In IEEE/RSJ IROS, pages 925-931, 1994.

[Kurabayashi et al., 1995] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida. An algorithm of dividing a work
area to multiple mobile robots. In IEEE/RSJ IROS, pages 286-291, 1995.

[Kurazume and Nagata, 1994] R. Kurazume and S. Nagata. Cooperative positioning with multiple robots. In
IFEE ICRA, pages 1250-1257, 1994.

[Latombe, 1991] J. Latombe. Robot Motion Planning. Kluwer Academic, Boston, MA, 1991.

[LePape, 1990] C. LePape. A combination of centralized and distributed methods for multi-agent planning
and scheduling. In JEFE ICRA, pages 488-493, 1990.

[Levy and Rosenschein, 1991] R. Levy and J.S. Rosenschein. A game theoretic approach to distributed artificial
intelligence and the pursuit problem. In Furopean Workshop on Modelling Autonomous Agents in a Multi-
Agent World, pages 129-146, 1991.

[Lewis and Bekey, 1992] M.A. Lewis and G.A. Bekey. The behavioral self-organization of nanorobots using
local rules. In IEEE/RSJ IROS, pages 1333-1338, 1992.

[Liang and Beni, 1995] P. Liang and G. Beni. Robotic morphogenesis. In JEEE ICRA, pages 2175-2180, 1995.

[Lin and Hsu, 1995] F.-C. Lin and J. Y.-J. Hsu. Cooperation and deadlock-handling for an object-sorting task
in a multi-agent robotic system. In /EEE ICRA, pages 2580-2585, 1995.

[Littman, 1994] M. Littman. Markov games as a framework for multi-agent reinforcement learning. In Pro-
ceedings of the International Machine Learning Conference, pages 157-163, 1994.

[Lueth and Laengle, 1994] T.C. Lueth and T. Laengle. Task description, decomposition and allocation in a
distributed autonomous multi-agent robot system. In IEEE/RSJ IROS, pages 1516-1523, 1994.

[Ma et al., 1994] S. Ma, S. Hackwood, and G. Beni. Multi-agent supporting systems (MASS): Control with
centralized estimator of disturbance. In IEEE/RSJ IROS, pages 679-686, 1994.

[Mataric et al., 1995] M.J. Mataric, M. Nilsson, and K.T. Simsarian. Cooperative multi-robot box-pushing. In
IEEE/RSJ IROS, pages 556-561, 1995.

[Mataric, 1992a] M. J. Mataric. Designing emergent behaviors: From local interactions to collective intelligence.
In J.-A. Meyer, H. Roitblat, and S. Wilson, editors, From Animals to Animats 2, Second International
Conference on Simulation of Adaptive Behavior (SAB-92), pages 432-441. MIT Press, 1992.

[Mataric, 1992b] M. J. Mataric. Distributed approaches to behavior control. In SPIE - Sensor Fusion V,
volume 1828, pages 373-382, 1992.

[Mataric, 1992c] M. J. Mataric. Minimizing complexity in controlling a mobile robot population. In IEEE
ICRA, pages 830-835, May 1992.

[Mataric, 1993] M. J. Mataric. Kin recognition, similarity, and group behavior. In Fifteenth Annual Cognitive
Science Society Conference, pages 705-710. Lawrence Erlbaum Associates, June 1993.

[Mataric, 1994a] M. Mataric. Interaction and Intelligent Behavior. PhD thesis, MIT, EECS, May 1994.

[Mataric, 1994b] M. Mataric. Reward functions for accelerated learning. In Proceedings of the International
Machine Learning Conference, pages 181-189, 1994.

[Matsumoto et al., 1990] A. Matsumoto, H. Asama, Y. Ishida, K. Ozaki, and I. Endo. Communication in the
autonomous and decentralized robot system: ACTRESS. In IEEE/RSJ IROS, pages 835-840, 1990.

[McFarland, 1994] D. McFarland. Towards robot cooperation. In Proc. Simulation of Adaptive Behavior, 1994.

[Mehregany et al., 1988] M. Mehregany, K.J. Gabriel, and W.S. Trimmer. Integrated fabrication of polysilicon
mechanisms. [EEE Trans. Electron Devices, 35(6):719-723, 1988.

[Merriam-Webster, 1963] Merriam-Webster. Webster’s 7th Collegiate Dictionary. Merriam-Webster, Inc., 1963.

[Milios and Wilkes, 1995] G. Dudek M. Jenkin E. Milios and D. Wilkes. Experiments in sensing and commu-
nication for robot convoy navigation. In IEEE/RSJ IROS, pages 268-273, 1995.

[Miller and Cliff, 1994] G. F. Miller and D. Cliff. Protean behavior in dynamic games: Arguments for the
co-evolution of pursuit-evasion tactics. In D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson, editors,
Proc. Simulation of Adaptive Behavior, 1994.

31

[Mitsumoto et al., 1995] N. Mitsumoto, T. Fukuda, K. Shimojina, and A. Ogawa. Micro autonomous robotic
system and biologically inspired immune swarm strategy as a multi agent robotic system. In I[FEF ICRA,
pages 2187-2192, 1995.

[Nicolis and Prigogine, 1977] G. Nicolis and I. Prigogine. Self-Organization in Nonequilibrium Systems. Wiley-
Interscience, 1977.

[Noreils and Recherche, 1991] F. Noreils and A. Recherche. Adding a man/machine interface to an architecture
for mobile robots. In IEEE/RSJ IROS, 1991.

[Noreils, 1990] F. Noreils. Integrating multirobot coordination in a mobile robot control system. In IEFE/RSJ
IROS, pages 43—-49, 1990.

[Noreils, 1992a] F. R. Noreils. Coordinated protocols: An approach to formalize coordination between mobile

robots. In IEEE/RSJ IROS, pages T17-724, July 1992.

[Noreils, 1992b] F. R. Noreils. Multi-robot coordination for battlefield strategies. In IEEE/RSJ IROS, pages
1777-1784, July 1992.

[Noreils, 1993] F. R. Noreils. Toward a robot architecture integrating cooperation between mobile robots:
Application to indoor environment. The International Journal of Robotics Research, 12(1), February 1993.

[Numaoka, 1993] C. Numaocka. Collective alteration of strategic types with delayed global information. In
IEEE/RSJ IROS, pages 1077-1084, 1993.

[Ota et al., 1995] J. Ota, N. Miyata, T. Arai, E. Yoshida, D. Kurabayashi, and J. Sasaki. Transferring and
regrasping a large object by cooperation of multiple mobile robots. In IEEE/RSJ IROS, pages 543-548,
1995.

[Ozaki et al., 1993] K. Ozaki, H. Asama, Y. Ishida, A. Matsumoto, K. Yokota, H. Kaetsu, and I. Endo. Syn-
chronized motion by multiple mobile robots using communication. In IEEE/RSJ IROS, pages 1164-1169,
July 1993.

[Parker, 1992] L. E. Parker. Adaptive action selection for cooperative agent teams. In Second Annual Inter-
national Conference on Simulation of Adaptive Behavior, pages 442—450. MI'T Press, December 1992.

[Parker, 1993] L. E. Parker. Designing control laws for cooperative agent teams. In IEEE ICRA, volume 3,
pages 582-587, 1993.

[Parker, 1994a] L. E. Parker. ALLTANCE: an architecture for fault tolerant, cooperative control of heteroge-
neous mobile robots. In TEEE/RSJ IROS, pages 776-783, 1994.

[Parker, 1994b] L. E. Parker. Heterogeneous Multi- Robot Cooperation. PhD thesis, MIT EECS Dept., February
1994.

[Parker, 1995] L. E. Parker. The effect of action recognition and robot awareness in cooperative robotic teams.

In IEEE/RSJ IROS, pages 212-219, 1995.

[P.]. Heffernan, 1992] S. Schirra P.J. Heffernan. Approximate decision algorithms for point set congruence. In
8th Annual Compuational Geometry, pages 93—101, 1992.

[Premvuti and Yuta, 1990] S. Premvuti and S. Yuta. Consideration on the cooperation of multiple autonomous

mobile robots. In IEEE/RSJ IROS, pages 59-63, 1990.

[Reynolds, 1987] C. W. Reynolds. Flocks, herds and schools: a distributed behavioural model. Computer
Graphics, 21(4):71-87, 1987.

[Reynolds, 1992] C. Reynolds. An evolved, vision-based behavioral model of coordinated group motion. In
Proc. Simulation of Adaptive Behavior, 1992.

[Reynolds, 1994] C. Reynolds. Competition, coevolution and the game of tag. In Proc. A-Life IV, 1994.

[Rosenschein and Genesereth, 1985] J.S. Rosenschein and M.R. Genesereth. Deals among rational agents. In
Proc. Intl. Joint Conf. Artificial Intelligence, pages 91-99, 1985.

[Rosenschein and Zlotkin, 1994] J.S. Rosenschein and G. Zlotkin. Rules of Encounter:designing conventions
for automated negotiation among computers. MIT Press, 1994.

[Rosenschein, 1982] J.S. Rosenschein. Synchronization of multi-agent plans. In Proc. AAAI, pages 115-119,
1982.

[Rude, 1994] M. Rude. Cooperation of mobile robots by event transforms into local space-time. In IEFE/RSJ
IROS, pages 1501-1507, 1994.

32

[Rus et al., 1995] D. Rus, B. Donald, and J. Jennings. Moving furniture with teams of autonomous robots. In

IEEE/RSJ IROS, pages 235-242, 1995.

[Sasaki et al., 1995] J. Sasaki, J. Ota, E. Yoshida, D. Kurabayashi, and T. Arai. Cooperating grasping of a
large object by multiple mobile robots. In IFEF ICRA, pages 1205-1210, 1995.

[Sen et al., 1994] S. Sen, M. Sekaran, and J. Hale. Learning to coordinate without sharing information. In
Proc. AAAI pages 426-431, 1994.

[Shoham and Tennenholtz, 1992] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for
artificial agent societies (preliminary report). In Proc. AAAI pages 276-281, 1992.

[Singh and Fujimura, 1993] K. Singh and K. Fujimura. Map making by cooperating mobile robots. In IEEE
ICRA, volume 2, pages 254-259, 1993.

Smith, 1980] R. Smith. The contract net protocol: high-level communication and control in a distributed
g
problem solver. IEEE Trans. Computers, pages 1104-1113, 1980.

[Steels, 1990] L. Steels. Cooperation between distributed agents through self-organization. In European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World, pages 175-195, 1990.

[Steels, 1994] L. Steels. A case study in the behavior-oriented design of autonomous agents. In Proc. Simulation
of Adaptive Behavior, 1994,

[Stilwell and Bay, 1993] D. J. Stilwell and J. S. Bay. Toward the development of a material transport system
using swarms of ant-like robots. In IEEE ICRA, volume 6, pages 766-771, 1993.

[Sugie et al., 1995] H. Sugie, Y. Inagaki, S. Ono, H. Aisu, and T. Unemi. Placing objects with multiple mobile
robots — mutual help using intention inference. In IEFE ICRA, pages 2181-2186, 1995.

[Sugihara and Suzuki, 1990] K. Sugihara and I. Suzuki. Distributed motion coordination of multiple mobile
robots. In Proc. IEFE International Symposium on Intelligent Control, 1990.

[Suzuki et al., 1995] T. Suzuki, H. Asama, A. Uegaki, S. Kotosaka, T. Fujita, A. Matsumoto, H. Kaetsu, and
I. Endo. An infra-red sensory system with local communication for cooperative multiple mobile robots. In

IEEE/RSJ IROS, volume 1, pages 220-225, 1995.

[Tan, 1993] M. Tan. Multi-agent reinforcement learning: independent vs. cooperative agents. In Proceedings
of the International Machine Learning Conference, 1993.

[Tsetlin, 1964] M.L. Tsetlin. Finite Automata and Modeling the Simplest Forms of Behavior. PhD thesis, V.A.
Steklov Mathematical Institute, 1964.

[Tung and Kleinrock, 1993] B. Tung and L. Kleinrock. Distributed control methods. In Proceedings of the 2nd
International Symposium on High Performance Distr ibuted Computing, pages 206—-215, 1993.

[Tung, 1994] Y-C. Tung. Distributed Conirol Using Finite State Automata. PhD thesis, UCLA Computer
Science Department, 1994.

[Ueyama and Fukuda, 1993a] T. Ueyama and T. Fukuda. Knowledge acquisition and distributed decision
making. In /EEE ICRA, volume 3, pages 167-172, 1993.

[Ueyama and Fukuda, 1993b] T. Ueyama and T. Fukuda. Self-organization of cellular robots using random
walk with simple rules. In IEEFE ICRA, volume 3, pages 595-600, 1993.

[Ueyama et al., 1993a] T. Ueyama, T. Fukuda, F. Arai, Y. Kawauchi, Y. Katou, S. Matsumura, and T. Uesugi.
Communication architecture for cellular robotic system. JSMFE International Journal, Series C, 36:353-360,
1993.

[Ueyama et al., 1993b] T. Ueyama, T. Fukuda, F. Arai, T. Sugiura, A. Sakai, and T. Uesugi. Distributed
sensing, control and planning - cellular robotics approach. In IMACS, pages 433-438. Elsevier Science Publ.
(North-Holland), 1993.

[VanLehn, 1991] K. VanLehn, editor. Architectures for Intelligence: The 22nd Carnegie Mellon Symposium on
Cognition. Lawrence Erlbaum Associates, 1991.

[Wang and Beni, 1988] J. Wang and G. Beni. Pattern generation in cellular robotic systems. In IEEFE Inter-
national Symposium on Intelligent Control, pages 63—69, 1988.

[Wang and Beni, 1990] J. Wang and G. Beni. Distributed computing problems in cellular robotic systems. In
IEEE/RSJ IROS, pages 819-826, 1990.

33

[Wang and Premvuti, 1994] J. Wang and S. Premvuti. Resource sharing in distributed robotic systems based
on a wireless medium access protocol (CSMA/CD-W). In IEEE/RSJ IROS, pages 784-791, 1994.

[Wang and Premvuti, 1995] J. Wang and S. Premvuti. Distributed traffic regulation and control for multiple
autonomous mobile robots operating in discrete space. In IFEF ICRA, pages 1619-1624, 1995.

[Wang et al., 1994] Z.-D. Wang, E. Nakano, and T. Matsukawa. Cooperating multiple behavior-based robots
for object manipulation. In IEEE/RSJ IROS, pages 1524-1531, 1994.

[Wang et al., 1995] J. Wang, S. Premvuti, and A. Tabbara. A wireless medium access protocol (csma/cd-w)
for mobile robot based distributed robotic system. In /EEFE ICRA, pages 2561-2566, 1995.

[Wang, 1991] J. Wang. Fully distributed traffic control strategies for many-AGYV systems. In JEEE/RSJ IROS,
pages 1199-1204, 1991.

ang, 1993] J. Wang. operating primitives based on distributed mutual exclusion. In ,
W J. W DRS 1 1miti based distributed 1 lusi In IEEE/RSJ IROS
pages 1085-1090, 1993.

[Wang, 1994] J. Wang. On sign-board based inter-robot communication in distributed robotic systems. In
IFEE ICRA, pages 1045-1050, 1994.

[Wang, 1995] J. Wang. Operating primitives supporting traffic regulation and control of mobile robots under
distributed robotic systems. In IEFE ICRA, pages 1613-1618, 1995.

[Weiser, 1993] M. Weiser. Some computer science issues in ubiquitous computing. Communications of the
ACM, 36(7):74-84, 1993.

[Werner and Dyer, 1992] G. Werner and M. Dyer. Evolution of herding behavior in artificial animals. In Proc.
Sitmulation of Adaptive Behavior, 1992,

[Whitehead, 1991] S. Whitehead. A complexity analysis of cooperative mechanisms in reinforcement learning.
In Proc. AAAI pages 607-613, 1991.

[Wilson, 1971] E.O. Wilson. The insect societies. Harvard University Press, 1971.

[Yamaguchi and Arai, 1994] H. Yamaguchi and T. Arai. Distributed and autonomous control method for
generating shape of multiple mobile robot group. In IEEE/RSJ IROS, pages 800-807, 1994.

[Yanco and Stein, 1992] H. Yanco and L. Stein. An adaptive communication protocol for cooperating mobile
robots. In Proc. Simulation of Adaptive Behavior, pages 478-485, 1992.

[Yates, 1987] F.E. Yates, editor. Self-Organizing Systems: The Emergence of Order. Plenum Press, 1987.

[Yeung and Bekey, 1987] D. Yeung and G. Bekey. A decentralized approach to the motion planning problem
for multiple mobile robots. In IEFE ICRA, pages 1779-1784, 1987.

[Yokota et al., 1994] K. Yokota, T. Suzuki, H. Asama, A. Masumoto, and I. Endo. A human interface system
for the multi-agent robotic system. In /EFE ICRA, pages 1039-1044, 1994.

[Yoshida et al., 1994] E. Yoshida, T. Arai, J. Ota, and T. Miki. Effect of grouping in local communication
system of multiple mobile robots. In IEEE/RSJ IROS, pages 808-815, 1994.

[Yoshida et al., 1995a] E. Yoshida, M. Yamamota, T. Arai, J. Ota, and D. Kurabayashi. A design method of
local communication area in multiple mobile robot system. In IEFE ICRA, pages 2567-2572, 1995.

[Yoshida et al., 1995b] E. Yoshida, M. Yamamoto, T. Arai, J. Ota, and D. Kurabayashi. A design method of
local communication range in multiple mobile robot system. In IEEE/RSJ IROS, pages 274-279, 1995.

[Yuta and Premvuti, 1992] S. Yuta and S. Premvuti. Coordinating autonomous and centralized decision mak-
ing to achieve cooperative behaviors between multiple mobile robots. In Proc. of the 1992 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Raleigh, NC, July 7-10, 1992, pages 15661574,
July 1992.

34

ROCI: A Distributed Framework for Multi-Robot
Perception and Control

Luiz Chaimowicz, Anthony Cowley, Vito Sabella, Camillo J. Taylor

GRASP Laboratory — University of Pennsylvania, Philadelphia, PA, USA, 19104

{chaimo, acowley, vsabella, cjtaylor}@grasp.cis.upenn.edu

Abstract

This paper presents ROCI, a framework for devel-
oping applications for multi-robot teams. In ROCI,
each robot is considered a node which contains sev-
eral modules and may export different types of ser-
vices and capabilities to other nodes. Each node runs
a kernel that mediates the interactions of the robots
in a team. This kernel keeps an updated database
of all nodes and the functionalities that they export.
Multi-robot applications can be built and changed dy-
namically, connecting modules that may be running in
different nodes over the network. As an example, we
present an obstacle avoidance task implemented using
our framework and also discuss the use of ROCI in a
multi-robot scenario.

1 Introduction

As sensors, actuators, microprocessors and wireless
networks become cheaper and more ubiquitous it has
become increasingly attractive to consider employing
teams of small robots to tackle various sensing and
manipulation tasks. In order to exploit the full ca-
pabilities of these teams, we need to develop effective
models and methods for programming distributed en-
sembles of sensors and actuators.

Applications for distributed dynamic robotic teams
require a different programming model than the one
employed for most traditional robotic applications. In
the traditional model, the programmer is faced with
the task of developing software for a single processor
interacting with a prescribed set of sensors and actu-
ators. He or she can typically assume that the con-
figuration of the target system is completely specified
before the first line of code is written. On the other
hand, when developing code for multi-robot dynamic
teams, we must account for the fact that the num-
ber and type of robots available at runtime cannot be
predicted. We expect to operate in an environment
where robots will be added and removed continuously
and unpredictably. Further, we must expect an en-
vironment where the robots will have heterogeneous
capabilities; for example, some may be equipped with

camera systems, others with range sensors or special-
ized actuators, some agents may be stationary while
others may offer specialized computational resources.
This implies that the program must be able to iden-
tify and marshal all of the resources required to carry
out the specified task automatically.

This paper presents ROCI (Remote Objects Con-
trol Interface), a self-describing, objected oriented,
strongly typed programming framework that allows
the development of robust applications for dynamic
multi-robot teams. The building blocks of ROCI ap-
plications are self-contained, reusable modules. Ba-
sically, a module encapsulates a process which acts
on data available on the module’s inputs and presents
its results as outputs. Thus, complex tasks can be
built connecting inputs and outputs of specific mod-
ules. These connections are made through a pin archi-
tecture that provides a strongly typed, network trans-
parent communication framework. A good analogy is
to consider each of these modules as an integrated cir-
cuit (IC), that has inputs and outputs and does some
processing. Complex circuits can be built wiring sev-
eral ICs, and individual ICs can be reused in different
circuits.

The core control element in the ROCI architecture
is the ROCI kernel. There is a copy of the kernel run-
ning in every entity that is part of the ROCI network
(robots, remote sensors, etc.). These entities are con-
sidered ROCI nodes and any information acquired or
processed in a certain node can be exposed to others.
The kernel is responsible for managing network and
maintaining an updated database of all the nodes and
services in the ROCI network. The kernel is also re-
sponsible for handling module and task allocation and
injection. It allows applications to be specified and ex-
ecuted dynamically, by connecting available pins and
transferring code libraries to the nodes.

ROCI incorporates some features that are already
present in modern distributed software environments
such as the Open Agent Architecture 7] and the Grid
Computing [4]. Some frameworks for cooperative
robotics have already included advances such as hier-

archical and reusable objects [1], distributed sensing
and actuation capabilities [5], abstraction and modu-
larity [8], and task decomposition [9]. The use of mod-
ern programming languages [2] and graphical inter-
faces for task specification [6] are also important ad-
vances. But, in spite of that, most of the programming
architectures for distributed robots still rely on tradi-
tional programming models and are specific for cer-
tain types of robots and control architectures. Thus,
we believe that ROCI will certainly be a valuable con-
tribution to the multi-robot programming field.

This paper is organized as follows: the next section
describes the ROCI framework, giving details about
its architecture and its main features. Section 3 shows
the implementation of an obstacle avoidance task us-
ing ROCI and Section 4 describes the use of ROCI
in a multi-robot scenario. Finally, in Section 5 we
conclude the paper and discuss the next steps in this
work.

2 ROCI Architecture

2.1 Introduction

ROCI is a dynamic, self-describing, object-oriented,
strongly typed programming framework for dis-
tributed sensors and actuators. It provides pro-
grammers with a network transparent framework of
strongly typed modules - assemblies of metadata, byte
code, and machine code that can consume, process
and produce information. ROCI modules are in-
jectable (they can be automatically downloaded and
started on a remote machine), reusable, browseable,
support automatic configuration via XML, and pro-
vide strongly typed pin based communications. These
features, coupled with a dynamic database of available
nodes and network services, allows a programmer to
write code that utilizes networks of robots as resources
instead of independent machines.

ROCI is developed in C+# using the Microsoft .NET
platform. Modules are not limited to this language
however, and several of our own modules are written
in mixtures of C# and C++. The system makes use
of XML to provide basic configuration options, and
object reflection to enforce type safety and autodis-
covery.

2.2 Modules and Tasks

The building blocks of a ROCI application are
ROCIT modules. A module is a computational block
that encapsulates a process, taking an input, perform-
ing some operation on it, and making the result of that
operation available as an output. There is no speci-
fication in the code relating to where input should
come from or where output should go; the only spec-
ification is the type of data this computational block

deals with. To create a new module, the application
developer has to decide on the types of data to be in-
put and output and then inherit from the ROCI mod-
ule parent class, implementing a few virtual functions
related to the allocation and de-allocation of resources
required by the new module. Since the modules are
designed with no knowledge of their runtime environ-
ment, they can be wired into the ROCI network with
a great deal of flexibility.

ROCI modules are further organized into tasks. A
ROCI task is a way of describing an instance of a col-
lection of ROCI modules to be run on a single node
and how they interact at runtime. Tasks represent a
family of modules that work together to accomplish
some end goal — a chain of building blocks that trans-
forms input data through intermediate forms and into
a useful output. A task can be defined in an XML file
which outlines the modules that are needed to achieve
the goal, and the connectivity between these modules.
Tasks can also be defined and changed dynamically,
by starting new modules and connecting them with
the outputs and inputs of other modules. As will be
explained in the next section, the connection between
modules is made using pins. Pins can connect modules
within the same task on the same computer, between
tasks on the same computer, or between two tasks on
different computers. Figure 1 shows an example of
this organization.

Node Node
Task Task

Figure 1: Roci Architecture: tasks are composed of mod-
ules and run inside nodes. Communication through pins
can be seamlessly done between modules within the same
task, modules in different tasks, or in different nodes.

2.3 Pin Based Communication

The wiring that connects ROCI modules is the pin
communications architecture. Pin communications in
ROCT are designed to be network transparent yet high
performance. Basically, a pin provides the developer
with an abstract communications endpoint. These
endpoints can either represent a data producer or a
data consumer. Pins in the system are nothing more
than strongly typed fields of a module class, and thus

connecting a producer pin to a consumer pin is as
simple as setting a reference to the producer in the
consumer’s field. Modules’ pins are automatically ex-
posed and discovered by the ROCI kernel through re-
flection — an important feature when programming dy-
namic networks.

Whenever a consumer pin registers itself to a pro-
ducer pin, the ROCI subsystem determines whether
the modules are within the same task domain. If they
are, the consumer pin is assigned a reference to the
producer pin. If not, ROCI creates a Remote Proce-
dure Call channel and assigns a proxy reference to the
consumer.

As the producer generates data it assigns it’s pin an
updated reference to the latest data. This assignment
causes the pin to fire messages to all of the registered
consumers in the network, alerting them to the avail-
ability of fresh data. A typical usage of this system
is for a module to make a blocking call to one of its
input pins which returns once the input pin has got-
ten new data from the output pin it is registered to.
Alternatively, a module can ask its input pin to copy
over whatever data is available immediately, whether
it is new or not. Pin data is time stamped, allowing
the consumers to determine how current their data
is. Once all the consumers have completed processing
their data, the managed environment in which ROCI
runs automatically marks the data for garbage collec-
tion, freeing the programmer from any memory man-
agement issues which may arise with complex pro-
ducer/consumer interconnections.

One can set a pin’s input in two distinct ways that
are each useful in different situations. On a lower
level, pins can be connected dynamically during pro-
gram execution. This can be accomplished by query-
ing nodes on the ROCI network for available pins —
usually with some type constraint — and may involve
dynamically creating local pins to bind to the discov-
ered remote pins. However, the simpler way of binding
pins together is via the XML descriptions that define
ROCT tasks.

Strongly typed pins enforce that only pins of the
same type are connected to each other. The exchange
of strongly typed objects instead of raw data elimi-
nates potential software bugs increasing the robust-
ness of the system. Robustness is also a consequence
of the self-describing nature of pins. Since we can find
out the exact type of a pin instance, we can dynam-
ically guarantee that it will only be connected to a
compatible pin.

2.4 ROCI Kernel

The kernel is the core control element of ROCI. The
kernel manages the Remote Procedure Call (RPC)

system, the real-time network database, module and
task allocation and injection, and a Web Services like
interface for remote monitoring and control. There
is a copy of the kernel running in every entity that
is part of the ROCI network (robots, remote sensors,
etc.).

The RPC system provides interfaces for module
management, injection and communication, as well as
providing a web-based interface to the current status
of the network. The real time database contains infor-
mation on all of the modules, tasks and communica-
tions channels within the network. ROCI’s database
can be used to locate an appropriate sensor or actua-
tor to solve a problem, find software modules that are
needed in local computation, and identify computer
utilization and congestion across the network. The
database provides modules with a bird’s eye view of
the environment, allowing them to locate and utilize
each and every hardware and software resource on the
network.

It is important to mention that ROCI’s kernel ex-
poses its interfaces through Simple Object Access Pro-
tocol (SOAP), a cross-platform RPC standard. This
standard allows non-ROCI programs and utilities to
easily interoperate with and utilize the resources of
the ROCI network.

2.5 ROCI Browser

The job of presenting this network of functional-
ity to the user falls upon the ROCI Browser. The
browser’s job is to give a human user command and
control over the network as well as the situational
awareness necessary to make informed decisions about
network operations. The ROCI network is presented
hierarchically: the human operator can browse nodes
on the network, tasks running on each node, the mod-
ules that make up each task, and even certain pins
within those modules. The browser can be used to
monitor the status of running tasks or even to tap
into and display the outputs of pins for which display
routines exist.

Using the browser, the user can also decide to start
or stop a task running on any node on the network.
When the user requests a task be started on a given
node, the kernel running locally on that node first as-
certains whether or not the proper versions of compo-
nent modules are available locally (strong versioning
is a useful feature of the .NET Framework). If they
are not, it queries the network for a node that does
have the modules in question and downloads them au-
tomatically. Once the byte code of the modules that
comprise the task all exists locally, the task is loaded.

One of the important features of the ROCI archi-
tecture is that modules and pins are self-describing

entities. Thus, when the user browses through the
tasks, he or she can immediately have a complete de-
scription of the modules and pins in use. Given this
information, the browser can automatically start ap-
propriate modules locally to tap into the remote data
for visualization or processing purposes. This can be
very useful for debugging purposes during develop-
ment and for situational awareness during deployed
execution.

3 Simple Obstacle Avoider in ROCI

As mentioned, an application in ROCI may be com-
posed of multiple tasks. Tasks can be specified con-
necting several building blocks (modules), each one
offering a specific service. The connections determine
the data flow from one block’s outputs to another
block’s inputs. In fact, these connections can be made
seamlessly between modules in different tasks, even if
they are running on different nodes.

To demonstrate this, we have developed and suc-
cessfully executed a simple obstacle avoidance task
using one of our ClodBuster robots equipped with
an omnidirectional camera and IEEE 802.11b wire-
less network [1]. In this task, the robot’s heading is
computed based on a range map constructed from an
omnidirectional edge image of the environment (Fig-
ure 2). The edge image and the heading direction can
be displayed simultaneously by another task running
on a remote computer.

Figure 2: A Clodbuster robot and an image captured by
the omnicam, before and after the edge extraction.

A ROCI diagram of the present application can be
seen in Figure 3. It is composed of three tasks, two
running in the robot and one running in a remote com-
puter. The main task is the Obstacle Avoider that
is comprised of 5 modules: the OmniCam captures
an image and exports it to other modules through a

video pin. The Edge Detector processes this image
and makes it available for the Range Mapper that
computes a desired bearing for the robot. The Range
Mapper also receives calibration parameters from the
OmniCam and exports a video pin containing the in-
put image with the heading direction highlighted. The
bearing is exported and used by the Robot Controller
module which generates inputs to the Grasp Board
that is the interface to the servo motors. Running in
the same node, there is also a task that reduces the
resolution and subsamples the video stream exported
by the Range Mapper so it can be better transmitted
over the network. Finally, there is a Video Preview
running on another computer that allows a remote
operator to observe the video broadcast by the robot.

Robot Remote
Computer

—| OmniCam

IVideo

Edge
Detector

Ivideo

Video Video :
Range 0 Lower i i Video
Mapper Resolution Preview

iBearing

Robot
Controller

iv,w

Grasp
Board

Camera Calibration

i

Obstacle Avoider Task | Lower Resolution Task | Video Preview Task

Figure 3: Diagram of the tasks and modules for the ob-
stacle avoider implemented in ROCI.

We need to reinforce that each one of these mod-
ules is self-contained and can run independently of
the others. Consequently, different applications can
be specified and performed reusing some of these mod-
ules and adding new ones. For example, the Omnicam
module could be used in a tracking task connected to
some feature extractor module or the Edge Detector
could receive input from a regular camera in a differ-
ent task specification. The idea is to have a library
of modules that can be executed by robots according
to their capabilities. Also, during execution, connec-
tions between modules can be dynamically made or

changed allowing modules to receive different inputs
from different sources. For example, in the applica-
tion described above, a remote operator could repin
the input of the Lower Resolution module to any one
of the modules that outputs a video pin. The operator
has this information, since modules and pins are self-
describing and the network database is continuously
updated. Consequently, the operator could observe
images directly from the Omnicam module or from
any other module that is exporting a video pin at the
moment.

As will be discussed in the next section, these ca-
pabilities are especially important in multi-robot ap-
plications in which the number of robots, communica-
tion and sensor constraints may change dynamically
during execution.

4 Multi-Robot Scenario

Let us consider a multi-robot task in which n robots
must perform a visual reconnaissance of a certain area.
Each robot i is equipped with a GPS and an omnidi-
rectional camera and its objective is to send its posi-
tion x; and an image captured from that position to
a base station. In ROCI, this task could be specified
by three modules, as shown in Figure 4. The Cam-
era captures images and exports them as a video pin.
It also outputs the camera parameters which are not
being used by any module at this moment. There is
another module to get the robot’s GPS coordinates
and a third one that simply processes the video and
the robot’s position and sends it to the base station.
Initially, each robot can act independently from its
teammates (it is a loosely coupled task), but the ROCI
kernel running in each robot continuously updates its
database, keeping track of the other nodes on the net-
work.

Camera
Camera []Parameters

T
Video i

-

Send Info [J<—{] GPS

Info f

Figure 4: Diagram of a reconnaissance task running in
each robot.

Now, suppose that one of the robots (for exam-
ple, robot k) loses its GPS information. In order to
continue performing its task, it should find a way of
replacing that information source. Since the other

robots in the team may still be able to compute their
positions, robot k£ can rely on a cooperative localiza-
tion scheme to localize itself [3]. The cooperative lo-
calization works as follows: each robot j in the neigh-
borhood of k£ computes the position of the other robots
in its field of view based on its GPS and camera im-
age and exports this information. Then, based on the
position estimates received from its neighbors, robot
k will be able to localize itself.

Using the ROCI framework, it is easy for robot & to
start the cooperative localization dynamically. First
of all, it has an updated list of the other robots in the
network that can perform localization since the ROCI
kernel maintains this information. So, robot k will
be able to inject a new localizer module in some of
its teammates and dynamically pin it to the modules
that are already running to get the information that it
needs (Figure 5a). The localizer will receive informa-
tion from the camera (image and calibration parame-
ters) and the GPS and export the estimated position
of all the robots that are visible (zj1,xj2,...,Tjk)-
Robot k will also start running a local module called
Position Estimation to get the position estimates from
its neighbors and compute its position, automatically
repinning the input of the Send Info module to the
output of this new module, as shown in Figure 5b.
Thus, this dynamic reconfiguration allows the robot
that lost its GPS to continue executing its task.

Param.

X.
[. _j—b j1
camera [H T S tvaton [2%
[X
a) Video ? R_ObOt K
A « neighbors
i
Send Info [] GPS
Info T
" []«— Xy
Position

Camera [] OSTON = 14— Xp
Estimation e Xk

b) VideoT T

] X N 4
Send Info [J+ []

o 7N

Robot k

Figure 5: Scenario if robot k loses its GPS: a) robot k
injects a new localizer module on its neighbors and b)
robot k starts a local module and dynamically repins its
other modules to use the new information.

It is important to note that some aspects of the
cooperative task were not detailed in the description
above. For example, we did not define exactly the
concept of neighborhood in terms of sensing and com-
munication in this paper. Also, we did not give any
details about the cooperative localization or about the
controllers and coordination techniques that should be
used in this task. These points should be specified in
the implementation of the task, but our main objec-
tive here is to present the ROCI framework, showing
how it allows multi-robot teams to adapt to dynamic
changes that typically occur during the execution of
cooperative tasks.

5 Conclusion

In this paper we presented ROCI, a programming
framework for distributed ensembles of sensors and ac-
tuators. Applications in ROCI are composed of tasks
and can be built dynamically by connecting several
modules, which gives a great flexibility to the pro-
grammer. Modules are completely self-contained and
can be reused in different tasks and applications. A
pin architecture is used to connect modules. These
connections can be made seamlessly between modules
in different tasks, even if they are running on different
nodes, creating a network transparent programming
environment. The ROCI framework is strongly typed,
allowing the development of more robust yet high per-
formance applications. Two of the ROCI’s main fea-
tures are the ROCI kernel and the self-describing na-
ture of modules and pins. Together, they allow the
creation of an updated view of network nodes, ser-
vices, and data, providing situational awareness for
users and applications. This is a key requirement for
programming dynamic distributed multi-robot teams.

Our present and future work is directed towards
implementing several multi-robot applications using
the ROCI framework. Under the DARPA’s MARS
project, we are developing a new team of robots (both
aerial and terrestrial) that will be fully programmed
and controlled using ROCI. Several multi-robot ca-
pabilities are being developed for this team, such as
outdoors navigation, cooperative localization, stereo
obstacle avoidance and communication sensitive be-
haviors. Also, our multi-robot team will have to inter-
act with other robots programmed in different frame-
works, more specifically Player [5] and MissionLab [6].
We are working on a common interface between ROCI
and these systems that will use SOAP and XML to ex-
change data between different platforms. This project
will provide an excellent test bed for the ROCI frame-
work, and we expect to have important results very
soon.

Acknowledgment

This work was in part supported by: DARPA
MARS NBCH1020012 and NSF ITR (ANTIDOTE)
CCR02-05336.

References

[1] R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic,
Y. Hur, V. Kumar, I. Lee, J. Ostrowski, G. Pap-
pas, B. Southall, J. Spletzer, and C. Taylor. A
framework and architecture for multirobot coordi-
nation. In D. Rus and S. Singh, editors, Ezperi-
mental Robotics VII, LNCIS 271. Springer Verlag,
2001.

[2] T. Balch. Behavioral Diversity in Learning Robot
Teams. PhD thesis, College of Computing - Geor-
gia Institute of Technology, 1998.

[3] A. Das, J. Spletzer, V. Kumar, and C. J. Taylor.
Ad hoc networks for localization and control. In
Proceedings of the IEEE Conference on Decision
and Control, 2002.

[4] 1. Foster, C. Kesselman, and S. Tuecke. The
anatomy of the grid: Enabling scalable virtual or-
ganizations. International Journal of Supercom-
puter Applications, 15(3), 2001.

[5] B. Gerkey, R. Vaughan, K. Stoy, A. Howard,
G. Sukhatme, and M. Mataric. Most valuable
player: A robot device server for distributed con-
trol. In Proceedings of the IEFE/RJS Interna-
tional Conference on Intelligent Robots and Sys-
tems, pages 1226-1231, 2001.

[6] D. MacKenzie, R. Arkin, and J. Cameron. Mul-
tiagent mission specification and execution. Au-
tonomous Robots, 4(1):29-52, 1997.

[7] D. Martin, A. Cheyer, and D. Moran. The open
agent architecture: a framework for building dis-
tributed software systems. Applied Artificial In-
telligence, 13(1/2):91-128, 1999.

[8] J. Peterson, G. Hager, and P. Hudak. A language
for declarative robotic programming. In Proceed-
ings of 1999 IEEE International Conference on
Robotics and Automation, pages 1144-1151, 1999.

[9] R. Simmons and D. Apfelbaum. A task description
language for robot control. In Proceedings of the
1998 IEEE/RJS International Conference on In-
telligent Robotics and Systems, pages 1931-1937,
1998.

Deployment and Connectivity Repair of a Sensor Net
with a Flying Robot

P. Corke! and S. Hrabar? and R. Peterson® and D. Rus* and S. Saripalli? and
G. Sukhatme?

' CSIRO ICT Centre

Australia, peter.corke @csiro.au

Center for Robotics and Embedded Systems

University of Southern California, Los Angeles, California, USA

shrabar @robotics.usc.edu, srik@robotics.usc.edu, gaurav@robotics.usc.edu
Dartmouth Computer Science Department, Hanover, NH 03755 USA,

rapjr @cs.dartmouth.edu

Computer Science and Artificial Intelligence Laboratory

MIT, Cambridge MA 02139, USA, rus@csail.dartmouth.edu

Abstract. We consider multi-robot systems that include sensor nodes and aerial or ground
robots networked together. Such networks are suitable for tasks such as large-scale environ-
mental monitoring or for command and control in emergency situations. We present a sensor
network deployment method using autonomous aerial vehicles and describe in detail the algo-
rithms used for deployment and for measuring network connectivity and provide experimental
data collected from field trials. A particular focus is on determining gaps in connectivity of the
deployed network and generating a plan for repair, to complete the connectivity. This project
is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.)

1 Introduction

We wish to develop distributed networks of sensors and robots that perceive their
environment and respond to it. To perform such tasks there needs to exist a synergy
between mobility and communication. Sensor networks provide robots with faster
and cheaper access to data beyond their perceptual horizon. Conversely robots
can assist a sensor network by deploying it, by localizing network elements post
deployment [6], by making repairs or extensions as required, and acting as “data
mules” to relay information between disconnected sensor clusters.

In this paper we describe our algorithms and experiments for deploying sensor
networks using an autonomous helicopter. The static sensor nodes are Mica Motes
and the mobile node is the autonomous helicopter. Once on the ground, the sensors
establish an ad-hoc network and compute their connectivity map in a localized and
distributed way. If the network is disconnected, a localized algorithm determines
waypoints for the helicopter to drop additional nodes at.

2 Corke, Hrabar, Peterson, Rus, Saripalli and Sukhatme

Deployed Network

Fig. 1. AVATAR Autonomous Helicopter with a sensor interface for deploying sensors

2 Related Work

Our work builds on important previous work in sensor networks [8, 11, 14] and
unmanned aerial vehicles [3, 16]. It bridges the two communities by integrating
autonomous control of flying vehicles with multi-hop message routing in ad-hoc
networks. Autonomous aerial vehicles have been an active area of research for several
years. Autonomous model helicopters have been used as testbeds to investigate
problems ranging from control, navigation, path planning to object tracking and
following. Flying robot control is a very challenging problem and our work here
builds on successes with hovering and control for two autonomous helicopters [3,17].
Several other teams are working on autonomous control and other varied problems
with helicopters. A good overview of the various types of vehicles and the algorithms
used for control of these vehicles can be found in [17] . Recent work has included
autonomous landing [16,19], aggressive maneuvering of helicopters [9] and pursuit-
evasion games [21].

Research in sensor networks has been very active in the recent past. An excellent
general introduction on sensor networks can be found in [8]. An overview of hardware
and software requirements for sensor networks can be found in [12] which describes
the Berkeley Mica Motes. Algorithms for positioning a mobile sensor network

Sensor Networks and Autonomous Flying Robots 3

includes even dispersal of sensors from a source point and redeployment for network
rebuilding [2, 13]. Other important contributions include [1,4, 10, 15, 18].

In [6] we describe a decentralized and localized algorithm called robot-assisted
localization for localizing a sensor network with a robot helicopter. In [7] we describe
an algorithm called network-assisted navigation in which a sensor network guides
a robot helicopter. In [5] we describe an algorithm and preliminary experiments for
deploying a sensor network with a robot helicopter. Here we extend this work to
include deployment and connectivity repair and discuss our field experiments using
a autonomous helicopter and a 55-node sensor network.

3 Approach

Our approach consists of three phases. In the first phase, an initial autonomous
network deployment is executed. In the second phase, the entire network measures
its connectivity topology. If this topology does not match the desired topology, a
third phase is employed in which waypoints for the helicopter are computed at which
additional sensors are deployed. The last two phases can be run at any point in time
to detect the potential failure of sensor nodes and ensure sustained connectivity.

3.1 Deployment Algorithm

Given a desired network topology for the deployed network deployed, and a de-
ployment scale (usually the inter-sensor distance between the nodes in the network),
we embed the topology in the 3-dimensional hyper-plane at the given location and
extract desired node locations from the resulting embedding. The resulting locations
are the (z,y, z) co-ordinates where the sensors need to be deployed.These are given
as way-point inputs to the helicopter controller. The helicopter then flies to each of
these way-points autonomously, hovers at each of them and then deploys a sensor at
the specified location.

3.2 Connectivity Measurement Algorithms

Two methods were used to measure network connectivity: a ping-based connec-
tivity measure and a token-passing based measure. For the ping-based measure, a
Mote sensor that has been specially modified to add physical user interface controls
(a potentiometer and switch) is used to control and configure the sensor side of the
ping connectivity tests prior to Algorithm 1 executing.

For the token based connectivity measure each node assumes its network ID as its
token. All nodes broadcast and trade tokens as described in Algorithm 2. Tokens are
only propagated amongst nodes in connected regions. Thus, disconnected regions
will have differing token values. This algorithm is run automatically at 30 second
intervals.

Slight differences in connectivity were observed when comparing the ping and
token measurements of connectivity and were found to result from the differences

4 Corke, Hrabar, Peterson, Rus, Saripalli and Sukhatme

Algorithm 1 Ping connectivity algorithm for ground deployed motes.
Wait for experiment configuration/start message
Initialization: Set configuration mode = air-to-ground, ground-to-ground, or ground-to-air.
Set count = number of ping iterations.
Send a multi-hop forwarding of start message to other motes.

Thread 1
for i=1 to count do
if mode = ground-to-ground OR mode = ground-to-air then
broadcast a ping message.
Sleep a random interval

Thread 2
while Listen for messages do
if message is a ping then
if mode = air-to-ground OR mode = ground-to-ground then
reply to ping.
else if Message is a ping reply. then
tabulate reply.

Termination: broadcast counts of replies per mote ID in response to download message.

in message length. Pings are very short messages (1 byte payload) while token
messages are longer (10 byte payload). The longer message length increases the
chance of collisions and reduces the probability of reception of token messages.

3.3 Connectivity Repair Algorithm

Fig. 2. (Left)Two disconnected components in a sensor network field. (Right) A single network
which is not fully connected.

The token based connectivity algorithm is a localized and distributed algorithm
for computing connected components in the deployed network. Each node ends up
with one token that denotes the group to which it belongs. These tokens are collected
by the helicopter during a sweep of the field. If more than one token is collected, the
network is not connected and new sensor deployments are needed. The locations of
the collected tokens can be used to determine the repair regions.

We have developed two algorithms for repairing network connectivity. In the
first algorithm, the robot helicopter estimates the location of the gap between two

Sensor Networks and Autonomous Flying Robots 5

disconnected components by estimating the locations of the fringe nodes (see Fig-
ure 2(Left)). The repair locations are interpolated between the fringes, based on
average sensor communication range, which is known.

Algorithm 2 Distributed algorithm for identifying the connected components in
a sensor network. All the nodes in one connected component will have the same
component value as a result of this protocol.
for each node in the sensor network do
component =id
for each node in the sensor network do
broadcast node id.
while listen for new;q broadcasts do

if received id > component then
component = new;q
broadcast new;q
Helicopter collects all component values
Helicopter determines unique component values as the number of connected components.

In the second algorithm the sensor field computes a potential field to regions of
“dark” sensors (see Figure 2(Right)) discovered within it and guides the helicopter
there using the potential field algorithm in [7]. This second algorithm handles both
complete disconnections and holes in the middle of the sensor field.

For our field experiments we used a hand computed version of the first algorithm
described above, averaging the fringe locations to determine a center and averag-
ing the fringe gap distance to determine interpolated repair locations used in the
autonomous repair deployment phase.

The general connectivity matching problem remains open. This problem reduces
to computing subgraph embeddings which is intractable for the optimal case. We
hope to identify a good approximation.

4 Experiments and Results

We have implemented the deployment algorithms on a hardware platform that inte-
grates hardware and software from three labs: USC’s autonomous helicopter, Dart-
mouth’s sensor network, and CSIRO’s interface between a helicopter and a sensor
network. Over January 23-25 the three groups met at USC and conducted joint
experiments which demonstrate, for a desired network topology, (1) autonomous
deployment of a 40 node sensor network with a robot helicopter, (2) autonomous
and localized computation of connectivity maps (3) autonomous determination of
disconnected network components and autonomous repair of the disconnections.

6 Corke, Hrabar, Peterson, Rus, Saripalli and Sukhatme
4.1 The Experimental Testbed

The experimental testbed consists of three parts (a) An autonomous helicopter (b)
"Mote" sensors and (c) Helicopter-sensor interface. The helicopter [20] is a gas-
powered radio-controlled model helicopter fitted with a PC-104 stack augmented
with sensors (Figure 1). Autonomous flight is achieved using a behavior-based
control architecture [16]. Our sensor network platform is the Berkeley Mica Mote
[12]. The operating system support for the Motes is provided by TinyOS, an event-
based operating system. Our testbed consists of 50 Mote sensors deployed in the
form of a regular 11 x 5 grid, see Figure 4.1. An extra Mote sensor is fitted to
the helicopter to allow communications with the deployed sensor network and is
connected to the helicopter’s Linux-based computer. For further details the reader is
referred to [5]. Several applications were run onboard the helicopter, depending on
the experiment. The ping application sends a broadcast message with a unique id
once per second and logs all replies along with the associated Mote identifier. This
data allows us to measure air-ground connectivity. The gps application receives
GPS coordinates via a network socket from the helicopter navigation software and
broadcasts it. Simple algorithms in each Mote are able to use these position messages
to refine an estimate of their location [6].

O/ms *37 436
F—

*2

I I I I I
0 200 400 600 800 1000 1200

Fig. 3. (Left) The sensor network field with flags marking desired sensor locations. (Right)
The locations of a sensor network deployed autonomously by the robot helicopter. The desired
locations are denoted by * and they are on a grid. The actual locations are denoted by o.

4.2 Experimental Results

Our field experiments have been performed on a grass field on the USC campus
(see Figure 3(left)). We marked a 11 x 5 grid on the ground with flags. We used an
empirical method to determine the spacing of the grid. We established that on that
ground, the Mote transmission range was 2.5 meters. We selected the grid spacing
at 2 meters so that we would guarantee communication between any neighbors in
the field.

Sensor Networks and Autonomous Flying Robots 7

4.3 Deployment and Connectivity Results

Figure 3(Right) shows the desired and actual location of the deployed sensors. The
deployment error has multiple causes: (a) error in release location compared to
desired location (error due to inherent error present in GPS). (b)error in location
of markers on ground compared to release location (wind, downwash, and bounce
induced error.)

After being deployed the ground sensors establish autonomously an ad-hoc
network whose connectivity topology is shown in Figure 4(Top Left). Although there
was error in the deployed location, the resulting network is fully connected. We then
manually removed 7 nodes down the center of the network to simulate node failure
and create a disconnection in the network. The network automatically computed
a new token connectivity map as described in Algorithm 2. Figure 4(Top Right)
shows the disconnected components as computed by the token algorithm. Finally the
robot helicopter autonomously deployed new nodes to repair connectivity resulting
in the connectivity map shown in Figure 4(Bottom). Note that some network links
were lost in the final graph. Besides some nodes failing due to being out in the hot
sun for a day, the introduction of new nodes results in changes in message timing
which changes collision rates and hence overall connectivity, even for nodes remote
from the area of repair. Mote communication is inherently unreliable as well. The
communication range is dependent on relative antenna orientation, shielding (eg.
obstacle between two Motes), ground moisture, current receiver autogain levels, etc.
The communication links are asymmetric and congestion is a significant concern.
We believe that error, uncertainty, and asymmetry are significant factors that should
be explicitly included in any model and approach for networked robotics.

4.4 Localization Results

During localization the flying robot followed a preprogrammed path, see Fig-
ure 6(Left). The computer onboard the helicopter obtained its current coordinates
and broadcast this via the mote attached to the helicopter once every 100ms. Each
ground mote recorded all the X,Y broadcasts it received and used them to compute
a centroid based location for itself. Figure 6(Right) shows the helicopter height.
Figure 5 shows the location of each of the the motes broadcasts received. It is clear
that the motes do not receive messages uniformly from all directions. We speculate
that this is due to the non-spherical antenna patterns for transmitter and receiver
motes, as well as non-uniform height of the helicopter itself during flights.

5 Conclusion

We have described control algorithms and experimental results from sensor network
deployment, localization and subsequent repair of the sensor network with an au-
tonomous helicopter. By sprinkling sensor nodes, we can reach remote or dangerous
environments such as rugged mountain slopes, burning forests, etc. We believe that

8 Corke, Hrabar, Peterson, Rus, Saripalli and Sukhatme

* A AA
L& Bom

Fig. 4. (Top Left) Connectivity of the initial deployment. (Top Right) Token groups showing
connected components after several nodes were removed from the field. (Bottom) Connectivity
after the deployment of additional sensor nodes to repair connectivity.

Localization Broadcasts Received By Motes

10
: /:m
s / —+Mote 1
-~ —=Mote 2
£ gL Mote 3
@ Mote 4
= -5 10 E 10
5 E& . —*Mote 5
g)\ Sy —+Mote 6
T4 5
| D —— Mote 12
w N
Mote 23
— Mote 25
10 L=
15
Northings (Meters)

Fig. 5. Location broadcasts heard by some of the motes in the network.

this kind of autonomous approach will enable the instrumentation of remote sites
with communication, sensing, and computation infrastructure, which in turn will
support navigation and monitoring applications. From what we’ve learned in these
experiments we plan to develop systems for automatic network repair. This will

Sensor Networks and Autonomous Flying Robots 9

Variation in Height during Localization

JWWMW V

3 o 2 @ 6 [o 50 100 150 200 250
Northing in m “Time in Seconds

Path folwed by Helicopter

(10.4) Begin

©04) ©0)

- = =

Fig. 6. (Left) The path taken by the helicopter while broadcasting location messages. (Right)
The height of the helicopter during the process.

require the ground sensors and helicopter to cooperate to identify network discon-
nections and guide the helicopter to appropriate locations for autonomous sensor
deployment.

Acknowledgment

Support for this work was provided through the Institute for Security Technology
Studies, NSF awards EIA-9901589, 11S-9818299, 11S-9912193, EIA-0202789 and
0225446, ONR award N00014-01-1-0675 and DARPA Task Grant F-30602-00-2-
0585. This work is also supported in part by NASA under JPL/caltech contract
1231521, by DARPA under grants DABT63-99-1-0015 and 5-39509-A (via UPenn)
as part of the Mobile Autonomous Robot Software (MARS) program. Our thanks to
our safety pilot Doug Wilson for keeping our computers from (literally) crashing.

References

1. J. Agre and L. Clare. An integrated architeture for cooperative sensing networks. Com-
puter, pages 106 — 108, May 2000.

2. M.A. Batalin and G.S. Sukhatme. Spreading out: A local approach to multi-robot cover-
age. In Distributed Autonomous Robotic Systems 5, pages 373-382, 2002.

3. G. Buskey, J. Roberts, P. Corke, P. Ridley, and G. Wyeth. Sensing and control for a small-
size helicopter. In B. Siciliano and P. Dario, editors, Experimental Robotics, volume VIII,
pages 476-487. Springer-Verlag, 2003.

4. Y. Chen and T. C. Henderson. S-NETS: Smart sensor networks. In Seventh International
Symposium on Experiemental Robotics, Hawaii, Dec. 2000.

5. P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. Autonomous
deployment and repair of a sensor network using an unmanned aerial vehicle. In Proc.
of IEEE International Conference on Robotics and Automation, pages 1143-8, 2004.

6. P. Corke, R. Peterson, and D. Rus. Networked robots: Flying robot navigation with a
sensor network. In /SRR, 2003.

7. P. Corke, R. Peterson, and D. Rus. Coordinating aerial and ground robots for navigation
and localization. In Submitted to Distributed Autonomous Robotic Systems, 2004.

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

Corke, Hrabar, Peterson, Rus, Saripalli and Sukhatme

. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable

coordination in sensor networks. In ACM MobiCom 99, Seattle, USA, August 1999.

. V. Gavrilets, I. Martinos, B. Mettler, and E. Feron. Control logic for automated aerobatic

flight of miniature helicopter. In AIAA Guidance, Navigation and Control Conference,
Monterey, CA, USA, Aug 2002.

P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on
Information Theory, IT-46(2):388—404, March 2000.

J. Hill, P. Bounadonna, and D. Culler. Active message communication for tiny network
sensors. In INFOCOM, 2001.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for network sensors. In ASPLOS, 2000.

A. Howard, M.J. Mataric, and G.S. Sukhatme. Mobile sensor network deployment
using potential fields: A distributed, scalable so lution to the area coverage problem. In
Distributed Autonomous Robotic Systems 5, pages 299-308, 2002.

Q. Li, M. DeRosa, and D. Rus. Distributed algorithms for guiding navigation across
sensor networks. In MOBICOM, 2003.

G. J. Pottie. Wireless sensor networks. In IEEE Information Theory Workshop, pages
139-140, 1998.

S. Saripalli, J. E. Montgomery, and G. S. Sukhatme. Visually-guided landing of an
unmanned aerial vehicle. IEEE Transactions on Robotics and Automation, 19(3):371-
381, June 2003.

S. Saripalli, J. M. Roberts, P. I. Corke, G. Buskey, and G. S. Sukhatme. A tale of two
helicopters. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
Las Vegas, USA, Oct 2003. (To appear).

A. Scaglione and S. Servetto. On the interdependence of routing and data compression
in multi-hop sensor networks. In ACM Mobicom, Atlanta, GA, 2002.

. O. Shakernia, Y. Ma, T. J. Koo, and S. S. Sastry. Landing an unmanned air vehicle:vision

based motion estimation and non-linear control. In Asian Journal of Control, volume 1,
pages 128-145, September 1999.

University of Southern California Autonomous Flying Vehicle Homepage. http://www-
robotics.usc.edu/ avatar.

R. Vidal, O. Shakernia, H. J. Kim, D. Shim, and S. Sastry. Probabilistic pursuit-evasion
games: Theory, implementation and experimental evaluation. /EEE Transactions on
Robotics and Automation, Oct 2002.

Proceedings of the 2004 IEEE
International Conference on Robotics & Automation
New Orleans, LA « April 2004

Development and Deployment of a Line of Sight
Virtual Sensor for Heterogeneous Teams

Robert Grabowski, Pradeep Khosla and Howie Choset

Carnegie Mellon University
Electrical and Computer Engineering, and Mechanical Engineering Department
Pittsburgh, Pennsylvania 15213
{grabowski, pkk, choset} @cs.cmu.edu

Abstract — For a team of cooperating robots, geometry plays a
vital role in operation. Knowledge of line of sight to local obstacles
and adjacent teammates is critical in both the movement and
planning stages to avoid collisions, maintain formation and localize
the team. However, determining if other robots are within the line
of sight of one another is difficult with existing sensor platforms —
especially as the scale of the robot is reduced. We describe a method
of exploiting collective team information to generate a virtual
sensor that provides line of sight determination, greater range and
resolution and the ability to generalize local sensing. We develop
this sensor and apply it to the control of a tightly coupled, resource-
limited robot team called Millibots.

robot

Keywords-component; mobile

heterogeneous control

teams; sensing;

1. INTRODUCTION

Robots are versatile machines that can be programmed to
react collectively to sensor information in a variety of tasks that
range from surveillance and reconnaissance to rescue support.
Despite this versatility, a single robot cannot always realize all
applications. On the other hand, a team of robots can
coordinate action and sensing to extend a collection of
individual entities to a single, cohesive group. To facilitate this
coordination, a robot team must be able to manage its
formation to exchange information and leverage the proximity
of the others.

Figure 1.
small-scale robots designed on the 5cm scale.

The Millibot Team — a heterogeneous collection of

0-7803-8232-3/04/$17.00 ©2004 |IEEE

Formation control is essential in many aspects of team
coordination from communications [1][2] to sensor coverage
[7][11] to localization [4][9][12]. A critical component of
formation control is line of sight. Line-of-sight is defined as an
open, obstacle-free path between two points in space and must
be wide enough to allow the passage of information signals
such as light, video or ultrasonics. Unfortunately, local sensing
is not always sufficient to directly determine the property of
line of sight. Local sensors are often limited in their range and
resolution and are incapable of discriminating between robot
and obstacle. Even when a robot has access to a local map, it
still may not have acquired sufficient information to make the
determination on its own. This is especially true as the scale of
the robot is decreased, the number of available sensors is
restricted and the range of local sensing is reduced.

Coordinating multiple robots is a management issue as
well. Conventional formation control is based on the idea that
each robot is equipped with roughly the same sensing
capabilities. Heterogeneous team control must take into
account for the differences in the sensing and processing
capabilities of each robot. In some cases, this sensing may be
rudimentary and not able to provide the necessary local
information needed to navigate on its own [7][11]. The
problem becomes even more compounded when the
composition and number of the team is dynamic.

Our work is primarily motivated by the control and
coordination of a team of heterogeneous, resource-limited
robots, called Millibots [7]. These are small-scale robots on the
order of Scm a side that are designed to operate in unknown or
partially known environments. Their small size gives them
access to tight, inaccessible areas while making them easier to
conceal, deploy and manage. However, their small scale and
dynamic heterogeneous composition makes conventional
control strategies difficult to apply.

We address coordination of multiple, heterogeneous robots
by developing the concept of a ‘virtual’ sensor. Robot teams
have the advantage that they can collectively share information.
They are able to fuse range information from a variety of
different platforms to build a global occupancy map that
represent a single collective view of the environment. A virtual
sensor is simply an abstraction of the team’s occupancy map.
We call this a virtual sensor because it has all the properties of
a real sensor with respect to that robot’s navigation and
planning but is derived from information already processed and
not from the physical interaction of a sensor and its

3024

surroundings. However, when employed by the individual, the
information derived from a virtual sensor can be treated in the
same fashion as a real sensor.

In Section III, we develop the virtual sensor and show how
it can provide essential line of sight information to obstacles,
open space and other robots regardless of the platform being
employed. In section IV, we show how this generalization aids
in local, sensor-based planning by providing information with
greater range and resolution than existing local sensors. We
then show how it can be extended to the planning stage with
respect to maintaining line of sight to multiple members during
and after movement. Finally, in Section V, we show how the
virtual sensor allows the generalization of existing sensors in
such a way as to allow homogenous control laws to be applied
to a heterogeneous team.

II. RELATED WORK

The concept of recasting local sensing is not new.
Borenstein proposed recasting a robot’s local map in terms of a
polar sensor in the development of his Vector Field Histogram
[5]. From the vector field, he is able to apply potential field
methods for avoiding obstacles and navigating through open
space. This method was designed primarily to support local,
sensor-based navigation of a single robot and was not intended
to support multiple robots.

Banos utilizes a high-resolution laser range sensor to
express the robot’s centric view as a collection of polylines by
connecting the ends of each range measurement together into a
contour [3]. As the robot generates new views, he combines
polylines to form a composite representation of the
environment. While a powerful geometrical means for
combining robot views, this method lacks a means for
separating other robots from the environment as well as a
means for assessing new plans based on the line of sight to
other robots. Moreover, it relies on high resolution sensing
which becomes problematic for robot teams with more limited

sensing modalities.

Nelson describes the generation of an enhanced range
sensor by utilizing vision to evaluate the height information in
a video image [10]. The relationship between range and image
height is made possible by regulating the dimensions of the
walls in the environment. Moreover, line of sight to other
robots is obtained by assigning unique colors to each robot.
While this method solves both the range and line of sight issue,
it requires the construction of a controlled environment and is
not suitable for applications in unknown environments.

III. THE VIRTUAL SENSOR

To develop the virtual sensor, we first recast the team
occupancy map as a polar occupancy map with respect to
robot. The polar map is constructed as a grid with the columns
representing range and the rows representing bearing (Figure
2b). We make the transformation by mapping the value of the
occupancy map cells to the corresponding polar occupancy
cells for each cell in the polar map.

From the polar map, we generate a polar contour that
records the closest features in the map with respect to the
center of the robot. Features captured by the polar contour
include the closest obstacle and the closest free space
boundary. The polar contour is stored as a single linear array
with the number of cells equal to the column width of polar
map (Figure 2c). The indices of array correspond to the angle
and their values are the range to the closest feature This
reduced representation allows rapid calculation of line of sight
as well as a compact representation for faster communications.

To determine the range to the closest features, we scan each
of the columns of the polar map from bottom (closest to the
robot) to the top (maximum range) until we detect a cell that
transitions from open (low occupancy) to either closed (high
occupancy) or unexplored. If a transition from open to high
occupancy is detected, the scan is terminated and the range is

4 hearing

Rohat Sensor profils

o -

robiot projections

Y
o I . 3 “\‘:\‘-‘F 2
; ' 1 |~;3' ir R D

e R A \\!
— a “ |

* e o o

L] -]
frovtier contour ~

Litie of sight swface

P

Virtual Sensor profile

Dertved Grou.ndf ohstacle contour
ohstacle truth
Typical Faolar Line of Sight Wirtual “Wirtual
Range Sensor Ciccupancy Map Contours Line of Sight Sensar Range Sensor

Figure 2. Generating the Virtual Sensor. - a) A robot’s local sensors may not have the resolution to determine line of sight to other members
(dark gray profile) b) First step is to map the team’s occupancy map into the individual polar map with the target robot at the center - axes
are range and bearing. ¢) We process the polar map to generate a polar contour - For a given bearing, we mark the closest transition from
open space to form obstacle contours and frontier boundaries. Additionally, we project the profile of adjacent teammates onto the map d)
We test each point in space against the contour map. All points within this region are within line of sight of the target robot.) We utilize
the values of a contour map to generate a virtual range sensor with greater range and resolution of the robot’s individual sensor. This
generalized profile is the same for any robot regardless of underlying sensor platform.

3025

recorded in the array. These cells represent the closest obstacle
points within the line of sight of the robot.

If a transition from open to unexplored is detected, the
range to this feature is recorded. This transition represents the
closest frontier point for that given angle. A frontier represents
the boundary between known and unknown space and is used
to guide exploration. To allow the storage of range information
to two classes of features (frontier and obstacle points) in a
single array, we store frontier points as negative values.

The polar contour stores the distance to the closest features
within a robot’s line of sight. However, its power comes from
the ability to test line of sight to arbitrary points in space. We
can readily establish whether a point in space is within line of
sight of the robot by determining the angle and range to the
point with respect to the robot. If the point is above the contour
(range greater for a given bearing) it is beyond that robot’s line
of sight. If it is below the contour it is within line of sight.

Ironically, while robot range sensors, such as sonar, are
good at detecting the distance to local obstacles, there are some
cases where they are unable to detect the presence of other
robots - even when they are within range. Such is the case of
the Millibots where the sonar sensor platforms are mounted on
top of the robot. These platforms present a small cross section
(effective reflection area of the robot) to ultrasonic bursts and
consequently do not always reflect sufficient energy to be
detected. However, we can leverage team knowledge to
account for undetected robots by artificially projecting their
profile onto the polar contour. The positions of the robots are
obtained from the team’s localization solutions and mapped
into the polar map.

Instead of simply treating these robots as a point source, we
account for their size as well. We project these teammates onto
an individual robot’s polar map by generating a line whose
width is a function of the size of the actual robot and the
distance from the center of the target robot. Figure 2¢ shows
the projection of team members onto the target robot’s contour
map. Where the robot’s projection is closer than any other
feature, it replaces that feature as the closest point. Now the
team can move reliably even when it cannot directly detect its
neighbors. Moreover, we have a method for determining the
reliability of line of sight information. That is, we can assess
whether a participating robot is partially obscured. This ability
to account for the projected width of a robot (as opposed to a
point source) is one of the advantages of utilizing a polar
contour over determining line of sight by using simple ray
tracing techniques.

IV. VIRTUAL SENSOR PLANNING

Line of sight is not just a detection issue; it must be
considered during planning. Not only does a robot need to
know which robots are within line of sight and which are not, it
needs to make the same assessment for future cases in the
planning stage. We can exploit the virtual sensor to aid in local
robot planning as well as coordinated team planning. For
example, localization effectiveness is often a property of the
number of robots that participate. Therefore, planning must
also account for the number of robots that will be within line of
sight after the robot moves. If the new position cannot be

adequately resolved due to lack of participation after such a
move, the team may select an alternative move or opt to
reposition others first.

A. Local Planning

Researchers are already exploiting the increased resolution
of maps generated by fusing multiple robot sensors to aid in
exploration and localization. However, this has traditionally
been a one-way process. Few are exploiting this map
information to augment an individual robot’s perspective.
Consequently, each robot is left to develop plans based
primarily on local sensors. We approach information exchange
from the other perspective. That is, we use the higher fidelity of
the team map to support sensing and local planning.

In addition to line of sight determination, we can recast the
virtual sensor in the form of an extended range sensor to aid in
local robot planning. To accomplish this, we utilize the range
values of a robot’s polar contour as an element of a virtual
sensor array (an imaginary range sensor) (Figure 2e). The
angular and range resolution of the virtual sensor is a product
of the number of rows and columns of the polar map and not
the underlying sensor. Consequently, the range and resolution
of the virtual sensor is generally greater than the underlying
robot sensor.

One immediate advantage to this formulation is the ability
to perform local sensor-based planning. With greater resolution
provided by the virtual sensor, a robot is able to generate finer
resolution plans than possible with its original sensors. Many
techniques exist that allow a robot to reliably navigate through
known spaces utilizing only local sensors [3][5][6]. However,
the success of these methods is partially a function of the
resolving ability of the sensors. For example, many robots have
the luxury of supporting a high-resolution laser rangefinder or
an array of 16 or more Polaroid sonar sensors. However, the
typical Millibot sensor array utilizes only 8 sonar range sensors
each with a range of 30cm. Consequently, it has a harder time
applying local control laws to maintain a path or follow the
contour of local obstacles. On the other hand, a virtual sensor
has a derived range and resolution based on the resolution of
the polar map and not the underlying sensor. Consequently, it
can augment existing sensing to produce better motion plans
for movement through the space.

Robots also utilize features, such as obstacle profiles and
frontiers, extracted from the virtual sensor to navigate. One
popular method in robot exploration is frontier expansion
where the robot is directed towards existing boundaries
between open and unexplored space. However, it has been
shown that specular reflection and general sensor failure can
complicate the proper generation of frontiers [8]. Instead of
directing the robot to viable search areas, specular reflection
produces erroneous frontiers resulting in plans that direct the
robot through obstacles. If the obstacle cannot be traversed, the
attempt fails wasting valuable time and resources. On the other
hand, a virtual sensor identifies obstacle boundaries and
frontiers with respect to the position of an individual robot. As
such, it ignores potential erroneous information generated
beyond the local line of sight of that robot. Consequently, it is
not sensitive to the failures induced by specular reflection.

3026

Obstacle profiles and frontier boundaries are extracted from
the virtual sensor by clustering similar points along the polar
contour into contiguous objects. Adjacent cells of positive
values from the polar contour represent the profiles of obstacles
while adjacent cells of negative values represent the profiles of
frontiers. Consequently, exploration can be accomplished by
directing the robot towards the center of clustered frontier
points.

B. Line of Sight Participation Planning

Local control laws are useful for many aspects of robot
navigation and planning. However, sometimes a robot has to
coordinate its movements with respect to others in order to
operate effectively. For example, Millibot requires that at least
two other robots be within line of sight after any given move to
generate a reliable position estimate. Before a Millibot moves
to a new position, it must first assess its chances at localizing.

To support this planning, we first examine the line of sight
region generated by a single robot. These are all the points
directly viewable with respect to that robot (Figure 2d). Now, if
we view the same line of sight region from the perspective of
another robot, we have a way of predicting future line of sight
constraints for the moving robot. Viewed in such a way, one
robot’s line of sight region represents all the places a second
robot can move and still maintain a connection with the first.
The same process can be applied to each of the robots in the
team.

Consider the scenario given in Figure 3. Four robots have
mapped a given space and have localized into the positions
shown (Figure 3a). We now wish to move the robot under test
to a new area in order to explore or provide mission specific

sensing. The three remaining robots, denoted Ra, Rb, Rc,
remain stationary to support localizing the robot after the move.
For localization to be successful, the moved robot has to obtain
valid range information from at least two of the other robots.
The question is where can that robot move and still be in line of
sight with respect to the remaining robots.

Again we answer this question by utilizing the virtual
sensors of each of the stationary robots. Figure 3b shows the
virtual sensor generated by each of these robots and their
corresponding line of sight regions. Each reading provides
local information about whether the new position will be within
its line of sight (Figure 3c). However, we get a composite
assessment by projecting each of these regions simultaneously
onto a common map (Figure 3d). Points where the regions
overlap once represent common areas that are within the line of
sight of at least two robots. Regions that overlap twice
represent places where all three robots will be within line of
sight of the new position. Assessing regions in terms of
multiple overlaps provides a basis for coordinating multiple
robots. The same procedure can be applied for any operation
that requires a robot to maintain line of sight to one or more
robots including localization, communications or surveillance.
In practice, every point in space does not have to be evaluated
as in the way illustrated in Figure 3. Instead candidate
movement points can be generated and evaluated by some
other criteria.

C. Combining with a Localization Metric

Line of sight and the number of participants is not the only
factor in achieving good localization. The geometry of the
formation is also a critical factor. Some formations naturally

Eobot under test

J.
>

{a) Current Robot Map

Polar

Eobot under test

3Robot LOS

i 2 Bobet LOS |

Regions of Multiple
Line of Sight

®) yi © Lsi‘i‘;h‘t’f @

Figure 3. Line of Sight Participation - a) Given three participating robots, we want to find the places in the map where at least two are
within line of sight. b) Each participating robot generates a polar plot by generating local polar map. c¢) Line of sight projected for each
participating robot. d) Combine line of sight projections - the darker the overlay, the greater the number of participants. The robot under test
can move anywhere within the shown projections and still be in line of sight of at least two robots.

3027

third robot
resolution

third robot <V
resolution

Poor Localization Better Localization Tangence Maximization

Figure 4. Localization Metric - a) Localization is poor when the
team geometry approaches collinear. b) Localization is best when
the angle between the two readings form a right angle. c) A
metric plot showing utility of maximizing the angle between the
tangents of intersecting measurements Lighter areas represent
regions in space that generate better localization readings.

lend themselves to better position estimation than others. For
example, in a three-robot system, resolution of a third robot is
best if we maximize the angles between range measurement
pairs of the participating robots. In localization, range
measurement pairs can be visualized as an annulus with a
center at the originating robot and a radius equal to the range
measurement between the two robots. In a three-robot system,
two range pairs are obtained to localize that robot. For the best
localization, we maximize the angle between the tangents of
the two intersecting range pairs so that their combined
distributions lie in a confined region of space. If the placement
of the third robot is poorly selected (for example if the three
robots are collinear) the position estimate of the robot is also
poor and spread over a large region of space (Figure 4a).
However, if we maximize the angle between the tangents of the
range measurements (Figure 4b), the same combined
distribution is confined to a smaller region in space resulting in
a better position estimate.

Given this knowledge, we can utilize geometry in the
planning stage to guide robot movement as to best satisfy its
line of sight constraints while taking into account the best
location for maximizing its position estimate. To accomplish
this, we develop a metric that maximizes the tangents of the
range pairs. Figure 4c shows the application of this metric to
the space around the set of robots. The lighter areas represent
regions in space that generate well-localized position estimates
while the darker areas generate poor estimates. Coupled with
the line-of-sight assessment, candidates are selected that
maximize localization resolution while ensuring an adequate
number of robots remains within line-of-sight of each other.

A similar approach is applied to deal with the multitude of
team constraints. For example, in the control of the Millibots,
we cast a series of random points about a robot and pose each
point as a candidate position for movement. From the list of
candidates, we test each against conflicting constraints that
include line of sight, obstacle clearance, travel distance,
exploration gain etc. The point with the highest overall utility is
then selected and the robot is directed to that point.

V. HETEROGENEOUS SENSING

As if reduced range and resolution were not enough of a
handicap, some robot teams must contend with the composition
of heterogeneous sensing. Such is the case for the Millibot

team where the scale of the robots does not support a single
robot type. Robots must distribute and coordinate sensing to
achieve the necessary degree of perception. For example, some
robots are equipped with sonar sensors that provide range
information to obstacles while others are equipped with
mission dependent sensing like heat detectors or video
cameras.

Conventional team control is accomplished by treating each
robot as if they were interchangeable. Control is a matter of
managing the physical locations of the robots but not the
individual resources of those robots. Heterogeneous
composition complicates this methodology and introduces
complexity in the control process. Uniformity of sensing on an
individual robot is an issue as well. Local navigation strategies
often assume a uniform sensor distribution about the robot.
However, in some cases, a robot is equipped with a variety of
sensors each with different sensing characteristics.

One example is the Dirrsbot (Figure 5a). This Millibot
contains three forward-looking sonars similar to others in the
group each with a range of 30cm. However, it gets its name
from two side-looking, digital infrared range sensors (dirrs).
These sensors have a range of 80cm but a narrow 5-degree
field of view. Not only is the sensor profile for this robot non-
uniform, it does not fully cover the area about the robot.
Integrating this robot requires specialized routines for almost
every aspect of operation. On the other hand a virtual sensor is
posed as a uniform array with respect to the robot (Figure 5c).
Moreover, since the virtual sensor for each robot is derived
from the fusion of the same team map, each robot can utilize
the same navigation strategies.

Dirrsbot o
Localization
Beacon
Infrared
range
SENIOr
Forward
looking
sonar
Local Bensing
[\ Estended Sensing
o’ 'il ‘.. ——
AR AN
} y \ |!
/ " \
! g .
Localinfrared Local sonar
Local Sensor Overlay Virtual Sensing Profile
Figure 5. Supporting Heterogeneous Sensing — a) A

heterogeneous Millibot equipped with forward-looking sonar and
side-looking infrared. b) Correlation between local and virtual
sensor. ¢) Comparison of non-uniform local sensor and uniform
virtual range sensor.

3028

Sensor failure also complicates reliable local navigation.
Sensor failure and specular reflection often result in readings
that indicate a clear path even when the path is obstructed.
However, if we correlate the current sensor readings with the
derived virtual sensor readings (Figure 5b), we have a means
for putting local readings in context and rejecting suspect
readings. This additional confidence in sensing equates directly
to competence in moving through a desired space without
incident.

In some cases, a robot simply does not have a means for
sensing its own surroundings. One example is a Millibot
equipped with only a video camera and localization beacon.
Even when the robot needs to navigate in known space, it has
no means for generating local plans without involving the
operator. However, by utilizing the virtual sensor, the same
robot can operate as if equipped with range sensors.

Virtual sensors provide an added benefit in that they allow
the possibility of the generalization of local sensor platforms
into a ubiquitous representation. Robots with long-range and
short-range sensors generate similar virtual sensors as do robots
with non-uniform sensor distribution or no sensors at all. This
ability to generalize robot sensing is instrumental in applying
generalized robotic algorithms to heterogeneous robot
platforms.

VI. CONCLUSION

In this paper we have shown how to generate a virtual
sensor for each robot that is an abstraction of an individual
robots sensor and the team’s occupancy map. The formulation
of this sensor allows a local determination of line of sight local
obstacles and frontiers as well as other robots in the team. This
assessment is critical for establishing formation to support
many aspects of team coordination including localization,
communications and coverage. Equally important is the ability
of determining when line of sight has been violated to reject
potentially erroneous signals still present due to multipath
reflections.

Line of sight assessment is facilitated by expressing the
range and bearing to local features in the form of a polar
contour. Line of sight to arbitrary points in space is determined
by testing whether the desired point lies above or below this
contour.

The utility of the virtual sensor moves from sensing to
planning by viewing the contour of one robot with respect to
the all the others. In this fashion, one robot’s line of sight
region represents all the areas a second robot can move and still
remain within the line of sight of the first. The same process
can be simultaneously applied to the other robots in the team to
satisfy formations that require line of sight to multiple robots.

Finally we show the added utility of virtual sensing when
applied to teams with heterogeneous sensor composition. The
virtual sensor provides a means of recasting a robot’s local
sensing in terms of the collective sensing stored in the team’s
occupancy map. Consequently, the derived virtual sensor is the
same for any robot regardless of the underlying sensor
platform. This ubiquitous representation of sensing allows the

application of conventional homogenous control techniques on
heterogeneous teams.

REFERENCES

[11 Anderson, S., Simmons, R., Goldberg, D., “Maintaining Line of Sight
Communications Networks between Planetary Rovers,” Proceedings of
the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems
Las Vegas, Nevada - October 2003.

[2] Arkin, R., Balch, T., "Line-of-Sight Constrained Exploration for
Reactive Multiagent Robotic Teams", 7th International Workshop on
Advanced Motion Control, AMC'02 , Maribor, Slovenia, July 2002.

[3] Banos, H.,, Mao, E., Latombe, J.C., Murali, T.M., and Efrat A,
“Planning Robot Motion Strategies for Efficient Model Construction.”
Robotics Research -- The 9th Int. Symposium, J.M. Hollerbach and D.E.
Koditschek (eds.), Springer, pp. 345-352, 2000.

[4] Bisson, J., Michaud, F., Létourneau, D., “Relative Positioning of Mobile
Robots Using Ultrasonics,” Proceedings of the 2003 IEEE/RSJ Intl.
Conference on Intelligent Robots and Systems Las Vegas, Nevada -
October 2003.

[5] Borenstein, J., and Koren, Y. “The Vector Field Histogram - fast
Obstacle Avoidance for Mobile Robots,” IEEE Transactions on Robotics
and Automation 7(3): 278 -288. 1991

[6] Choset, H., Nagatani, K., “Topological Simultaneous Localization and
Mapping (SLAM): Toward Exact Localization Without Explicit
Localization,” In IEEE Transactions on Robotics and Automation, Vol.
17, No. 2, April, 2001, pp. 125 - 137.

[71 Grabowski, R., Navarro-Serment, L. E., Paredis, C.J.J., and Khosla, P.
"Heterogeneous Teams of Modular Robots for Mapping and
Exploration," Autonomous Robots - Special Issue on Heterogeneous
Multirobot Systems.

[8] Grabowski, R., Khosla, P., Choset, H., “Autonomous Exploration via
Regions of Interest,” Proceedings of the 2003 IEEE/RSJ Intl
Conference on Intelligent Robots and Systems Las Vegas, Nevada -
October 2003.

[91 Navarro, L., Paredis, C., Khosla, P., "A Beacon System for the
Localization of Distributed Robotic Teams," in Proceedings of the
International Conference on Field and Service Robotics, Pittsburgh, PA,
August 29-31, 1999.

[10] Nelson, A., Grant, E., Barlow, G., and Henderson, T., “A Colony of
Robots Using Vision Sensing and Evolved Nueral Controllers,”
Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent
Robots and Systems Las Vegas, Nevada - October 2003.

[11] Parker, L., Kannan, B., Fu, X., and Tang, Y., “Heterogeneous Mobile
Sensor Net Deployment Using Robot Herding and Line-of-Sight
Formations,” ," Proceedings of the 2003 IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems Las Vegas, Nevada - October 2003.

[12] Rekleitis, Y., Dudek, G., Milios, E., ”Multi-Robot Collaboration for
Robust Exploration,” Annals of Mathematics and Artificial Intelligence,
2001, volume 31, No. 1-4, pp. 7-40.

3029

Autonomous Robots 15 (2), pp. 155-168, 2003

Distributed coordination in heterogeneous multi-robot
systems

Luca Iocchi and Daniele Nardi
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198, Roma, Italy
Email: {iocchi,nardi} @dis.uniromal.it

Maurizio Piaggio and Antonio Sgorbissa

Dept. of Communication, Computer and System Sciences
Universita di Genova

Via Opera Pia 13, 16125 Genova, Italy

Email: {piaggio,sgorbissa} @dist.unige.st

Abstract. Coordination in multi-robot systems is a very active research field in
Artificial Intelligence and Robotics, since through coordination one can achieve a
more effective execution of the robots’ tasks. In this paper we present an approach
to distributed coordination of a multi-robot system that is based on dynamic role
assignment. The approach relies on the broadcast communication of utility functions
that define the capability for every robot to perform a task and on the execution
of a coordination protocol for dynamic role assignment. The presented method is
robust to communication failures and suitable for application in dynamic environ-
ments. In addition to experimental results showing the effectiveness of our approach,
the method has been successfully implemented within the team of heterogeneous
robots Azzurra Robot Team in a very dynamic hostile environment provided by the
RoboCup robotic soccer competitions.

Keywords: Multi-Robot Systems, Distributed Coordination, Dynamic task Assign-
ment, Communication

1. Introduction

Coordination in Multi-Robot Systems (MRS) is nowadays one of the
most interesting areas of research in Artificial Intelligence and Robotics
[14, 34, 27]. In fact, multi-robot systems are being developed from both
a biological and an engineering perspective. In the first case the goal
is to simulate the properties of biological systems, while in the second
case the goal is to improve the effectiveness of a robotic system both
from the viewpoint of the performance in accomplishing certain tasks
[14] and in the robustness and reliability of the system [34].

A significant boost to the work on MRS has recently been given also
by the Robot competitions and RoboCup, in particular. In fact, the
design of MRS is regarded as one of the major scientific challenges to

';ﬁ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 29/08/2002; 20:26; p.1

2 Iocchi, Nardi, Piaggio, Sgorbissa

be developed in the RoboCup environment [27]. In particular, according
to the organization of RoboCup, the real robot leagues as well as the
simulated league provide different settings, where the design of MRS
is realized according to different hypotheses. The most distinguishing
feature, as compared with previous work on MRS, is that the RoboCup
environment is highly dynamic and hostile due to the presence of an
opponent team.

In this paper we present a distributed approach to coordination in
MRS that has been originally developed within the Azzurra Robot
Team (ART) of robotic soccer players participating in the RoboCup
competitions in the mid-size category [13]. Nonetheless, the methods
and techniques presented here are rather general and suitable for ap-
plication in other environments where similar underlying assumptions
are satisfied.

ART [31] is composed of different robotic players developed in var-
ious Italian universities. Each university in the team is responsible for
the development of one or more robots which differ in the mechanics
(robot base and kickers), in the hardware (processor type and speed)
and in the control software (different techniques and approaches for
perception, reasoning and motion control) from the robots of the other
research groups. Because of this kind of organization, coordination
among the ART robots requires not only a distributed coordination
protocol, but also a very flexible one, that allows to accommodate the
various configurations that can arise by forming teams with players
equipped with different basic features. Due to the intrinsic hetero-
geneity of the team, the dynamic environment in which the robots
act, and the complexity of the task (playing soccer), our main focus
in the development of such a MRS has been the implementation of
a coordination framework suitable for decomposing the complexity of
the task to be carried out into different sub-tasks and for dynamically
assigning these tasks to the robots in the MRS.

Given the very wide scope of the proposals on MRS and the rela-
tively youth of the research area, a common framework for the work
on MRS is difficult to identify. A MRS cannot be simply regarded as
a generalization of the single robot case and the proposed approaches
need to be more precisely characterized in terms of assumptions about
the environment and in terms of the internal system organization.
Classifications of the work on MRS has been presented by Dudek et al.
(1996) [14], by Cao et al. (1997) [11], by Iocchi et al. (2001) [25], and by
Balch et al. (2002) [7]. In [14] the classification of MRS is focused on the
communication and computation aspects, while in [11] several applica-
tion domains for MRS are described and many systems are classified
according to the task they are realized for. In [25] MRS are analyzed by

main.tex; 29/08/2002; 20:26; p.2

Distributed coordination in heterogeneous multi-robot systems 3

addressing their deliberation and reactivity capabilities. Other specific
goals of the research in MRS include also the issue of explicit versus
implicit communication [5] or exploring specific coordination strategies
for specific problems [21].

In order to properly characterize the present proposal, it is worth
highlighting the hypotheses underlying the MRS described by the present
work that can be summarized as follows:

— Communication-based coordination: the usage of communication
among the robots to improve team performances, allowing the
robots to acquire more information and to self-organize in a more
reliable way.

— Autonomy in coordination: the robots are capable to perform their
task, possibly in a degraded way, even in case of partial or total
lack of communication.

— Distributed coordination: the communication capabilities, combined
with the autonomy requirement, require that each robot, while
interacting with the others, must rely on local control (hence the
system is distributed).

— Heterogeneity: the robots are heterogeneous both from hardware
and software viewpoints, they can usually perform the same tasks
but with different performance.

— Highly dynamic, hostile environment: the robots must be able to
perform the assigned task in the presence of external and dynamic
changes in the environment.

The building blocks of our proposal are a communication layer and
a coordination protocol. The former provides for suitable inter-robot
information exchange, as well as, proper interoperation within each
robot computational model. The latter has been designed to deal both
with roles (defender, attacker etc.) and with strategies (defensive, of-
fensive). While the strategic level may be demanded to an external
selection, roles are dynamically assigned [44, 42] to the robots during
the game.

In the paper we also address the problem of evaluating the perfor-
mance of MRS [3, 4], and are able to show through the analysis of the
game logs that, in the operation environment, both the space coverage
and the role exchange are effectively accomplished.

The paper is organized as follows. In the next section, we describe the
architecture of the MRS, then the communication infrastructure and
the coordination protocol. We then present the experimental results

main.tex; 29/08/2002; 20:26; p.3

4 Iocchi, Nardi, Piaggio, Sgorbissa

Robot 1 Robot n

A

DB Internal DB Internal Monitor
roles State roles State

Coordination Coordination
protocol protocol

Communication Communication Communication
Layer Layer Layer

Wireless network

Figure 1. System architecture for robot coordination

on coordination of the ART robotic players, address related work and
possible application domains of the approach presented, finally we draw
some conclusions, specifically discussing both the main features of the
proposed approach and some issues that deserve further investigation.

2. System Architecture

Our approach to multi robot coordination is based on a coordination
protocol run by all the robots of the team. This is obtained by im-
plementing on every robot of the team a common subsystem that is
responsible for communication on a (usually wireless) network and to
execute the coordination protocol.

The main features of the proposed approach are that the team
may easily include heterogeneous robots and that coordination is dis-
tributed, since each robot can take decisions on its own behavior based
on its knowledge of the situation and no robot can take direct decisions
about the behavior of other robots.

In Fig. 1 the system architecture for multi robot coordination is
shown. The coordination module for every robot is organized into two
layers: the communication layer that is responsible for exchanging data
among the robots in the network, and the coordination protocol that
performs a negotiation with the other robots and provides other mod-
ules of the robot with information about the actions that the robot
must perform according to the team goals.

main.tex; 29/08/2002; 20:26; p.4

Distributed coordination in heterogeneous multi-robot systems 5

The robots may also be connected to a monitor that is typically used
to visually inspect the behavior of the team and also to send general
commands (like start or stop) to all the robots.

An important building block, within such an architecture, is ETH-
NOS (Expert Tribe in a Hybrid Network Operating System) [37] a real-
time software architecture and a programming environment dedicated
to the development of distributed intelligent robotic applications. In
ETHNOS, in order to allocate and guarantee system time for commu-
nication activity, the communication infrastructure is fully integrated
in the real time software architecture for robot control.

In ETHNOS all the concurrent activities required for the control of a
mobile robot are demanded to entities called experts. As an architecture
for the development of real-time robotics applications, ETHNOS can
schedule three different kind of experts:

1. periodic experts, i.e. real-time tasks which execute at a fixed rate

2. sporadic experts, i.e. real-time tasks which execute in subordination
to specific conditions,

3. background experts, i.e. non real-time tasks which execute when
the scheduler has no pending requests coming from periodic and
sporadic expert to satisfy (for a more exhaustive description of
ETHNOS scheduling policy [36]).

In the development of the ART MRS ETHNOS has played a twofold
role: on some of the robots is used as the underlying operating system,
in other robots it simply implements the communication layer. In the
former case ETHNOS has been used as a basis for the implementation
of different cognitive models on individual robots. In the latter case,
the ETHNOS communication facilities ported as a C-library on other
control environments, provide a flexible and efficient communication
layer suitable for effective implementation of a heterogeneous team of
robots.

Summarizing, each of the communicating units in the architecture
shown in Fig. 1, is based either on the ETHNOS system or on some
other control systems enriched with the ETHNOS layer for communi-
cation. We have three other kinds of control environments, one of them
being the general purpose system SAPHIRA [28], and two specialized
systems used in other robotic platforms.

While the features of ETHNOS are described in detail elsewhere [37],
in the next section we focus on the communication layer that provides
the infra-structure for our MRS. The coordination method and the the
coordination protocol are described in Section 4.

main.tex; 29/08/2002; 20:26; p.5

6 Iocchi, Nardi, Piaggio, Sgorbissa

3. Communication Infra-structure

As already mentioned, the communication infra-structure of our MRS
has been developed by relying on ETHNOS, which implements a suit-
able inter-expert message-based communication protocol (the EIEP -
Expert Information Exchange Protocol [39]) fully integrated with the
central system. The EIEP allows the system developer to decouple the
different experts in execution, to reach, as close as possible, the limit
situation in which the single expert is not aware of what and how many
other experts are running. In this way an expert can be added, removed
or modified at run-time without altering the other components of the
system.

Expert decoupling is achieved by eliminating any static communi-
cation link. The EIEP is essentially an efficient implementation of a
blackboard [15] in a network distributed environment. In fact, the EIEP
is based on an asynchronous publish-subscribe messaging paradigm.
The single expert subscribes to the particular message types, known a
priori. When another expert publishes any message of the subscribed
types, the subscriber receives it transparently regardless of the par-
ticular machine on which they are produced or on which an expert
subscribed. This allows EIEP to be used uniformly both to design the
control method within the experts of a single robot and to support
transparent inter-robot communication. In fact, in ETHNOS the dif-
ferent experts are also allowed to subscribe to communication clubs.
It is the responsibility of the system to dynamically and transparently
distribute the messages to the appropriate club members.

This general methodology has been used in different applications
(i.e. service robotics [38] and RoboCup [37]) and adapted in an application-
dependent way by appropriately defining the number and type of clubs
used. Specifically, in this RoboCup application, we are allowing the
robots to communicate in a single club - the team club - (to which all
of them have subscribed) and with an external supervisor (the coach)
that monitors the activity of all the robots.

The EIEP also deals with low level network communication. In
fact, since in RoboCup (and in general in mobile robotics) network
communication is often wireless (i.e. radio link, Wavelan, etc.), due
to noise or interference transmission packets are sometimes lost. In
this context, both TCP-IP and UDP-IP based communication cannot
be used: the former because it is intrinsically not efficient in a noisy
environment; the latter because it does not guarantee the arrival of a
message, nor any information on whether it has arrived or not. For this
reason we have also designed a protocol for this type of applications,

main.tex; 29/08/2002; 20:26; p.6

Distributed coordination in heterogeneous multi-robot systems 7

called EEUDP (Ethnos Extended UDP), which extends UDP with the
required features.

The EEUDP allows for the transmission of messages with different
priorities. The minimum priority corresponds to the basic UDP multi-
cast (there is no guarantee on the message arrival) and it is used for data
of little importance or data that is frequently updated (for example the
robot position in the environment that is periodically published). The
maximum priority is similar to TCP because the message is sent until
its reception is acknowledged. However, it differs from TCP because it
does not guarantee that the order of arrival of the different messages is
identical to the order in which they have been sent (irrelevant in ETH-
NOS applications because every message is independent of the others),
which is the cause of the major TCP overhead. Different in-between
priorities allow the re-transmission of a message until its reception is
acknowledged for different time periods (i.e. 5 ms, 10 ms, etc.).

4. Coordination

The coordination method we present in this section is based on a co-
ordination protocol, that is implemented on every robot of the team
and is used by the robots in order to coordinate their activities for
accomplishing a global team task.

The approach we adopted is a formation/role system similar to the
ones described in [44, 42, 35, 45]. A formation decomposes the task
space defining a set of roles. Each robot has the knowledge and capa-
bilities necessary to play any role, therefore robots can switch their
roles on the fly, if needed. Notice that, in an heterogeneous team,
the implementation choices for each role can be different, thus having
possibly different behaviors for a role, depending on the robot.

For instance, in the RoboCup environment, a basic formation could
be the one where a robot takes the role of attacking going to get the
ball control, another one that of defending and a third one that of sup-
porting the attack. However, other formations are possible depending
on the kind of strategy adopted (offensive, defensive) and on the need
to handle special situations such as for example the malfunctioning of
the goal keeper.

The coordination protocol is used by the robots in order to select the
appropriate formation according to the environment conditions and to
make a decision on the roles assumed by the robots in the formation.

main.tex; 29/08/2002; 20:26; p.7

8 Iocchi, Nardi, Piaggio, Sgorbissa
4.1. COORDINATION PROTOCOL

The coordination protocol is based on broadcast communication of
some data by every robot. These data are processed by each robot in
order to establish the formation that the team will adopt and the role
assigned to the robot. The computation of the coordination protocol is
distributed, because each robot must process the information coming
from the others in order to identify the team formation and its own role.
The protocol is robust because it relies on a little amount of transmitted
data.

The coordination protocol is based on the concept of utility func-
tions, that are defined off-line before the actual operation of the MRS
in the environment. These functions are evaluated periodically during
the robot mission and exchanged among the robots. The coordination
protocol includes two steps that are periodically executed on-line dur-
ing the MRS mission: role assignment and formation selection. In our
current implementation the protocol is executed every 100 ms (that
corresponds to the perception cycle). A less frequent execution of the
protocol may lead to less reactivity in role exchanging.

In the following sections we will first describe the definition of the
utility functions and then the two steps that define the coordination
protocol.

DEFINITION OF UTILITY FUNCTIONS

A set of utility functions is defined in order to provide a quantitative
measure of the effectiveness estimated by each robot in assuming a
given role within the current formation. A utility function is thus asso-
ciated to one role and the coordination protocol is based on exchanging
the values computed for these functions among the robots and on taking
a distributed decision on role assignment from these values.

More formally, a utility function fi(..) for a robot i and a role r is
a function that, given the information about the status of the robot,
returns a value that indicates how well can this robot play the role r.
In other words, a utility function for a role should return higher values
when the robot is in a good situation to play the role, and lower values
when the robot is in a bad situation to fulfill it.

The definition of the utility functions is an important step in the
design and realization of the MRS, and, since they are deeply related
to the application domain of the MRS, it is not easy to develop a general
methodology for defining them. The designer of the MRS must anyhow
take into account two considerations: i) there are some variables or
conditions that characterize the state of the robot that are relevant
for the execution of the task associated to a role; ii) some parameters

main.tex; 29/08/2002; 20:26; p.8

Distributed coordination in heterogeneous multi-robot systems 9

of the utility functions must be experimentally evaluated, since they
also depend from the characteristics of the individual robots (in an
heterogeneous team).

Based on the above considerations we have performed the following
steps for defining our utility functions:

1. identify the variables that are relevant for the execution of the task
associated to a role;

2. define the utility function as a linear combination of these variables;

3. perform a set of systematic experiments in order to determine the
coefficients of the utility functions.

For example, the utility function for the role Attacker in our RoboCup
soccer robots is a linear combination of the following variables: distance
to the ball, direction to the ball, distance to the opponent goal, direction
to the opponent goal, presence of obstacles in the trajectory from the
robot to the ball. The coefficients for this linear combination have been
derived for every robot with the experiments described in Section 5. In
particular we remark that the experiments with real robots have been
fundamental for an effective coordination in our heterogeneous team,
since due to the diversity of the robots, the coefficients of the utility
functions are different for every robot.

ROLE ASSIGNMENT

Role assignment is the first step of the coordination protocol and it
is accomplished through explicit communication of the values of the
utility functions (specific for every role), that every robot evaluates
given its current local information about the environment. By compar-
ing these values, each member of the team is able to establish the same
set of assignments (robot<srole) to be immediately adopted.

More specifically, suppose we have n robots { Ry, ..., R, } and m roles
{r1,...,7m}. The roles are ordered by the MRS designer with respect
to importance in the global task to be performed, i.e. assigning r; has
higher priority than assigning r;1. Moreover, for each role we define
a “percentage of role covering” P;, that denotes how many robots of
the team should be assigned to this role. For example, if we have two
roles and we want to assign the first role to 60% of the team robots and
the second role to the remaining 40% of the robots we have P; = 0.6
and P, = 0.4. In this way it is possible to assign a role to a robot if
n > m. The use of the percentage values P; may require a little care
when rounding them with respect to the total number of robots. A
simple solution we adopted for our team is to define P; as z/n (z being

main.tex; 29/08/2002; 20:26; p.9

10 Iocchi, Nardi, Piaggio, Sgorbissa

an integer value); while a different choice may be appropriate when a
larger number of robots are present.

Let f1() be the value of the utility function, computed by robot R;
for the role r; and A(i) = j denote that the role r; is assigned to the
robot R;.

The method for dynamic role assignment requires that each robot
R, computes the following algorithm:

for each role r; do
compute and broadcast f7();
for each robot R; (i # p)
for each role r; do
collect f;(),
L = (; /* Empty the list of assigned robots */
for each role r; do
for c = 1to P; xn do
begin
h = argmas ey £10) 5 |
/* the robot Ry, has the highest value of f7()(z & £) */
if h = p then A(p) = j; /* the role for R, is r; */
L=LU{h};
end

It is easy to see that every role is assigned to at most P; X n robots
and that every robot is assigned to only one role. The reason is that at
every cycle of the algorithm a different assignment A(7) = j is done: j
changes after P; x n cycles and robots already included in the set £ of
assigned robots cannot be chosen for further assignments.

In particular, the first role (i.e. the one with the highest priority),
will be assigned to those robots that have the best utility values for
the role 71, the second role to those among the remaining robots that
have the best utility values for the second role, and so on. While in the
case of a complete lack of communication all the robots will assume the
most important role (r1).

It is important to notice here that the utility functions we have
defined in our approach do not represent a metric evaluation of the per-
formance of the MRS (as in [35]), but the best way to accomplish every
single task (independently from the others). Therefore, even though our
algorithm can be considered as a greedy approach to the Heterogeneous
Robot Action Selection Problem (HRASP) defined in [35], we remark
that our utility functions are not semantically equivalent to the met-
ric evaluation functions. Moreover, while HRASP has been proved to

main.tex; 29/08/2002; 20:26; p.10

Distributed coordination in heterogeneous multi-robot systems 11

decision

numerical parameter

Figure 2. The hysteresis mechanism in decisions

be NP-hard [35] and thus heuristics must be developed to cope with
this problem, our objective is not to compute a role assignment that
maximize the sum of the utility functions, but to assign a priority to
every role and to guarantee that high priority roles are assigned to the
robots that are in the best conditions to perform the associated tasks.
This issue is very important in many dynamic and adversarial en-

vironments and especially in the RoboCup environment, in which this
work has been originally developed. Consider a situation in the RoboCup
environment in which two robots coordinate on the two roles: attacker
and defender. For an effective game it is important that the role attacker
is assigned to the robot that is in the best condition to reach the ball
before the opponents. Now consider the following values for the utility
functions of these two roles: f1(..) = 10, fi(..) = 6 for robot 1 and
f2(..) = 6,f2(.) = 1 for robot 2. Our algorithm will assign robot
1 to the role attacker and robot 2 to the defender, while if we had
chosen to maximize the sum of the utility functions we would have the
opposite assignment. However, in this scenario, the second choice may
be ineffective since it does not take into account the different priorities
of the two roles and may lead to a situation in which robot 2 will fail
to reach the ball and to act as attacker, while robot 1 (that was in
the best condition to get the ball and attack) will perform a defensive
action possibly loosing the opportunity to control the ball.

In order to obtain an effective application of the above method,
an important issue to be dealt with is the stability of decisions with
respect to possible oscillations of the numerical parameters on which
they depend upon (see also [24]).

The method we adopted to stabilize decisions is based on the notion
of hysteresis (see Fig. 2), which amounts to smoothing the changes in
the parameter values. This technique prevents a numerical parameter’s
oscillation from causing oscillations in high level decisions. In the case
of coordination, for instance, if at a certain instant robot R; covers role
rj, its utility function f]’() for role r; returns a higher value.

Another critical factor for the correct operation of coordination is
the capability of each element to realize a sudden difficulty in perform-

main.tex; 29/08/2002; 20:26; p.11

12 Iocchi, Nardi, Piaggio, Sgorbissa

ing its task. For instance, a robot that is moving toward the ball can get
stuck on its way. Once it has realized this circumstance, all its utility
functions must return low values so that the the role can be assigned
to other robots.

Finally, if all the robots possess the same data (i.e. communications
are working correctly), they will compute the same assignment, but
in case of a great loss of transmitted data due to interferences, the
robots may have slightly inconsistent data. Therefore, there could be
roles temporarily assigned to more than one robot or not assigned at
all. However, holes in data transmission last in general fractions of a
second. So, if we assume that the values of the “utility functions” do
not change sharply, the correct use of the hysteresis method guarantees
that the roles will be correctly assigned almost always (as shown by the
experimental data we have collected during the games and are discussed
in the next section).

FORMATION SELECTION

The robots have at their disposal a number of predefined formations
and rules to select the formation to adopt, on the basis of the en-
vironment configuration. Since each robot status do not necessarily
coincide with those of the others (because of possible communication
failures or different views of the world), the robots may choose different
formations. Therefore the formation selection algorithm is based on a
voting scheme that allows for changing the formation only in presence
of the absolute majority of votes.

for each robot R; of the team do
begin
collect voted_formation[il;
votes[voted._formation[i]] = votes[voted_formation[i]] + 1;
end
if there is a formation f such that votes[f] > n/2 then
selected_formation = f;

This voting scheme resolves the conflict arising by lack of absolute
majority by leaving the formation unchanged. The algorithm also limits
significantly the risk of oscillations in formation selection as well as the
frequency of changes. Moreover, to ensure the stability of decisions, the
formation selection is accomplished at a lower frequency to that of role
selection (i.e. once per second).

main.tex; 29/08/2002; 20:26; p.12

Distributed coordination in heterogeneous multi-robot systems 13

5. Applications and experiments

A successful coordination of the team depends on the effectiveness of
the coordination protocol and on a suitable calibration of some param-
eters, such as the coefficients of the utility functions. Calibration of
these parameters typically requires a significant experimental work.

In addition, in an heterogeneous team of robots the experimental
phase is particularly demanding, since the exchanged information are
computed and interpreted differently by each element of the team. For
example, consider the evaluation of reachability of the ball: each robot
may have a mobile base with different capabilities and a set of behaviors
with specific speed characteristics and, that notwithstanding, robots
must calculate comparable numerical values.

In this section we describe methods and tools that have been used for
developing and evaluating the approach described above and we present
the results of our experiments in a competitive and highly dynamic
environment such as the one provided by the RoboCup matches.

5.1. METHODS AND TOOLS

The experimentation of the coordination protocol must be done in
stages which require the use of different tools: a simulator, experimen-
tation without play, experimentation during actual games, and analysis
of log files of the games.

The first and easier experimental setting is provided by a simula-
tor. Even though simulation cannot provide a precise characterization
of all the aspects that influence the performance of the robot in the
real environment, it is very useful both for verifying the correctness of
the protocol and for computing a first estimation of the coefficients of
the utility functions, that will be refined with subsequent experiments
involving real robots.

First experiments with real robots may be done without playing,
with steady robots and moving the ball and opponents. At this stage
one needs to adjust the discrepancies arising from differences in hetero-
geneous robots’ implementations. In particular, we compare the sensing
capabilities of the robots and adjust the coeflicients of their utility func-
tions. Notice that while these aspects could be, in principle, resolved
through the simulator, this requires a rather complex simulation model
that is very difficult to build. Similarly, learning techniques could be
used, but they are outside the scope of the present work.

The other experimental phase involving the robots consists in look-
ing at the game and in singling out the failures of the coordination
system. For example, a typical task is that of identifying situations

main.tex; 29/08/2002; 20:26; p.13

14 Iocchi, Nardi, Piaggio, Sgorbissa

where the most suitable player does not move towards the ball (take role
Attacker) and adjust the parameters to restore the expected behavior.

To this end, an analysis of the log files generated during the games is
very useful for identifying misbehaviors of the coordination system. In
this respect, we have developed a 3D viewer for experimental data that
allows for displaying several information about one or more robots from
the log files of real games or portion of them. By analyzing the data
collected by the robots during the game through our graphical tool for
3D navigation of these data, we are able to detect several interesting
features of coordination as well as unexpected behaviors of the robots,
such as unassigned roles, oscillations in role exchange, overlapping roles,
etc. Specifically, we have used this tool also to further refine the utility
functions.

5.2. THE RoBOCUP ENVIRONMENT

The coordination method presented in the previous section has been
implemented within the Azzurra Robot Team, the Italian national team
of heterogeneous robotic soccer players, participating in the RoboCup
competitions in the Middle-Size League [31].

Coordination in the RoboCup environment is an important issue
because of the possibility of implementing effective team strategies
for the game. In fact, coordination among the ART players requires
not only a distributed coordination protocol, but also a very flexible
one, that allows the coach to accommodate the various configurations
that can arise by forming teams with different basic features. The per-
formance of the ART team provided substantial evidence that basic
coordination among the team players has been successfully achieved.
In several situations where two team players were close to the ball, they
were able to smoothly switch their roles and managed to get ball pos-
session without obstructing each other; in addition, they have generally
occupied the field in a satisfactory way, as shown in the coordination
analysis presented in Section 5.4.

The coordination protocol used in this setting is based on a set of
formations and a set of roles for every formation. The formation that
has been mostly used is the standard formation that is described below.
Other formations have been considered in order to deal with special
situations, like goalkeeper out of the game.

In the standard formation we have defined 3 roles for the 3 players:
Attacker, Defender, Support. The wutility functions for these roles are
defined as a linear combination of distance from the ball, position and
orientation of the robot in the field, and obstacles in the path towards
the ball. Since we have 3 roles for 3 robots the percentage role covering

main.tex; 29/08/2002; 20:26; p.14

Distributed coordination in heterogeneous multi-robot systems 15

P;j are set to 1/3, so that every role is assigned to one robot. Moreover,
the roles have priorities and thus if for example one robot is out or
does not communicate with the others the first two roles (Attacker,
Defender) are assigned to the remaining two robots, leaving the Support
role unassigned.

The algorithm for dynamic role assignment has been used for effec-
tive role switching between robots during the games and the hysteresis
in the utility functions have reduced the possibility of too frequent role
switching. The performance has also been evaluated through a set of
systematic experiments on the robots and by the data collected during
actual games in the official games of RoboCup 1999 and 2000. We have
reported the results of the analysis on communication and coordination
in the next sections.

5.3. COMMUNICATION ANALYSIS

The reliability of communication with the EIEP has been experimen-
tally verified. ETHNOS system allocates a maximum guaranteed and
dedicated time to network communication. Since ETHNOS schedules
all tasks in real-time according to the Rate Monotonic scheduling pol-
icy, the dedicated time value is computed automatically on the basis of
the schedulability analysis so that the real time execution of the whole
set of tasks (i.e. user-defined and communication tasks) is guaranteed.
Thus, the dedicated time depends on the computational load of the
tasks in execution as well as on the processor speed.

In Fig. 3 the diagrams represent different machines (with different
processing power) corresponding to two robots (Relé - an AMD-K6
200MHz - and Homer - a AMD-K6 233Mhz -) and a monitor (an Intel
Pentium IT 300 Mhz), connected using radio ethernet (2 Mbit band-
width Wavelans). The top line in the diagram indicates the calculated
time available each 100 ms for communication purposes. Clearly, this
value decreases as the number of tasks in execution increases (and,
consequently, the computational load). The bottom line indicates the
time spent in communication, which also increases with the number
of experts (this is because in this experiment we have assumed that
the activity of every expert involves either transmission or reception
of messages). In this way it is always possible to determine a priori
whether the system is capable of both communicating information and
executing in real time.

Finally, it is worth considering the transmission complexity which
determines the bandwidth requirements. In general, if we have a system
composed of n robots and m roles we have a complexity O(mn) corre-
sponding to the number of utility values that have to be transmitted. In

main.tex; 29/08/2002; 20:26; p.15

16 Iocchi, Nardi, Piaggio, Sgorbissa

40 4

35 4
SD_H
28 4

20 4
15 4
10 4

——Time Availahle

——Time Spent

milliseconds

I O U RN

n. of Experts

40
35
30
25
20
15 A
10 A

5 | e

——Time Available

——Time Spent

milliseconds

I O ST N

n. of Experts

35 4
30 4
25 4
20 4
15 4
10 A =

—Time Available

——Time Spent

milliseconds

g Le—

AT AT S AR AR

2 o ,p

n. of Experts

Figure 3. Network Communication in ETHNOS. From top to bottom: the monitor,
Relé, Homer

fact, according to ETHNOS broadcast communication strategy, if the
number of roles is fixed the complexity linearly increases with respect
to the number of robots and viceversa. This typically occurs in many
applications in which the number of roles is significantly lower than the
number of robots and it is fixed and related to the specific application

main.tex; 29/08/2002; 20:26; p.16

Distributed coordination in heterogeneous multi-robot systems 17

Table I. Robots’ roles.

|| Match | Attacker | Support | Defender ||

82.9% 39.5% 98.2%
84.6% 98.0% 80.8%
87.6% 38.5% 90.0%
89.5% 81.8% 96.9%
93.5% 84.1% 98.9%

Ot = W N =

| Ave. | 87.6% | 68.3% | 93.0% |

Table II. Robot position in the field.

|| Match | Forward | Middle | Backward ||

78.8% 68.7% 97.8%
65.4% 68.8% 98.6%
53.2% 54.5% 99.3%
23.5% 80.4% 93.1%
64.1% 72.1% 98.9%

o>
< [o W N =
o

| 57.0% | 68.9% | 97.5% |

domain. In addition, the size of messages is limited and the bandwidth
required is thus very low.

5.4. COORDINATION ANALYSIS

The evaluation of the coordination protocol in this setting has been
carried out by analyzing a set of log files acquired during the matches
in the European Championship 2000. We present here the results of this
analysis both for the communication and for the coordination layer.

A quantitative analysis of the coordination protocol has been worked
out through the collection of the log files of various games.

Table I describes the percentage of time in which a role is assigned
to at least one robot. Since the roles are ordered in terms of importance
within a formation, some roles are more likely to be assigned. In par-
ticular Attacker and Defender were almost always assigned, while for
instance the role Support was not assigned when there were only two
players in the field. Therefore, with respect to a static assignment of
roles, dynamic assignment provides a good distribution of the roles, but

main.tex; 29/08/2002; 20:26; p.17

18 Iocchi, Nardi, Piaggio, Sgorbissa

with the advantage of selecting the more appropriate robot for every
role depending on the current situation of the environment.

Table II shows the coverage of the field by the three middlefield
robots (i.e. the percentage of time in which at least one robot was in
a zone of the field). It is interesting to notice that the field has been
properly covered, even if there is not an explicit split of the field in
sections assigned to the robots. In particular, the defensive area has
been occupied by at least one robot almost at every time.

Another analysis shows that during the game there is an average of
one role switch every 10 seconds. Due to occasional loss of transmitted
data, we noticed that about 1/10 of the role switches generates roles’
oscillation, lasting about 300 ms before stabilization.

Finally, by a comparison between the logs and a visual review of
the game, we have discovered that one relatively frequent source of
failure in coordination arises from situations in which a robot is not
actually able to correctly evaluate the utility function for a certain
role. This situation arise when there is a problem in the vision system
which causes the robot to see the ball very close to it, while it is not.
This robot gets the role Attacker with the goal of going to the ball,
but it will be unsuccessful while blocking the exchange of roles. This
behavior shows that the coordinated system is highly influenced by the
individual robot failure. In such cases the overall performance of the
team is not good, since a robot that is actually in a better position
to go will not assume the correct role. The problem has been success-
fully addressed by decreasing the utility function when the robot does
not make progress in its task. This is obtained by a task-dependent
evaluation of the progress of the robot in performing the task. For
example, the evaluation of the progress of the task associated to our
role Attacker is given by the computation of the distance to the ball
that must decrease in time. If the distance to the ball does not decrease
the utility function for the role Attacker returns a lower value, allowing
other robots to possibly take the role.

6. Related work

Recently, there has been a growing interest in multi-agent robotic sys-
tems, as witnessed by the great number of scientific publications in
the field (for a survey see [14, 11, 25, 7]). Research has mostly been
focused on specific aspects (distributed system architectures, commu-
nication modalities, coordinated motion, cooperation and competition,
etc.), on particular environments (military [32, 29], service [17] [16],
extra-terrestrial planetary exploration domain [30], etc.).

main.tex; 29/08/2002; 20:26; p.18

Distributed coordination in heterogeneous multi-robot systems 19

In this section we identify those aspects of the MRS discussed in the
literature that are more closely related to our work. Subsequently, we
will address RoboCup related approaches.

From the architectural point of view our approach requires only
a common communication layer, whereas significantly different archi-
tectural models can be adopted. This is witnessed by the different
architectures (behaviors based, hybrid, fuzzy-logic based) of the robots
in the ART team. Other approaches impose more rigid constraints. For
example in [10, 33] subsumption-based reactive control is adopted for
robot societies consisting of up to 20 agents. ALLIANCE [34] and BLE
[45] provide coordination among the robots by an inhibition mechanism
that is used by one robot to disable the execution of a behavior on
other robots. Robots in these systems are designed in a behavior-based
architecture. A more general approach is proposed in [2, 6] where the
AuRa hybrid architectural model is extended to handle multi robot
coordination in hostile environment exploration for urban warfare and
for navigation in military formation. Also the MURDOCH architec-
ture [20] defines a distributed communication system based on a pub-
lish/subscribe paradigm that may be implemented on different robotic
architectures.

Heterogeneity is a fundamental feature of our approach and in fact
the robots in the ART team differ not only in the control architec-
ture, but also in the mechanics, sensors and actuators as well as in
the robot shape and appearance. It is important to emphasize that
in our approach heterogeneity is a requirement that the robotic sys-
tem must handle (the robots to be coordinated have been developed
independently and beforehand by separate research groups) and that
every robot is able to perform every task, but possibly with different
performance. Other approaches in literature have typically dealt with
heterogeneity in a different way. For example in [41, 35]. heterogeneity
is specifically designed and adopted to better accomplish a given task.

Our approach differs from many other proposed systems also in the
role of coordination to address the given task. In fact we are not simply
interested in finding a spatial distribution of the robots in order to
optimize the execution of a cooperative task (as in typical coverage
problems [19, 23], such as mine collecting [1] or floor cleaning [26]);
instead, we aim at finding a solution for the more general problem,
where robots are given a set of criteria and an arbitration algorithm
to negotiate the role that each of them must assume (in our definition,
selecting a role means choosing and activating the group of concurrent
behaviors that are associated with that specific role). This problem,
often related to the presence of a robotic or human opponent, has been
considered relevant in military applications for Urban Warfare. In this

main.tex; 29/08/2002; 20:26; p.19

20 Iocchi, Nardi, Piaggio, Sgorbissa

scenario a group of robots are deployed into an unknown, possibly
hostile environment (for example a building occupied by enemy forces)
with the purpose of exploring it and report to a base station what they
have discovered (as in the DARPA Tactical Mobile Robot domain [8]).

The problem of dynamic task assignment has been specifically ad-
dressed also in some recent works [45, 20, 43, 40]. The work in [45]
describes an approach to distributed task assignment similar to the
one presented here. In order to assign a task every robot collects a
value (that can be seen as the result of our utility functions) from
all the other robots, the robot with the maximum value can send an
inhibition signal to the other robots in order to disable their execution
of the behavior associated to this task. As already mentioned before,
this mechanism is based on a Port-Arbitrated Behavior-Based architec-
ture. In the MURDOCH system [20] tasks are organized in a structure
similar to a Hierarchical Task Network and task allocation is computed
by a sequence of “one-round auctions”. When a task is to be executed
by the MRS an auction mechanism allows for deciding which robot is
in the best condition to perform the task by means of the evaluation
of some metric functions, that are similar to our utility functions. A
difference with respect to our system is that we evaluate our utility
functions periodically during the mission, so that if one robot happens
to be in a better condition to do a task a role switching is performed.
The work in [43] addresses the issue of “module conflict”, that is needed
for avoiding that two or more robots execute incompatible tasks. The
authors define the concept of module, that is slightly different from our
definition of role. While their modules are associated to the basic tasks
that can be executed by the robots, our roles define high-level tasks
that must be accomplished by the robots (possibly executing simpler
subtasks). Therefore, the association between robots and roles is one-
to-one in our approach, while it is many-to-many in [43]. The module
conflict resolution mechanism in [43], that is used for dynamic task
assignment, is based on the evaluation of a correlation function that
defines incompatibility among the modules. This function is defined by
the user for every pair of modules. Finally, in [40] tasks are organized in
Distributed Organizational Task Networks (DOTN) and task allocation
is performed by a heuristic search in the space of possible assignments
between robots and DOTN. Task assignment is not based on the eval-
uation of a function for measuring the quality of task allocation, but
on minimizing the dependencies among the tasks assigned to different
robots, so that each robot can perform its tasks in a more independent
way.

Among the proposals for robot coordination developed in the Robo-
Cup environment, we may find both centralized and distributed ap-

main.tex; 29/08/2002; 20:26; p.20

Distributed coordination in heterogeneous multi-robot systems 21

proaches. Centralized ones are mostly adopted in the Small-size League
where a global reconstruction of the environment is possible (because
of the availability of a global vision system) and when a team of robots
can reliably reconstruct global information about the environment from
local sensors. For example the CS Freiburg team in the Middle-size
League [22] makes use of very precise measurements given by laser scan-
ners to reconstruct a global representation of the field and a centralized
coordination is realized by dynamic selection of the robot that acts as
the leader. However, possible communication failures, that are very
common in the RoboCup environment, as well as the general difficulty
of reconstructing a global reliable view of the environment, require
full autonomy on each robot and distributed approaches are usually
preferred in this context. A distributed approach that is not based on
explicit communication is described in [18], in which two robots are able
to exchange the ball by using direct communication of their roles and a
field-vector based collision avoidance that takes into account in a proper
way the role of the robots. Other behavior based reactive MRS are
presented in [9, 12]. Our approach exhibits the following two features:
on one hand, it exploits explicit communication among the robots for
exchanging information about the status of the environment in order
to achieve a distributed agreement on the actions to be performed; on
the other hand, it is robust to possible communication failures, since
in these cases the system degrades its performance, but it still keeps
on the execution of the task.

7. Conclusions

In this article we have described an approach to distributed coordina-
tion of a team of heterogeneous mobile robots, whose main features are:
explicit communication among the robots, autonomy in coordination
and heterogeneity of robots with similar capabilities. The approach
was originally developed for the RoboCup environment, and it is thus
suitable for highly dynamic and hostile environments.

The successful application of the method has proved its effectiveness
in a challenging scenario for MRS coordination. In fact, the coordina-
tion method described here has been a critical factor in the performance
of the ART robot team for the Stockolm 1999 and Amsterdam 2000
RoboCup competitions, where the ART has classified in the second
place for both of these competitions. ART soccer team was a highly
heterogeneous team, since different players were designed by different
research groups exploring different hardware and software solutions.
The proposed system architecture allowed to easily integrate together

main.tex; 29/08/2002; 20:26; p.21

22 Iocchi, Nardi, Piaggio, Sgorbissa

the results of different researchers across different groups and to easily
implement protocols for inter-robot coordination (by hiding to the pro-
grammers the details of communication). It is important to emphasize
that in our approach heterogeneity is a requirement that the robotic
system must handle (the robots to be coordinated have been developed
independently and beforehand by separate research groups). Moreover,
as a difference with other heterogeneous MRS [41, 35], in our case all the
robots are able to perform all the tasks, but with different performance
that is taken into account in the coordination protocol. We believe
that the availability of robots with different features and designed by
different manufacturers is a realistic scenario in the next future.
Another important contribution of this article is in the definition of
methods and tools for an experimental evaluation of the performance
of the proposed coordination method. In particular the analysis of
communication packets has proved the effectiveness and reliability of
the EIEP for robots’ information exchanging, while the analysis on the
coordination protocol has showed that several properties (like area cov-
erage and role assignment), that are important for the environment in
which coordination has been applied, have been substantially achieved.
One critical aspect of distributed coordination in a MRS is the ro-
bustness of the method, with respect to failures and malfunctioning
of the robots. The method described in this paper made the team
sufficiently robust to perform successfully during the competitions.
However we believe that the methods for achieving robustness of the
team performance deserve further investigation. Another important is-
sue is the evaluation of the effectiveness of coordination methods. We
are currently addressing this aspect both by improving the techniques
and tools proposed in the paper and by addressing the analysis of a
wider set of properties that are related to coordination and team work.

Acknowledgments

We would like to thank all the members of ART, who contributed
to the development of the team. The experimentation of robotic team
work has been greatly supported by the whole team. We would like to
thank Claudio Castelpietra and Alessandro Scalzo particularly for their
contribution to the implementation of the proposed method. We ac-
knowledge the support of Consorzio Padova Ricerche, CNR, University
of Rome “La Sapienza”, and University of Genova.

main.tex; 29/08/2002; 20:26; p.22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Distributed coordination in heterogeneous multi-robot systems 23
References

Acar, E., Y. Zhang, H. Choset, M. Schervish, A. G. Costa, R. Melamud,
D. Lean, and A. Graveline: 2001, ‘Path Planning for Robotic Demining and
Development of a Test Platform’. In: Field and Service Robotics.

Arkin, R., T. Collins, and T. Endo: 1999, ‘Tactical Mobile Robot Mission
Specification and Execution’. In: Mobile Robots XIV. Boston, USA, pp. 150—
163.

Balch, T.: 1999, ‘The impact of diversity on performance in multi-robot
foraging’. In: Proc. of Agents ’99.

Balch, T.: 2000, ‘Hierarchic social entropy: an information theoretic measure
of robot team diversity’. Autonomous Robots 8(3).

Balch, T. and R. C. Arkin: 1995, ‘Communication in Reactive Multiagent
Robotic Systems’. Autonomous Robots 1(1), 27-52.

Balch, T. and R. C. Arkin: 1998, ‘Behavior-based Formation Control for Multi-
robot Teams’. IEEE transactions on robotics and automation 14(6).

Balch, T. and L. E. Parker (eds.): 2002, Robot Teams: From Diversity to
Polymorphism. A K Peters Ltd.

Blitch, J.: 1999, ‘Tactical Mobile Robots for Complex Urban Environments’.
In: Mobile Robots XIV. Boston, USA, pp. 116-128.

Brendenfeld, A. and H. U. Kobialka: 2000, ‘Team Cooperation using Dual
Dynamics’. In: Proc. of ECAI2000 Workshop on Balancing Reactivity and
Social Deliberation in Multi-Agent Systems.

Brooks, R., P. Maes, M. Mataric, and G. More: 1990, ‘Lunar Base Construction
Robots’. In: IEEE International Workshop on Intelligent Robots and Systems.
Tsuchiura, Japan, pp. 389-392.

Cao, Y. U, A. Fukunaga, and A. Kahng: 1997, ‘Cooperative Mobile Robotics:
Antecedents and Directions’. Autonomous Robots 4, 1-23.

Carpin, S., C. Ferrari, F. Montesello, E. Pagello, and P. Patuelli: 2000, ‘Scalable
Deliberative Procedures for Efficient Multi-robot Coordination’. In: Proc. of
ECAI2000 Workshop on Balancing Reactivity and Social Deliberation in Multi-
Agent Systems.

Castelpietra, C., L. Iocchi, D. Nardi, M. Piaggio, A. Scalzo, and A. Sgorbissa:
2000, ‘Coordination among heterogenous robotic soccer players’. In: Proc. of
International Conference on Intelligent Robots and Systems (IROS’2000).
Dudek, D., M. Jenkin, E. Milios, and D. Wilkes: 1996, ‘A Taxonomy for Multi-
Agent Robotics’. Autonomous Robots 3(4), 375-397.

Engelore, R. and T. M. (eds): 1988, Blackboard systems. Addison-Wesley.
Evans, J.: 1995, ‘HelpMate: a Service Robot Success Story’. ServiceRobot: An
International Journal 1(1), 19-21.

Everett, H. R. and D. Gage: 1996, ‘A Third Generation Security Robot’. In:
SPIE Mobile Robot and Automated Vehicle Control Systems. Boston, USA, pp.
20-21.

Ferraresso, M., C. Ferrari, E. Pagello, R. Polesel, R. Rosati, A. Speranzon,
and W. Zanette: 2000, ‘Collaborative Emergent Actions Between Real Soccer
Robots’. In: RoboCup-2000: Robot Soccer World Cup IV.

Fontan, M. and M. Mataric: 1998, ‘Territorial multi-robot task division’. IEEE
Transactions on Robotics and Automation 15(5).

Gerkey, B. P. and M. J. Matari¢: 2000, ‘Principled Communication for Dynamic
Multi-Robot Task Allocation’. In: Proceedings of the International Symposium
on Ezperimental Robotics. Waikiki, Hawaii.

main.tex; 29/08/2002; 20:26; p.23

24

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Iocchi, Nardi, Piaggio, Sgorbissa

Guibas, L. J., J. Latombe, S. LaValle, and D. Lin: 1999, ‘A Visibility-Based
Pursuit-Evasion Problem’. International Journal of Computational Geometry
and Applications 9, 471-494.

Gutmann, J.-S., T. Weigel, and B. Nebel: 1999, ‘Fast, Accurate, and Robust
Self-Localization in the RoboCup Environment’. In: RoboCup-99: Robot Soccer
World Cup III. pp. 304-317.

H., C.: 2001, ‘Coverage for robotics - A survey on recent results’. Annals
of Mathematics and Artificial Intelligence 31, pp 113-126. Kluwer academic
Publishers, printed in the Netherlands.

Hannebauer, M., J. Wendler, P. Gugenberger, and H. Burkhard: 1998, ‘Emer-
gent Cooperation in a Virtual Soccer Environment’. In: Proc. of DARS-98.
Tocchi, L., D. Nardi, and M. Salerno: 2001, ‘Reactivity and Deliberation: a
survey on Multi-Robot Systems’. In: E. P. M. Hannebauer, J. Wendler (ed.):
Balancing Reactivity and Deliberation in Multi-Agent Systems (LNAI 2103).
Springer, pp. 9-32.

Jung, D. and A. Zelinsky: 2000, ‘Grounded Symbolic Communication Between
Heterogenoeus Cooperating Robots’. Autonomous Robots 8(3).

Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara:
1998, ‘RoboCup: A Challenge Problem for AI and Robotics’. In: Lecture Note
in Artificial Intelligence, Vol. 1395. pp. 1-19.

Konolige, K., K. Myers, E. Ruspini, and A. Saffiotti: 1997, ‘The Saphira Ar-
chitecture: A Design for Autonomy’. Journal of Ezperimental and Theoretical
Artificial Intelligence 9(1), 215-235.

Lee, J., M. Huber, E. Durfee, and P. Kenny: 1994, ‘M-PRS: An Implemen-
tation of the Procedural Reasoning System for Multirobot Applications’. In:
AIAA/NASA Conference on Intelligent Robots in Field, Factory, Service, and
Space.

Miller, D.: 1990, ‘Multiple Behavior-Controlled MicroRobots for Planetary
Surface Missions’. In: IEEE International Conference on Systems, Man, and
Cybernetics. Los Angeles, USA, pp. 289-292.

Nardi, D., G. Adorni, A. Bonarini, A. Chella, G. Clemente, E. Pagello, and M.
Piaggio: 1999, ‘ART-99: Azzurra Robot Team’. In: RoboCup-99: Robot Soccer
World Cup III

Noreils, F. R.: 1992, ‘Battlefield Strategies and Coordination between Mobile
Robots’. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. pp. 1777-1784.

Parker, L.: 1993, ‘Adaptive Action Selection for Cooperative Agent Teams’. In:
Proc. of 2nd International Conference on the Simulation of Adaptive Behavior.
Honolulu, USA, pp. 442-450.

Parker, L. E.: 1998, ‘ALLIANCE: An Architecture for fault Tolerant Multirobot
Cooperation’. IEEE Transactions on Robotics and Automation 14(2), 220-240.
Parker, L. E.: 2000, ‘Lifelong Adaption in Heterogeneous Multi-Robot Teams:
Response to Continual Variation in Individual Robot Performance’. Au-
tonomous Robots 8(3), 239-267.

Piaggio, M., A. Sgorbissa, and R. Zaccaria: 2000a, ‘Pre-emptive versus non-
pre-emptive real time scheduling in intelligent mobile robotics’. Journal of
Ezxperimental and Theoretical Artificial Intelligence 12, 235-245.

Piaggio, M., A. Sgorbissa, and R. Zaccaria: 2000b, ‘A programming environ-
ment for real time control of distributed multiple robotic systems’. Advanced
Robotics 14(1), 75-86.

main.tex; 29/08/2002; 20:26; p.24

38.

39.

40.

41.

42.

43.

44.

45.

Distributed coordination in heterogeneous multi-robot systems 25

Piaggio, M., A. Sgorbissa, and R. Zaccaria: 2001, ‘Autonomous Navigation and
Localization in Service Mobile Robotics’. In: Proc. of IROS’01.

Piaggio, M. and R. Zaccaria: 1997, ‘An Information Exchange Protocol in a
Multi-Layer Distributed Architecture’. In: IEEE Proc. Hawaii International
Conference on Complex Systems.

Shen, W. M. and B. Salemi: 2002, ‘Distributed and Dynamic Task Reallocation
in Robot Organizations’. In: Prooceedings of the 2002 IEEE Int. Conference
on Robotics and Automation. Washington, DC.

Simmons, R., D. Apfelbaum, D. Fox, R. P. Goldman, K. Z. Haigh, D. J.
Musliner, M. Pelican, and S. Thrun: 2000, ‘Coordinated Deployment of Multi-
ple, Heterogeneous Robots’. In: Proc. of International Conference on Intelligent
Robots and Systems (IROS’2000).

Stone, P. and M. Veloso: 1999, ‘Task Decomposition, Dynamic Role Assign-
ment, and Low-Bandwidth Communication for Real-Time Strategic Team-
work’. Artificial Intelligence 110(2), 241-273.

Uchibe, E., T. Kato, M. Asada, and K. Hosoda: 2001, ‘Dynamic Task As-
signment in a Multiagent/Multitask Environment based on Module Conflict
Resolution’. In: Proced. of the 2001 IEEE International Conference on Robotics
and Automation. Seoul, Korea.

Veloso, M. and P. Stone: 1998, ‘Individual and Collaborative Behaviors in a
Team of Homogeneous Robotic Soccer Agents’. In: Proceedings of the Third
International Conference on Multi-Agent Systems. pp. 309-316.

Werger, B. B. and M. J. Mataric: 2000, ‘Broadcast of Local Eligibility for
Multi-Target Observation’. In: Proc. of DARS.

Address for Offprints: Kluwer Prepress Department
P.O. Box 990

3300 AZ Dordrecht

The Netherlands

main.tex; 29/08/2002; 20:26; p.25

main.tex; 29/08/2002; 20:26; p.26

In the 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation

Cooperative Tracking using Mobile Robots and
Environment-Embedded, Networked Sensors*

Boyoon Jung and Gaurav S. Sukhatme

boyoon|gaurav@robotics.usc.edu

Robotic Embedded Systems Laboratory
Robotics Research Laboratory
Department of Computer Science
University of Southern California
Los Angeles, CA 90089-0781

Abstract

We study the target tracking problem using mul-
tiple, environment-embedded, stationary sensors and
mobile robots. An architecture for robot motion coor-
dination is presented which exploits a shared topolog-
ical map of the environment. The stationary sensors
and robots maintain region-based density estimates
which are used to guide the robots to parts of the en-
vironment where unobserved targets may be present.
Experiments in simulation show that the region-based
approach works better than a naive target following
approach when the number of targets in the environ-
ment is high.

1 Introduction

Autonomous target tracking has many potential
applications; e.g. surveillance, security, etc. Mo-
bile robot-based trackers are attractive for two rea-
sons: they can potentially reduce the overall num-
ber of sensors needed and they can adapt to the
movement of the targets (e.g. follow targets to oc-
cluded areas). The robot-based target tracking prob-
lem (CMOMMT: Cooperative Multirobot Observa-
tion of Multiple Moving Targets), has been formally
defined in [1] and has received recent attention in the
robotics community[2, 3].

The CMOMMT problem is defined as follows.
Given a bounded, enclosed region S, a team of m
robots R, a set of n targets O(t), and a binary vari-
able In(o;(t),S) defined to be true when target o;(t)
is located within region S at time ¢, and m X n matrix
A(z) is defined where
{1 if a robot r; is monitoring target o, (t)

ai;(t) = in S at time ¢

0 otherwise

and the logical OR operator is defined as

*This work is sponsored in part by DARPA grant DABT63-
99-1-0015 and NSF grants ANI-9979457 and ANI-0082498

k3

\k/ b — 1 if there exists an 7 such that h; = 1
=1 " |0 otherwise

The goal of the CMOMMT is to maximize the ob-
servation.

T k
im0 2= Y 05 (1)

TXm

Observation = (1)
In [1, 2], the ALLIANCE architecture was used to co-
ordinate robots in the CMOMMT task; role assign-
ment among mobile robots was achieved implicitly
through one-way communication. However, it was
assumed that the observation sensors had a perfect
field-of-view and a known global coordinate system.
Experiments were performed in a bounded, enclosed
spatial region, and an indoor global positioning sys-
tem was utilized as a substitute for vision or range-
sensor-based tracking. In [3], an approach to a similar
problem using the BLE (Broadcast of Local Eligibil-
ity) technique was presented which used a real video
camera to track moving objects, and one-way com-
munication for explicit role-assignment. However, the
environment in [3] was very simple, and movements of
targets were pre-programmed. Each target was also
identified a priori. In [4], a Variable Structure Inter-
acting Multiple Model (VS-IMM) estimator combined
with an assignment algorithm for tracking multiple
ground targets was described.

In this paper, we consider a more realistic office-like
environment. It consists of corridors; offices will be
added in the near future. The major difference from
previous research is to utilize environment-embedded,
stationary sensors installed at fixed positions in the
environment. These sensors are used to track moving
targets in their sensor range, and broadcast target lo-
cation information over a wireless channel. The mo-
bile robots are used to explore regions which are not
covered by the fixed sensors. The robots also broad-
cast the tracked target location information. We

(a) Environment

(b) Landmarks

(c) Regions (d) Topological map

Figure 1: A structured environment segmented into landmarks and regions

present a region-based strategy for robot coordina-
tion which uses a topological map, and compare it to
a naive ‘target-following’ strategy using the observa-
tion metric similar to Equation 1. Our results show
that the region-based strategy works better than the
naive strategy when the number of targets in large.

In Section 2, the region-based method and system
architecture is described. The simulation environ-
ment and experimental results are discussed in Sec-
tion 3. Concluding remarks and future work is dis-
cussed in Section 4.

2 Region-based Robot Coordination

When the environment is an empty open space, the
main challenge is to assign targets to a fixed number
of robots based on the distances between robots and
targets. However, when the environment has struc-
ture (e.g. office-type environment), it is important to
disperse robots properly. We propose a region-based
approach for this purpose.

2.1 Assumptions

We make several assumptions about the environ-
ment and robot capabilities. First, a topological map
of the environment is assumed to be given. Previous
research on map building is extensive [5, 6, 7]. In [5],
a simple, modular, and scalable behavior-based tech-
nique for incremental on-line mapping is presented,
and in [6], a simple, yet robust cooperative mapping
method using multiple robots is presented. In [7], a
probabilistic approach to building large-scale maps of
indoor environments with mobile robots is presented.
In this paper, the data structures from [6] have been
adopted to build a topological map.

The second assumption is that global communica-
tion between robots and the fixed sensors is allowed.
However, this does not imply two-way communica-
tion, like a negotiation. We only use one-way broad-
cast among sensors and robots; whenever a sensor
detects a moving target, the sensor broadcasts the
estimated position of the target. Perfect communica-
tion is not necessary either; a small rate of packet loss
will not degrade the performance of the system.

Third, the initial position of the mobile robots is
assumed to be known for localization. Since odometry
is used for localization in the experiments reported
here, the initial positions of the mobile robots must
be known. However, localization information is used
only for estimating the positions of moving objects,
not for navigation. Navigation is based on a landmark
detector, not global positioning.

2.2 The Region-based Method

The basic idea of the region-based approach is that
the environment can be divided into several (topologi-
cally simple) regions using landmarks as demarcaters.
In Figure 1 (a), a simple office-type environment that
consists of corridors is shown, (b) shows landmarks,
(c) shows how the environment can be divided into re-
gions by the landmarks, and (d) is a topological map
of the environment.

Assuming that a topological map is given, we need
to decide which region “needs” more robots and which
region does not. In order to answer this question, each
region is assigned two properties: a robot density (D)
and a target density (D;). They are defined as follows:

The number of robots in regionr

D,(r) = (2)

Area of regionr

The number of targets in region r
Dy(r) =

®3)

Robot density indicates how many robots! are in a re-
gion, and target density indicates how many tracked
targets are in a region. The definition for Dy(r) is
not complete as stated in Equation (3); as we explain
later, D;(r) can also assume negative values if no mov-
ing objects are detected in region r. Both values are
normalized by area. If a region has low robot density
and high target density, the region needs more mobile
robots, and vice versa.

Sometimes, a robot must stay in its current region
even though there is another region that needs more
robots; for example, when it is the only robot track-
ing objects in its region or when there are too many

Area of regionr

1Embedded stationary sensors are counted as robots when
robot density is calculated.

Laser

Seek Targets
Et her net Updat e Map Map

P Et her net)

Sonar >

Fol | ow Targets

Figure 2: System architecture for mobile robots and embedded sensors

moving objects in the region. Therefore, each robot
must check its availability on the basis of the following
criteria:

Dy(r.) <0 (4)
Dt("‘c)
Dy (ro) <46 (5)

Equation (4) models the situation when the robot has
observed the current region r., but couldn’t find any
target in it, and equation (5) models the situation
when there are more than enough robots in the cur-
rent region r.. This is signified by the ratio in Equa-
tion (5) being less than a prespecified threshold 6.
If the situation falls under one of the above criteria,
the robot is available and decides to move to another
region.

Another problem is how to choose the most urgent
region to be observed. The two density properties of
each region are used to choose one. The following
equations show how these properties are used:

Dy(rs) = 0 A Dy(ri) > 0 (6)
Dy(r;)
Dy(r;) =0A D(r;) =0 (8)

Equation (6) means that a region r; has moving ob-
jects which are not being observed. Equation (7)
means that a region has too many objects to be
tracked by the current number of robots, and Equa-
tion (8) means that a region is not being observed cur-
rently. These rules are prioritized; Equation (6) has
the highest priority, and Equation (8) has the lowest
one. A region for which a higher priority rule is appli-
cable must be observed first. If there are two or more
regions with the same score, the region closest to the
current robot position is selected to be observed.

2.3 System Architecture

Figure 2 shows a behavior-based control architec-
ture for the mobile robots which uses the density es-
timate for role assignment. There are five modules
in the controller: one for detecting moving targets
and four for dispersing robots according to the crite-
ria discussed in the previous section. The embedded

sensors have exactly the same system architecture as
the mobile robots, but only one module, Seek-Targets,
is activated.

2.3.1 Seek-Targets

Seek-Targets detects moving objects and broad-
casts their estimated positions. As shown in Figure
2, two trackers have been developed: a laser-based
tracker and a vision-based tracker. Target tracking is
a well studied problem, especially in computer vision
[8, 9, 10]. Our trackers are simple by design since our
focus is on robot role-assignment.

The laser-based tracker uses the SICK laser
rangefinder. It reads the laser rangefinder at 10 Hz
and analyzes the data to find moving objects using
scan differencing between consecutive laser readings.
A big difference is attributed to a moving object. For
accurate tracking, a simple edge detection algorithm
is used. Figure 3 (a) and (b) shows two example ac-
tual laser readings. The upper window shows two
consecutive laser readings and edges, and the lower
window shows the difference between the two read-
ings and a detected moving object.

The idea can be implemented without any lim-
itation for stationary embedded sensors, but sev-
eral limitations exist for mobile robots carrying laser
rangefinders. In the mobile robots’ case, simply com-
paring two consecutive laser readings is not correct
because the robot actually moves during the scan pro-
cess. Figure 4 shows two different positions of a robot
when the laser was used. In order to compare these
scans correctly, the old reading must be transformed
to the new coordinate system. However, during the
transformation, there may be several parts of the scan
that have no valid data because of rounding errors or
two exceptions. The first exception is when the old
reading contains the maximum value, which means
there is an empty region in front of it. The second ex-
ception is a corner occlusion. When there is a corner,
the old scan does not have any information behind a
corner, but the new scan may have (the fan-shaped
region in Figure 4). Therefore, these areas must be ig-
nored. The lower window in Figure 3 (b) shows these
ignored regions; only the gray region is compared to

Lesen Readfing Leser Reading

BY

- Diflerence - Diflerence

1

r

(a) Laser (Sensors)

(b) Laser (Robots)

(c) Vision

Figure 3: Moving-object tracker: various sensory readings

—_—

Figure 4: Coordinate transformation

calculate a difference. For example, in Figure 3 (a),
there is no ignored region because the embedded sen-
sors never move, but there are several ignored regions
in Figure 3 (b).

The vision-based tracker uses a camera and a laser
rangefinder. A color-blob detector was used to sim-
plify the vision problem. It finds the existence and
direction of colored objects using a camera, and mea-
sures the distance to objects using a laser rangefinder.
Figure 3 (c) shows corresponding camera and laser
readings taken from a single robot.

When moving objects are detected, the Seek-
Targets behavior broadcasts their estimated positions
over the network.

2.3.2 Update-Map

Update-Map maintains an internal map. It reads
broadcast packets about target locations, and puts
them in a queue. By counting the packets in the
queue, it can estimate the number of robots and the
number of targets in each region. However, before
counting them, a proper grouping strategy is required.
Figure 5 shows a situation that requires grouping; A
stationary sensor and a robot both detect a moving
target. The mobile robot broadcasts the position of
the target, and the embedded sensor does the same,
but the position estimates are different. These two
estimated positions of the moving object must be
grouped as one target. In addition, the embedded
sensor would recognize the robot as a moving object
because it cannot distinguish a robot from moving ob-
jects. This estimated position must be grouped with
the robot’s position, and removed from the target list.

The robot density and the target density of each
region are updated using Equations (2) and (3). The
range of robot density is from 0.0 to 1.0, and the

Figure 5: Grouping

range of target density is from -1.0 to 1.0. According
to Equation (3), target density cannot be negative.
Update-Map uses the negative range of target density
in order to mark empty regions. Whenever a robot
cannot find any moving objects, it sets the target den-
sity of the current region to -1.0, which means that the
region does not have any moving objects. By using
the negative range, a robot can distinguish a region
that does not have any moving object from a region
that has not been observed. If target density is nega-
tive, Update-Map increases it slowly over time to 0.0
because the environment is dynamic. When target
density becomes 0.0, it means the system has forgot-
ten that there was no target in the region; the robots
may now try to observe the region again if needed.

2.3.3 Avoid-Obstacles

Awoid-Obstacles allows a robot to navigate with-
out collision. It uses the eight front sonars to detect
an obstacle. Each sonar uses a different range to de-
tect obstacles, and constructs a virtual oval-shaped
region in front of the robot. When any obstacle en-
ters the region, Avoid-Obstacles reduces the speed in
inverse-proportion to the distance to the obstacle, and
turns away from the obstacle. In addition, Avoid-
Obstacles stops a robot in place when a moving object
approaches it, instead of actively avoiding it.

2.3.4 Move-To-Region

Mowve-To-Region disperses robots all over the envi-
ronment. The algorithm for it is divided into three
steps: checking robot availability, finding the most
urgent region, and moving to the region. First, this
behavior checks if a robot itself is free to move to an-
other region. Equations (4) and (5) are the criteria
to decide if a robot is available for observing other

Avoid Costacles f------ .

Random Move

Vval | Fol | owi ng

Figure 6: System architecture for target simulation

regions. If available, the behavior finds a region to be
observed urgently on the basis of the internal map. It
simply examines the internal map, and finds one using
the prioritized scoring policy (Equations (6), (7), and
(8)). If there are two or more regions that have the
same score, the closer region is selected as the most
urgent region. Once a starting region and a goal re-
gion are decided, a simple graph search is performed
to find the shortest path. (The internal maps consist
of nodes (landmarks) and regions as shown in Figure
1(d).) A robot follows the shortest path to move to
the goal region.

2.3.5 Follow-Targets

The Follow-Targets behavior causes robots to fol-
low detected targets. In order to make robots follow
more than one target at the same time, Follow-Targets
calculates the center of mass of detected targets and
follows this point, not the targets themselves. The
worst case is when two targets move in opposite di-
rections. This does not happen often in our narrow
corridor environment.

3 Experimental Results

To test our region-based cooperative target track-
ing approach, several experiments have been per-
formed using a multiple robot simulator.

3.1 Stage and Player

Player [11] is a server and protocol that con-
nects robots, sensors and control programs across
the network. Stage [12] simulates a population
of Player devices, allowing off-line development of
control algorithms. Player and Stage were devel-
oped at the USC Robotics Research Labs and are
freely available under the GNU Public License from
http:/ /robotics.usc.edu/player/.

3.2 Target Simulation

Because Stage supports only mobile robots, mov-
ing targets in the environment were simulated us-
ing robots. The target movements are intended to
crudely simulate human movements in an office en-
vironment, especially in corridors, like wall-following,
turning, staying in place with other targets, etc. Fig-
ure 6 shows the control architecture of moving targets.

Wall-Following uses two pairs of side sonars. Tar-
get motion is divided into two parts: speed control

T
12 Average —— o
Observation -------

100%)

Coverage (1.0

0 L L L L L
0 200 400 600 800 1000 1200

Simulation Time (0.5 sec)

Figure 7: Convergence of the average value

90 T T
Number of Targets =4 ———
Number of Targets = 6 -------
Number of Targets =8 ------ -

80 [—

60 [

Observation (%)

40

20 L L L L L L
1 2 3 4 5 6 7 8

Number of robots

Figure 8: Performance of the region-based method

and direction control. Wall-Following sets the speed
to a maximum value, and uses a proportional con-
troller to align the target parallel to a wall using the
front and rear sonars. Random was added to make
targets’ movements somewhat unpredictable. Cur-
rently, only one random move is being generated,
turning around. However, due to interactions with
other targets and robots, each target’s moves are quite
complicated and unpredictable. Awoid-Obstacles is
the same module used in the robot controller. The
only difference is that a target never stops in place; it
always actively avoids obstacles.

8.8 Ezperimental Results

The simulation experiments were done with various
configurations in order to evaluate the region-based
approach. A performance metric for the CMOMMT
task was proposed in [1, 2], and the metric (Equation
1) is used to evaluate performance. Each trial ran for
10 minutes. Figure 7 shows the average observation
rate over time which stabilizes after 6—7 minutes.

The difference between the actual position of a tar-
get and its position as reported by the sensors was
small. The average error was approximately 4 cm.

3.3.1 Performance Evaluation

The performance of the system varies according to
the number of sensors, and the number of moving
objects. In our experiments, a total of 18 different
configurations were tested. We changed the number

80 .

Region-based
Simple-following -------

70 |

60

50 [

Observation (%)

40

30 [1

20 L L L L L L

Number of Targets

Figure 9: Comparison to a simple following method

of sensors from 2 to 6, and the number of targets
from 4 to 8 in steps of 2. Figure 8 shows the track-
ing results. As expected, the more the sensors, the
better the tracking performance. One interesting fact
observed through the experiments is that the perfor-
mance improves whenever sensors are added, but this
improvement tails off when the number of sensors is
greater than the number of objects.

3.3.2 Comparison to a simple strategy

The region-based method was compared to a sim-
ple target-following method. In order to implement
the simple method, we inhibited the Move-To-Region
module. The robots follow walls, but after finding
moving targets, the robots follow their center of mass.
We changed the number of moving targets from 2 to
12 in steps of 2, and four mobile robots were used
for all cases. Figure 9 shows the results. When the
number of objects is small, the simple method occa-
sionally showed better performance because robots do
not give up following objects to explore other regions
that may be more urgent. However, as the number of
targets is increased, the region-based method showed
better performance because Move-To-Region causes
robots to move to regions that have more objects.

4 Conclusion and Future Work

Autonomous target tracking systems have many
real-world applications. We have presented a region-
based tracking system, which is especially well suited
to structured environments. The system utilizes em-
bedded sensors, like surveillance cameras already in-
stalled in buildings. Initial experiments indicate that
our approach shows better performance when there
are many targets to be tracked.

As future work, research on the ratio of mobile
robots to embedded sensors is a topic we plan to ad-
dress. In addition, real robot experiments are planned
for the near future. Because Player provides exactly

the same interface for a real Pioneer robot as a virtual
robot in Stage, the control programs written for simu-
lation can be used for real robot experiments without
major modification.

References

[1] Lynne E. Parker, “Cooperative motion control for
multi-target observation,” in Proceedings of the 1997
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1997, pp. 1591-1598.

[2] Lynne E. Parker, “Cooperative robotics for multi-
target observation,” Intelligent Automation and Soft
Computing, special issue on Robotics Research at Oak
Ridge National Laboratory, vol. 5, no. 1, pp. 5-19,
1999.

[3] Barry B. Werger and Maja J. Mataric, “Broadcast of
local eligibility for multi-target observation,” in Pro-

ceedings of Distributed Autonomous Robotic Systems,
2000.

[4] Yaakov Bar-Shalom and William Dale Blair, Eds.,
Multitarget-Multisensor Tracking: Applications and
Advances, vol. 3, Artech House, 2000.

[5] Goksel Dedeoglu, Maja J. Mataric, and Gaurav S.
Sukhatme, “Incremental, on-line topological map
building with a mobile robot,” in Proceedings of Mo-
bile Robots, Boston, MA, 1999, vol. XIV, pp. 129-139.

[6] Goksel Dedeoglu and Gaurav S. Sukhatme,
“Landmark-based matching algorithm for co-
operative mapping by autonomous robots,” in
Distributed Autonomous Robotic Systems (DARS),
Knoxville, Tennessee, 2000.

[7] Sebastian Thrun, Wolfram Burgard, and Dieter Fox,
“A probabilistic approach to concurrent mapping and
localization for mobile robots,” Machine Learning
and Autonomous Robots (joint issue), vol. 31 & 5,
pp. 29-53 & 253-271, 1998.

[8] Isaac Cohen and Gerard Medioni, “Detecting and
tracking objects in video surveillance,” in Proceeding
of the IEEE Computer Vision and Pattern Recogni-
tion 99, Fort Collins, June 1999.

[9] Stephen S. Intille, James W. Davis, and Aaron F.
Bobick, “Real-time closed-world tracking,” in Pro-
ceeding of the IEEE Conference on Computer Vision
and Pattern Recognition, June 1997, pp. 928-934.

[10] Alan J. Lipton, Hironobu Fujiyoshi, and Raju S.
Patil, “Moving target classification and tracking from
real-time video,” in Proceeding of the IEEE Work-
shop on Applications of Computer Vision, 1998.

[11] Brian Gerkey, Kasper Stoy, and Richard T. Vaughan,
“Player robot server,” Institute for Robotics and In-
telligent Systems Technical Report IRIS-00-391, Uni-
versity of Southern California, 2000.

[12] Richard T. Vaughan, “Stage: A multiple robot simu-
lator,” Institute for Robotics and Intelligent Systems
Technical Report IRIS-00-393, University of South-
ern California, 2000.

Development Environments for
Autonomous Mobile Robots: A Survey

James Kramer and Matthias Scheutz
Artificial Intelligence and Robotics Laboratory
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556
Email: {jkramer3,mscheutz}@nd.edu

Abstract

Robotic Development Environments (RDEs) have come to play an increasingly important role in robotics research
in general, and for the development of architectures for mobile robots in particular. Yet, no systematic evaluation
of available RDEs has been performed; establishing a comprehensive list of evaluation criteria targeted at robotics
applications is desirable that can subsequently be used to compare their strengths and weaknesses. Moreover, there
are no practical evaluations of the usability and impact of a large selection of RDEs that provides researchers with the
information necessary to select an RDE most suited to their needs, nor identifies trends in RDE research that suggest
directions for future RDE development.

This survey addresses the above by selecting and describing nine open source, freely available RDEs for mo-
bile robots, evaluating and comparing them from various points of view. First, based on previous work concerning
agent systems, a conceptual framework of four broad categories is established, encompassing the characteristics and
capabilities that an RDE supports. Then, a practical evaluation of RDE usability in designing, implementing, and
executing robot architectures is presented. Finally, the impact of specific RDEs on the field of robotics is addressed by
providing a list of published applications and research projects that give concrete examples of areas in which systems
have been used. The comprehensive evaluation and comparison of the nine RDEs concludes with suggestions of how
to use the results of this survey and a brief discussion of future trends in RDE design.

1 Introduction

Robots, unlike many software agents, operate under real-world, real-time constraints where sensors and effectors with
specific physical characteristics need to be controlled. To facilitate research in autonomous robotics and help architec-
ture designers in managing the complexity of embodied agents, several robot development environments (RDEs) have
been developed that support various aspects of the agent development process, ranging from the design of an agent
architecture, to its implementation on robot hardware, to executing it on the robot.

While several frameworks for comparing agent systems have been proposed, some of them specifically for RDEs
(see Section 3), there is currently no survey available that (1) provides a set of conceptual RDEfeatures comprehensive
enough to serve as a basis for a conceptual evaluation that does justice to the specific aims with which most RDEs
have been developed, (2) applies the conceptual criteria systematically to a large selection of RDEs, (3) augments
the theoretical evaluation with a practical usability evaluation that includes architecture design, implementation, and
execution within each RDE on a robot, with special emphasis on ease of use and performance, (4) includes the impact
of the RDE in terms of categorized published work using it, an indicator of an RDE’s prevalence in and influence
on the robotics field, and (5) provides a principled way of combining the three evaluations (conceptual, practical,
and impact) to obtain an overall measure of how well an RDE can be adapted to the particular needs of researchers
choosing among available systems or RDE developers considering future directions of system development.

This paper addresses all five points. Starting with a set of constraints used for the selection of RDEs to be examined
(including a rationale for excluding certain RDESs), Section 2 introduces nine general purpose, freely available RDEs.
Section 3 reviews previous work concerning agent system and RDE comparisons, establishing four categories of
criteria corresponding to typical stages of application development for autonomous mobile robots. The RDEs are

then systematically evaluated according to the criteria in Section 4. Section 5 contains a practical evaluation based
on designing, implementing, and running a simple architecture and some more complex architectural components in
each RDE. The subsequent discussion in Section 6 ties together the conceptual and practical evaluations and augments
them with one possible evaluation of the impact of each RDE, also suggesting a principled method for using the results
of this survey by both researchers and RDE developers. Section 7 summarizes the results and extrapolates to identify
some future trends in RDE development.

2 Autonomous Mobile Robot Systems

A complete accounting and systematic comparison of all RDE:s is clearly impossible within the confines of a survey
paper, not only because of the number of RDEs available and the release of new systems, but also due to the scope of
robotics as a discipline. To make the task manageable, a group of qualifying constraints is used to limit the selection
to a specific subset of representative RDEs. First, we consider only open source packages unencumbered by licens-
ing costs and available for free download. CyberBotics Webots (Michel, 2004; Webots, 2005), White Box Robotics
(WhiteBoxRobotics, 2005), and Evolution Robotics’ ERSP (ERSP, 2004) are excluded as commercial packages. Also
excluded are BERRA (Lindstrom et al., 2000) and CLARAty (Volpe et al., 2001; Nesnas et al., 2003, 2006) due to
download unavailability. Systems are also required to generalize beyond specific hardware platforms, but provide more
specificity than a general framework. So, while Lego Mindstorms (LEGO, 2005) is a widely-used robotics platform
with many related packages available, we do not consider it (or projects such as CotsBots (Bergbreiter & Pister, 2003;
CotsBots, 2005) or Modular Controller Architecture (MCA2, 2005)) due to specificity in relation to a single platform
or custom hardware construction. Conversely, LAAS’s GenoM (Fleury et al., 1997; Mallet et al., 2002; GenoM, 2004)
is excluded as a framework for the generic definition of robot components. Finally, there must be at least one cohesive
application developed in the system (i.e., a repository of components is not considered for inclusion). To our knowl-
edge, this requirement is not met by Orocos (Bruyninckx, 2001; OROCOS, 2005), The Rossum Project (Rossum,
2004), Nomadic (Sprouse, 2005), Dave’s Robotic Operating System (Austin, 2004), the Open Automation Project
(Walters, 2003), or YARP (Metta et al., 2006). Similarly, this excludes some projects that, at the time this research was
begun, were either just being developed (e.g., Orca (A. Brooks et al., 2005; Orca, 2005)) or in a pre-release stage (e.g.,
the RObotics and Learning Environment (ROLE) (ROLE, 2005)).!

Given the above constraints, nine RDEs have been selected?, listed in Table 1. The following synopses give an
overview of the systems’ use and operation, including a broad system description, the stated purpose of the system,
the platforms on which it runs, the release version, and a summary of notable features. To characterize the strengths
of the systems more completely, the end of each subsection lists publications from particular robotics research sub-
areas, determined by the presentation groupings established in the 2001-2005 Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), which have been divided into three categories:

e Single robot: SLAM, Planning/Navigation, Learning, Hierarchical Behavior, and Education
e Human-Robot Interaction: Task Allocation, Learning, and Assistive Robotics

e Multi-robot: Sensing, Exploration, Mapping, Localization, Planning, Coordination, Formation, and Task Allo-
cation

Only a single publication represents a sub-area; citations are also used in evaluating an RDE’s impact in Section 6.

2.1 TeamBots

TeamBots (Teambots, 2004; Balch & Ram, 1998) (which supersedes JavaBots) is a Java-based collection of appli-
cation programs and Java packages for multi-agent mobile robotics research. Although it is no longer under active
development (the most recent version available, 2.0e, was released in April 2000), it is included due to its appear-
ance in both (Jia et al., 2004) and (Orebidck & Christensen, 2003) and because it has found wide use in both research
and education. The main author of TeamBots is now affiliated with the laboratory that develops MissionLab (see
Section 2.6); for the above reasons, this description will be brief.

!Exclusion of the listed systems is only indicative of not meeting the specified constraints; further examination is encouraged.
2 Almost all of the selected RDEs are under constant revision and more recent versions might be available.

RDE Originating Institution More Information

TeamBots, v.2.0e Carnegie-Mellon University http://www.teambots.org/

ARIA, v.2.4.1 MobileRobots, Inc. http://robots.mobilerobots.com/

Player/Stage, v.1.6.5, 1.6.2 University of Southern California | http://playerstage.sourceforge.net/

Pyro, v.4.6.0 Bryn Mawr College http://emergent.brynmawr.edu/pyro/?page=Pyrq

Swarthmore College
University of Massachusetts
SRI International

CARMEN, v.1.1.1 Carnegie-Mellon University http://carmen.sourceforge.net/

MissionLab, v.6.0 Georgia Institute of Technology | http://www.cc.gatech.edu/aimosaic/robot-
lab/research/MissionLab/

ADE, v.1.0beta University of Notre Dame http://ade.sourceforge.net/

Miro, v.CVS-March 17, 2006 | University of Ulm http://smart.informatik.uni-ulm.de/MIRO/

MARIE, v.0.4.0 Université de Sherbrooke http://marie.sourceforge.net/

FlowDesigner, v.0.9.0 http://flowdesigner.sourceforge.net/

RobotFlow, v.0.2.6 http://robotflow.sourceforge.net/

Table 1: RDEs Selected for this Survey

A highly touted feature of TeamBots, stemming from a strict separation of hardware interfaces and control code, is
the use of the same control code both in simulation and for an actual robot. While the only robot platforms supported
are Probotic’s Cye and Nomad 150 robots, there are many example simulation environments and control systems avail-
able. The simulator was developed to be extremely flexible, supporting multiple, heterogeneous robot platforms and
control systems simultaneously. In addition, the Clay package allows hierarchical behavior specification, specifically
targeting schema-based control. Inter-robot communication is supported via sockets and serial ports only. A notable
inclusion is the Java CMU-Vision package, which supports frame captures and blob-tracking.

TeamBots publications include those from the hierarchical behavior (Balch, 2000) and education (Balch, 2002)
subareas.

2.2 Advanced Robotics Interface for Applications (ARIA)

ARIA (MobileRobots, Inc., 2005; LaFary & Newton, 2005), the base software that comes packaged with the purchase
of MobileRobots (neé ActivMedia) robots, is a set of C++ classes available for free download. At the lowest level,
ARIA provides system architecture capacities; that is, software that describes the structure of a robot (including its
sensors, effectors, and physical specifications) and implements the low-level interaction between software and hard-
ware components. At a higher level of abstraction, it also includes some sensory interpretation functionality, basic
actions (analogous to behaviors), and an elementary action resolver.

Although freely available, ARIA is a product of MobileRobots, Inc. and thus only supports MobileRobots plat-
forms, using robot parameter files as the means of defining the characteristics of a robot. This includes information
about the robot body (e.g., the robot’s radius), the sensors (e.g., the number and position of sonar), and the effectors
(e.g., the maximum velocity). The parameters are used by ARIA for various calculations (e.g., the “RobotRadius”
parameter is used to determine the robot’s turn limits). In support of distributed computing, ARIA provides the Ar-
Networking package as a wrapper around socket communications. In addition, the Simplified Wrapper and Interface
Generator (SWIG, 2004) development tool is used to provide Java and Python support.

Supporting software is available, but is limited in some cases by licensing or purchase requirements. The Mo-
bileSim 2-dimensional simulator, a modified version of Player/Stage’s Stage simulator (see Section 2.3, is freely
available. A demo version of the ActivMedia Color Tracking Software (ACTS) is available for free download, but has
restricted functionality that disallows integration with ARIA (not true of the licensed version). Additional open source
software includes the ArSpeech components that provide interfaces to Sphinx speech recognition and both Festival
and Cepstral speech production packages, SonARNL for sonar-based localization, Mapper3 Basic for map creation
and editing, and VisLib for single camera object tracking. Also available, but restricted to license and/or purchase are
MobileEyes (which provides a remote robot display and control GUI), ARNL (which provides laser-based mapping

and localization), and Mapper3 (which augments the basic mapper package with laser support and automated map
creation from sensor logs).
There are no publications available from projects that have used ARIA3.

2.3 Player/Stage

The Player/Stage (Gerkey et al., 2001, 2003, 2005) project is designed to be a programming interface, specifically
avoiding being a development environment. Rather than treating a robot as the primary unit of agency, it instead fo-
cusses on devices, or the various sensors and effectors. A “collection” of devices is typically, although not necessarily,
located on a single robot. Supported platforms include MobileRobots, RWI/iRobot’s RFLEX-based, Segway, Acron-
ame, Botrics, Evolution Robotics, and K-Team robots, while components that are packaged along with the download
include vector field histogram goal-seeking/obstacle avoidance, adaptive Monte-Carlo localization, and a wavefront
propagation path planner and interfaces for ACTS (see Section 2.2), CM Vision, Festival, a service discovery mecha-
nism, and others.

In this software, Player refers specifically to the device and server interface. Devices are independent of one an-
other and “register”” with a Player server to become accessible to clients. Each client uses a separate socket connection
to a server for data transfer, thus preserving concurrent operation of devices and the servicing of multiple requests.
Minimal constraints are placed on the use of devices; in a very real sense, usage is only a communication protocol,
leaving the client the freedom (and by extension, the work) of designing and implementing a control architecture.
Stage, which is the second part of the software, is a device simulator. Client control code uses the same programming
interface when used in conjunction with either simulated or physical devices.

A stated design goal of the device model used in Player/Stage is the separation of interface and function. The fact
that servers communicate via a socket interface means that client programs can be written using any language with
socket support. According to (Gerkey et al., 2003), currently available libraries include those written in C, C++, Tcl,
Python, Java, and Common LISP. Due to the prevalent use of socket communication, the Player system inherently fits
the distributed computing paradigm. Client code is able to operate on any host that has network connectivity, enabling
location independence. A side effect of the device model and its networked basis is that combinations of devices can
be formed to create novel types of agents (e.g., one composed of only sonar devices from many different robots). An
additional feature of the device model is that the frequency of sensor and effector updates are independent, providing
clients the ability to make full use of the data generated by devices that operate at a high frequency, while not being
hindered by those that are slower.

Stage is a graphical, 2-dimensional simulator that models devices in a user defined environment. Specifically
designed to support research in multi-robot systems through its use of socket-based communication, it also forms
the foundation for ARIA’s MobileSim simulator. In addition to Stage, a high-fidelity, 3-dimensional simulator called
Gazebo is available. In both cases, client code uses the same interface on real robots as in the simulator. The au-
thors mention that the device model makes it easy to simulate non-existent devices (for instance, a type of sonar that
penetrates walls to some extent) for further research in device design and use.

Player/Stage publications include those from the SLAM (Wolf & Sukhatme, 2005), learning (Provost et al., 2004),
education (Matari¢, 2004), HRI task allocation (Tews et al., 2003), multi-robot sensing (Jung & Sukhatme, 2002),
multi-robot exploration (Howard et al., 2002), multi-robot mapping (Howard et al., 2004), multi-robot localization
(Howard et al., 2003), multi-robot planning (Howard et al., 2004), multi-robot coordination (Jones & Matari¢, 2004),
multi-robot formation (Fredslund & Matari¢, 2002), and multi-robot task allocation (Gerkey & Matari¢, 2002).

2.4 Python Robotics (Pyro)

Pyro (Blank et al., 2003, To appear; Pyro, 2005) is a robot programming environment aimed at, but not limited to,
educational purposes, leading to specific choices in its design. One goal is to provide a top-down approach to the design
of controllers, insulating students from low-level details of implementation while preserving access to the low-level if
it is desired. Some of the abstractions include: range sensors, robot units, sensor groups, motion control, and devices,
which encapsulate lower levels. This includes “wrapping” Player/Stage (see Section 2.3) and ARIA (see Section 2.2)
functionality, so that any component written for those systems are also available to Pyro users. A large selection
of platforms are supported, including K-Team Kheperas and Hemission, MobileRobots Pioneer, Handyboard, Sony
Aibo, and all robots supported by Player/Stage (see Section 2.3).

3While publications exist for ARIA’s ancestral software, the authors were explicitly requested to not refer to it.

Educational modules exist to demonstrate control paradigms (e.g., neural networks, evolutionary algorithms, vision
processing, and reactive, behavior-based, finite state machines, etc.). Python, an interpreted language, was chosen as
the basis of the system due to its ease of use for beginning students, while permitting more knowledgeable designers
to write more advanced code. While it is acknowledged that using an interpreted language leads to slower operation,
the trade-off between usability and performance is consciously made. Construction of graphical visualization of robot
operation are explicitly supported through the use of pre-defined facilities and Python’s OpenGL interface. Another
goal is to design control code that operates on many different robots with no modification. An example of this is the
use of “robot units” that replace traditional measurements such as meters.

Pyro publications include those from the learning (Blank et al., 2002), education (Blank et al., To appear), and
HRI task allocation (Desai & Yanco, 2005) subareas.

2.5 Carnegie Mellon Robot Navigation Toolkit (CARMEN)

CARMEN (Montemerlo et al., 2003b, 2003a) is an open source collection of (mobile) robot control software written
in the C programming language that is meant to provide a “consistent interface and a basic set of primitives for robotic
research”. Oriented towards single robot control, it uses a three layer agent “architecture”, in which the first layer
is the hardware interface, providing low-level control and integration of sensor and motion data, the second layer is
concerned with basic robot tasks such as navigation, localization, object tracking, and motion planning, and the third
layer is the user-defined application, which relies on the primitives of lower layers. Modularity is a primary concern,
supported by the Inter-Process Communication System (IPC) communication protocol/software (discussed in more
detail below). Besides supporting a number of robot platforms (including MobileRobots, Nomadic Technologies
Scout and XR4000, Segway, iRobot ATRV, ATRVjr, and B21R) and navigation primitives (map-making, Monte-
Carlo particle filter localization (Thrun et al., 2000), and Markov decision process path planning (Konolige, 2000)),
CARMEN also provides configuration tools, a simulator, and graphical displays and editors.

IPC (Simmons, 1994, 2004) provides high-level support for connecting processes using TCP/IP sockets and send-
ing data between processes, including opening and closing sockets, registering, sending, and receiving messages,
which may be anonymous publish/subscribe or client/server type communications. The IPC library contains func-
tions to marshall (serialize) and unmarshall (de-serialize) data, handles data transfer between machines with different
Endian conventions, invoke user-defined handlers when a message is received, and invoke user-defined callbacks at
set intervals. In essence, IPC performs a function similar to a naming service for components; besides providing the
means to define message abstractions used for communication over a network, it also encourages extensibility (in that
components are self-contained) and fault-tolerance (in that failure of a component ceases communication, but does not
actively interrupt other components in the system).

CARMEN components generally take the form of a single executable, such as pioneer (for a MobileRobots Pio-
neer robot), laser (for a SICK laser range finder), or localize (for robot localization using a pre-made map). Particular
platform definitions are contained in “base” specifications, which are then abstracted to a generic “robot” configuration
that includes basic parameters such as body length and width, sonar offsets, maximum velocities, etc. Parameters for
each component are stored in a human readable text file repository, but a graphical editor can be used to modify param-
eters at run-time. In addition, each component relies on a set of IPC message definitions to which other components
can subscribe, allowing component distribution through an IPC server.

CARMEN publications include those from the SLAM (Thrun et al., 2000), learning (Osentoski et al., 2004), HRI
assistive robotics (Pineau et al., 2002), and multi-robot coordination (Simmons et al., 2000) subareas.

2.6 MissionLab

MissionLab (MacKenzie et al., 1997; MissionLab, 2003) is a set of software tools for executing military-style plans
using individual or teams of real and simulated robots. Developed as part of the DARPA Mobile Autonomous Robot
Software (MARS) project, the main stated goal is to control the motion of robots in highly dynamic, unpredictable, and
possibly hostile environments. Collaboration and coordination of robot teams is based on the Societal Agent theory,
which views abstract “assemblages” of agents as agents themselves and whose behavior, in turn, is the aggregate of
coordinated “primitive” behaviors of “atomic” agents. Assemblages are hierarchical, while behavior coordination is
achieved through finite state automata (either competitive or temporally sequenced) or vector summation cooperation.

The Configuration Description Language (CDL) is used to recursively define abstract societal agents (called con-
figurations), usually accomplished using the graphical CfgEdit tool. A configuration can be bound to a specific set of

robots and devices; robot choices include MobileRobots Pioneer, iRobot ATRVjr and Urban, Evolution Robotics ER-
1, and Nomad 150/200. CDL is compiled to Configuration Network Language (CNL) code, which is then compiled to
C++ code and finally compiled to machine code, resulting in a robot executable. The executable contains a communi-
cation module (called HClient) to interface with an HServer, an abstract control interface used for all robot hardware
via IPT communication software. (IPT supports distributed computing and is related to the IPC communication soft-
ware, described in Section 2.5; both are derived from the Task Control Architecture (TCA, Simmons, 1994) project.)
Developers also have the option of using the higher level Command Description Language (CMDL) to describe robot
missions, which is a mechanism for providing high-level input to robot behaviors.

As a primary concern of MissionLab is usability, the graphical interface is quite extensive, allowing non-experts
to write control code without any programming. Logging consists of writing a robot’s position, velocity, heading, and
the current state of the robot with respect to time to a disk file, while debugging toggles are used to display program
output to a console. A unique feature relative to other systems is the inclusion of “Motivational Variables” (anger,
fear, hunger, curiosity) that simulate emotionality. Developers can also assign user-defined ‘“Personalities” to robots.
Finally, there is an extensive set of components available with Missionlab, including a case based reasoner, Q-learning,
graphical behavior building tool, D* Lite planner, and human/robot interaction interfaces.

MissionLab publications include those from the learning (Arkin et al., 2003), hierarchical behavior (MacKenzie &
Arkin, 1993), HRI task allocation (MacKenzie & Arkin, 1998), multi-robot planning (Endo et al., 2004), multi-robot
coordination (MacKenzie et al., 1997), multi-robot formation (Balch & Arkin, 1999), and multi-robot task allocation
(Arkin et al., 1999) subareas.

2.7 APOC Development Environment (ADE)

ADE (Andronache & Scheutz, 2004a, 2004b; Scheutz, 2006) is a programming environment that combines (1) support
for developing and implementing agent architectures with (2) the infrastructure necessary for distributing architectural
components. An explicit goal is to combine features of multi-agent systems (by treating architectural components as
“agents” in a MAS-sense) with those of a programming environment and toolkit for complex agent design and imple-
mentation. ADE is a Java implementation of the APOC (Activating, Processing, Observing Components) (Scheutz &
Andronache, 2003; Scheutz, 2004) universal agent architecture framework, which provides arbitrary levels of (pos-
sibly hierarchical) component abstraction and interconnection. Communication among ADE components relies on
Java’s Remote Method Invocation (RMI) facilities. ADE provides infrastructural components for an enhanced naming
service, connection mediation and monitoring, security features (access control and authentication), and the ability to
store the run-time state of the system, which in turn allows for the detection and recovery from component failures.

While ADE is limited to MobileRobots robots and Arrick Robotics’ Trilobot, a set of abstractions for typical
robotic sensors and effectors provide the means for extending support to other platforms. Configuration files can take
the form of either text or XML files and include both an abstract architecture description and/or the run-time specifica-
tion of component distribution. Graphical representations of individual components exist, accessible via a distributed,
multi-user GUI, which provides a view of the complete agent architecture and the means to control individual com-
ponents. Logging facilities allow any component in an ADE system to write to multiple files. ADE provides several
predefined components include components for behavior definition, vision processing, speech recognition and pro-
duction, a general-purpose rule interpreter, a Prolog interface, and “wrappers” to incorporate external software. It
also includes a Java implementation of a Player (see Section 2.3) client that interfaces with the Stage 2-dimensional
robot simulator and other Player/Stage components, in addition to an interface to the simulator packaged with the now
defunct Saphira (Konolige et al., 1997; Konolige, 2002) system.

ADE publications include those from the planning/navigation (Kramer & Scheutz, 2003), hierarchical behavior
(Scheutz & Andronache, 2004), HRI task allocation (Scheutz et al., 2004), assistive robotics (Scheutz et al., 2006),
multi-robot sensing (Andronache & Scheutz, 2004a), and multi-robot coordination (Scheutz, 2006).

2.8 Middleware for Robots (Miro)

Miro (Utz et al., 2002; Miro, 2005) is a distributed, object oriented framework for mobile robot control that is meant
to facilitate heterogeneous software integration and foster portability and maintainability of robot software. Core
components have been developed in C++ for Linux based on Common Object Request Broker Architecture (CORBA)
technology using the adaptive communication environment (ACE, Schmidt, 1994) as its communication framework.

Due to the programming language independence of CORBA, further components can be written in any language and
on any platform that provides CORBA implementations.

Miro currently supports three platforms: iRobot B21, MobileRobots Pioneer, and the custom-built Sparrow. Ab-
straction interfaces include odometry, motion, rangesensor (sonar, infrared, bumper, laser), stall, video, pantilt, GUI
buttons, and speech. Components exchange data based on subscriptions, which allow for event driven notification. De-
fined messages include those for odometry, rangesensor (scanevent, groupevent, bunchevent), sonar, infrared, bumper,
stall, and GUI buttons. Miro includes a “behavior engine” for reactive behavior specification, which allows hierarchi-
cal decomposition of timed, event and task behavior sets into “policies”. There are two types of policy transitions,
local and global, that can be edited via a graphical interface; global policies preempt behaviors, local do not. The con-
figuration of hardware, data subscriptions, and logging specification is stored in XML files. Two types of logging are
defined, “log levels” and “log categories”, that allow developers to vary the granularity of log data, while a graphical
LogPlayer allows the replay of logged data.

Miro publications include those from the SLAM (Kraetzschmar et al., 2004), planning/navigation (Kraetzschmar
et al., 2000), learning (Fay et al., 2004), hierarchical behavior (Utz et al., 2005), HRI assistive robotics (Gassull, 2001),
multi-robot sensing (Utz et al., 2004), and multi-robot coordination (Utz et al., 2004) subareas.

2.9 Mobile and Autonomous Robotics Integration Environment (MARIE)

MARIE (Co6té et al., 2004, 2006; Co6té, 2005) is a programming environment that is specifically designed with the
integration and distribution of robot applications, components, and tools in mind. For brevity, “MARIE” is used
throughout this description and the rest of the survey to signify the MARIE software and the related FlowDesigner
(Valin & Létourneau, 2004) and RobotFlow (Michaud & Létourneau, 2004) packages (described below), unless clar-
ification is necessary. MARIE is implemented in C++ and the integration aspect of MARIE proper uses (but is not
dependent upon) the Adaptive Communication Environment (ACE, Schmidt, 1994) communication framework. Fol-
lowing the mediator design pattern (Gamma et al., 1994), MARIE provides a centralized component that connects a
variety of (possibly different) software. There are four functional components: application adapters, communication
adapters, communication managers, and application managers. Application adapters act as proxies between the central
component and applications. Communication adapters translate data between application adapters, while communica-
tion managers create and manage the links. Finally, application managers coordinate system states and configure and
control system components on any one processing node. In keeping with the aim of integrating software, components
have been developed for Player/Stage (see Section 2.3), CARMEN (see Section 2.5), and ARIA (see Section 2.2).

FlowDesigner is a data-flow processing library coupled with a graphical display that allows developers to create
reusable “software blocks” linked together in a (possibly hierarchical) network. Available libraries include support for
signal processing, audio processing (DSP), vector quantization, neural networks, fuzzy logic, an Octave plug-in, and
RobotFlow. RobotFlow is a mobile robotics toolkit for FlowDesigner that includes support for MobileRobots Pioneer2
robots and other hardware devices, behaviors, finite state machines, vision processing (color training, tracking, etc.)
and the interfaces for use with MARIE.

MARIE publications include those from the planning/navigation (Beaudry et al., 2005), education (Michaud,
2005), HRI assistive robotics (Labonté et al., 2005), multi-robot localization (Rivard, 2005), multi-robot coordina-
tion (Guilbert et al., 2003), and multi-robot formation (Lemay et al., 2004) subareas.

3 A Conceptual Framework for Comparing RDEs

Several comparisons of agent systems and agent development environments have been proposed in the recent litera-
ture. For software agents, they are typically concerned with various aspects of multi-agent systems (MAS), including
comparing agent platforms (Altmann et al., 2001; Nguyen et al., 2002; Laukkanen, 1999; Nowostawski et al., 2000;
Ricordel & Demazeau, 2000), agent development kits (Bitting et al., 2003), mobile agent systems (Silva et al., 2001),
or agent environments (Eiter & Mascardi, 2002). There are also comparisons of general agent systems and agent
architectures per se (Sloman, 1998; Logan, 1998; Sloman & Scheutz, 2002). Comparisons that concern robotic agents
in particular have addressed mobile robotic architectures (Orebdck & Christensen, 2003) and robot programming envi-
ronments (MacDonald et al., 2003; Jia et al., 2004; Biggs & MacDonald, 2003). Common to all is the need to establish
an appropriate set of criteria that serves as a basis for the comparison. Clearly, the choice of criteria is critical, for, as
pointed out in (Ricordel & Demazeau, 2000), “any criteria is relevant to a specific outside need”.

We briefly review some of this prior work to situate our proposed evaluation criteria, giving a general overview of
the conceptual breakdown in each and why each proves insufficient for the purposes of this paper. To avoid ambiguities
and equivocations among the different terms used, we will adhere to the following terminology for the rest of this

paper:

e Platform: the hardware on which an application will be executing; this includes the sensors, actuators, comput-
ers, operating system(s), and other hardware or software intimately tied to hardware.

e Component: a functionally independent part of an agent or system.

e Architecture: the structure and interaction of components; if necessary, a distinction will be made between
system and agent architectures.

e Agent: the sum of the software and hardware required for an individual robot to perform its task. In particular,
we will not consider infrastructure or strictly software agents (e.g., a naming service or communication agent) as
agents per se, as is done in the field of multi-agent systems. These are instead considered functional components
that are part of the broader environment or application.

e Programming Environment: the tools, infrastructure, and components that are not left for implementation by the
developer. The term system will be used interchangeably in this context.

The most general and, for our purposes, pertinent, framework is (Eiter & Mascardi, 2002). Although founded
in MAS research, the classification is intended to be comprehensive, establishing a framework for all types of agent
systems. Additionally, the authors provide a practical method for choosing an appropriate system for a task selected by
an application designer. Criteria are divided into five categories: (1) agent attitudes, (2) software engineering support,
(3) implementation concerns, (4) technical issues, and (5) economical aspects*. While the software engineering,
implementation, and technical issues categories usually have a prominent role in discussions of RDEs, the agent
attitudes aspect is often omitted—not because it is unimportant or ignored, but because features therein often form the
task, or object, of investigation. Yet, according to Eiter, the attitudes category is comprised of features that discriminate
between agent and non-agent software: they are either basic (i.e., “close to the very core of agenthood”) or advanced
(i.e., “desirable but not of central interest”). Hence, an agent development environment (and by extension an RDE)
should, at least in part, be evaluated with respect to the degree to which it supports these attitudes. While Eiter and
Mascardi’s categorization is comprehensive, it lacks some details of considerable importance for evaluating RDEs. In
fact, this is explicitly acknowledged with the disclaimer, “other features and criteria should be taken into account” for
the unique issues that arise in the development of physical agents (e.g., support for devices, real-time operation, etc.).

In their framework proposal, Jia et al., 2004 isolate three high-level categories for analysis of an RDE: (1) openness,
(2) abstraction, and (3) modularity. Openness refers to extensibility: a programming environment should support the
addition and evolution of hardware and software. Abstraction forms the basis on which openness is built, providing a
well-defined application programming interface (API) that allows a developer to work at a level beyond the hardware
(see also Vaughan et al., 2003). Different from abstraction, which is focussed on hardware, modularity concerns
software, promoting good design and reusability. While these three categories address the design and implementation
of autonomous mobile robotic applications (as demonstrated by their in-house development of the Frontier-1 robot),
they are too general to address specific concerns of RDEs (e.g., real-time support, hardware-dependence of a robotic
platform, debugging tools, etc.).

MacDonald et al., 2003 give a detailed and comprehensive description of RDE features in three categories: (1)
robot programming (both at the system and task level, which enable programmers to describe robot behavior), (2)
infrastructure (which supports the execution of behavior descriptions), and (3) human-robot interaction (HRI, which
allows interaction with the robot programming area; see also Biggs & MacDonald, 2003). The proposed features will
be largely included in our comparison, but there are some issues concerning the analysis, organization, and application
to various aspects of RDEs. For one, the boundaries of the categories overlap to such an extent as to be unclear. For
instance, infrastructure conflates the facilities provided by the environment with both the programming and the agent
architecture categories. Similarly, the broad scope of the HRI (human/robot interaction) category largely overlaps the
robot programming category, yet contains individual features that are too specific for a general system comparison

4Eiter’s economical aspects category will not be considered here, except for the documentation criterion, as the selected RDEs are both open
source and research-oriented. Related considerations, such as the cost of application development, RDE maintenance or modification, training, etc.
are, however, addressed by the usability evaluation in Section 5.

(i.e., excluding systems that are not especially intended nor designed for HRI). Moreover, the proposed categorization
is not structured in a way that is easily amenable to a systematic comparison (e.g., conceptually different items are
subsumed under the rubric “robot programming”).

The study closest in intent to this survey is Orebédck & Christensen, 2003, which attempts to establish the char-
acteristics of a “common software architecture” for mobile robot systems. In particular, seven categories (hardware
abstraction, scalability, overhead, control model, software, tools and methods, and documentation) are proposed as
a basis for comparing RDEs, covering an extensive range of features. However, while the proposed framework is
generally suitable, the actual comparison is limited to only three RDEs (TeamBots (Teambots, 2004), Saphira (Kono-
lige et al., 1997), and BERRA (Lindstrom et al., 2000)) and does not adhere strictly to the conceptual framework.
Rather, criteria are grouped into six areas that mostly, but not always, correspond to the categories as defined, in some
instances leaving out or introducing new criteria.

While all of the above studies agree that the main purpose of an RDE is to provide appropriate tools and abstractions
that help the agent designer, they fail to provide a comprehensive, yet succinct conceptual framework that allows for
a systematic comparison of RDEs. Based on the three typical stages in the development process of a robotic agent
architecture? (design, implementation, and execution), we propose four categories of criteria for RDE comparison,
categorized in terms of:

F1: Specification, which includes formalisms, methodologies, and design tools,
F2: Platform support, which is related to the hardware and its low-level interface (e.g., the operating system),

F3: Infrastructure, which refers to components and capabilities that are part of the RDE, but not the “agent architec-
ture proper”, and

F4: Implementation, which includes aspects of application development (including predefined components used in an
agent architecture).

Of the four categories, three reflect features relevant to specific development stages (e.g., specification features
are central to design, implementation features pertain to implementation, as the name suggests, and platform features
play a role in the execution). The fourth category, infrastructure, is added to explicitly distinguish aspects of an RDE
that are separate and distinct from the agent architecture (e.g., distribution mechanisms that are integral to system
operation, yet usually transparent to the agent designer).

We note in advance that the four categories are comprised of features that an RDE objectively has or does not have,
with an emphasis on the software engineering aspects of its functional characteristics and capabilities. These criteria
alone are not sufficient for a full evaluation of an RDE and are supplemented with additional criteria in Sections 5 and 6.
The different types of evaluation can be distinguished by an identifying prefix; criteria in this section are denoted by
F, followed by a category and item number. It is crucial to note that even though the expanded criteria list provides
a comprehensive foundation for RDE evaluation, it is impossible in principle to address every concern a developer
might have. A remedy for the situation is discussed in Section 6.

F1: Specification

The specification of a robotic agent or application occurs in the design stage and concerns issues such as the application
domain(s), software engineering, and determination of an appropriate agent architecture. To preserve the focus on
RDE:g, the criteria presented are somewhat broad, but are sufficient to address the prevailing concerns.

F1.1: Architectural Primitives. An RDE provides various types of predefined functional component and/or knowledge
primitives useful in robotic applications (e.g., behaviors, methods of control, tasks, objects, etc.), or the means
to create, organize, and manipulate them.

F1.2: Software engineering. Software engineering support promotes the creation of high-quality software. Enabling
modularization and code reuse, it can be accomplished through the use of stated design principles, explicit
frameworks or tools, methodologies, or formalisms, and includes application verification, prototyping, and the
abstractions mentioned in (Jia et al., 2004), (Orebick & Christensen, 2003) and (Vaughan et al., 2003).

3Qur stages are similar to (Ricordel & Demazeau, 2000), although we subsume the analysis category as part of the design stage.

F1.3: Architecture neutrality. An RDE may be associated with a particular theoretical foundation that promotes
a specific agent/application architecture, separate from implementational concerns. Alternatively, it may be
architecture neutral, leaving the choice to the designer or even providing the means to compare application
implementations using different agent architectures.

F2: Platform Support

Robotic applications necessarily incorporate real-world sensors and effectors; thus, they require a more diverse set of
hardware than software-only systems. The principles of abstraction, modularity, and openness, as put forth in (Jia et
al., 2004), are of particular importance to this item, promoting application use across varying platforms.

F2.1: Operating system. An RDE may be compatible with one or many operating systems, but must be compati-
ble with the designer’s choice. This can become a major obstacle when certain libraries or components are
implemented only for a particular operating system.

F2.2: Hardware support. “Hardware support” refers to the variety of sensors and effectors that are available in an
RDE, such as cameras, sonar, and laser devices. Since the number of standard (that is, common and non-custom)
devices is limited and widely used on different platforms, we will refer instead to particular robot manufacturers.
In support of increased modularity, ease of device modification, and addition of custom devices, a hierarchy of
device abstraction is often specified, allowing control code to be easily ported and executed on different robots.

F2.3: Simulator. Simulation of the physical world allows developers to test applications, model currently unavailable
hardware, and replay actual application execution. Simulators can be low- or high-fidelity, approximating an
environment to some lesser or greater degree, and can also be two- or three-dimensional. Some simulators have
the ability to include multiple robots in a single simulation or to mix real and simulated robots in an environment.

F2.4: Configuration method. The configuration of a robot is often changed to meet the demands of various applica-
tions. This information may be incorporated into the source code (requiring compilation to effect changes) or in
configuration files that can be easily modified, either with a text editor or a graphical interface.

F3: Infrastructure

Infrastructure refers to RDE functionality that affects multiple components (or the system as a whole) and is not
tailored to individual architectural components, application domains, or particular stages of application/agent devel-
opment. For example, logging facilities can be used with any or all components, are often invaluable as debugging
tools during the implementation stage, and provide records of an execution instance for later performance analysis. In
some cases, however, it may be impossible to determine whether a feature is due to a specific component or part of
the infrastructure by function alone. For instance, the graphical representation of components might be implemented
on an ad hoc basis, removing it from consideration as infrastructure. A system must provide generic mechanisms that
supply these capabilities for them to be considered as infrastructure.

F3.1: Low-level communication. Inter-process communication (such as memory mapping, pipes, or sockets), basic
networking protocols (such as UDP, TCP/IP, etc.), and mid-level protocols (such as IIOP or RMI) are part of
the system infrastructure. These capabilities are often dictated by the platform being used, as their availability
is contingent on the operating system and/or programming language.

F3.2: Logging facilities. Log files of application operation can be used for debugging, repetition of an application
execution, or gathering performance statistics. Logging mechanisms can have various levels of flexibility, in-
cluding fixed (which generally captures all data produced by components) vs. configurable data content, local
vs. remote logging, file name selection, single vs. multiple data streams and/or files, or the ability to start and
stop logging at run-time.

F3.3: Debugging facilities. While logging facilities can suffice for basic debugging, robust debugging tools can be
invaluable during application implementation. Such tools can range from low-level code editors, to mid-level
graphical representations of sensors and effectors, to high-level graphical behavior or task modification, possibly
allowing run-time suspension, modification, and restarting.

10

F3.4: Distribution mechanisms. Distribution mechanisms, as part of the infrastructure, are required for multi-host
applications. Typically, distribution capabilities are enabled by middleware (e.g., Poggi et al., 2002), either as a
generic component implementation framework (such as CORBA, 2005, SOAP, 2003, etc.) or in the form of par-
ticular components (such as an agent naming service, directory facilitator, broker agents, or other components
that provide similar functionality).

F3.5: Scalability. As robotic applications grow in scope and capabilities, a developer must be concerned with how an
RDE handles increasing complexity. The term “scalability” can refer to many different aspects of a system, some
of which are addressed more specifically by other criteria. For instance, architectural primitives (criteria F1.1)
and a high-level language (F4.1.2) includes facilities for managing complex actions and behaviors, software
engineering (F1.2) takes into account modularization that promotes system organization, while distribution
mechanisms (F3.4) encompasses mechanisms used to add computational hosts. Additional concerns might
include the overhead involved with message passing, both within a single host and among connected hosts, task
allocation for multi-robot applications, or other concerns. Scalability is used here in a broad sense as a general
system property, inclusive of the above.

F3.6: Component mobility. “Mobility” refers to the potential to relocate components at run-time. In robotic appli-
cations, however, it is somewhat constrained by possible dependence on the location of the requisite hardware.
When an application is distributed across many hosts, component mobility can be used for dynamic resource
allocation or run-time system reconfiguration, assuming there are mechanisms that allow reconnection to data
sources. Ultimately, these capabilities would be automatic, adjusting operation with a changing computing
environment.

F3.7: System monitor/management. A system monitor displays the status of multiple application components, often in
graphical form. An extension of simple monitoring can allow for the management of the components’ operation,
ranging from starting and stopping to adjustment of parameters. Such extensions are often implemented as part
of individual components, which are treated separately as an implementation characteristic in Subsection 3 and
do not qualify as part of the infrastructure.

F3.8: Security. An application executing on a single robot may not need any security mechanism, but distribution
across many hosts raises such concerns. Predefined components for encryption, authentication, and access
control can be available for ready integration into applications. (A related discussion of security concerns in the
multi-agent system RETSINA can be found in Singh & Sycara, 2004.)

F3.9: Fault-tolerance. Repeated failures of both hardware and software are common in robotic applications. The
system infrastructure may incorporate generic mechanisms for failure detection, or be structured such that dis-
ruptions due to failed components do not halt the entire application. Extending this concept, mechanisms for
failure recovery may exist that enable components to automatically recover from failures with no outside inter-
vention (for instance, see Melchior & Smart, 2004).

F4: Implementation

In practice, an important reason for selecting a particular RDE is to facilitate the implementation of an agent architec-
ture. We subdivide implementation features into two areas: (1) implementation characteristics, which are somewhat
abstract and refer to implementation concerns that are not predefined components, and (2) predefined components,
which perform some specific function that can be directly incorporated into an architecture.

F4.1: Implementation Characteristics

F4.1.1: Programming language. Architecture implementation necessitates the use of programming languages, such
as C or Java. An RDE that is itself implemented in the particular language used for the application guaran-
tees compatibility; however, an RDE may also supply interfaces or wrappers that interface easily with other
languages.

F4.1.2: High-level language. Some programming environments integrate higher-level languages, such as The Behav-
ior Language (Brooks, 1990), COLBERT (Konolige, 1997), or GRL (Horswill, 2000) for behavior description or

11

ACL (FIPA-ACL, 2002) or KQML (Mayfield et al., 1996) for agent communication. These high level languages
can be used within an agent architecture (e.g., to facilitate data transfer between components) or in multi-robot
applications.

F4.1.3: Documentation. The usability of an RDE is greatly enhanced by the inclusion of well-documented code and
user manuals that may include the system’s API specification, answers to frequently asked questions, trouble-
shooting guides, instructions concerning custom extensions, etc.

F4.1.4: Real-time operation. Real-time constraints are often critical in designing and operating robot architectures.
Real-time capabilities of an RDE are generally dependent on the operating system and/or programming lan-

guage.

F4.1.5: Graphical interface. An RDE may supply pre-implemented graphical interfaces that enhance individual com-
ponent visualization during application execution, including displays related to various sensors, effectors, be-
haviors, robot control, navigational plans, etc. Additionally, RDEs may define a standardized method of adding
such displays.

F4.1.6: Software integration. RDEs may provide tools that facilitate the integration of external software, either at
the component level (e.g., a localization routine) or a complete application-as-component (e.g., speech produc-
tion), greatly enhancing development time and effort. A notable development in this area is “wrappers” for
components of other robotic systems that promote the integration, sharing, and reuse of components.

F4.2: Predefined Components

Predefined components are analogous to software libraries; since the list is open-ended and will most assuredly expand
in the future, we deviate from the format used thus far and give a necessarily incomplete list of common components
with corresponding citations. Furthermore, the list assumes a fairly high-level viewpoint, necessary to maintain an
acceptable level of commonality among systems.

Currently, most RDEs include predefined components for map-making (F4.2.1), localization (F4.2.2, e.g., Thrun,
2003), route planning (F4.2.3, e.g., (Konolige, 2000)), speech recognition (F4.2.4), speech production (F4.2.5), and
vision processing (F4.2.6, with various capabilities such as blob tracking, edge detection, motion tracking, etc.). Some
less common components are rule interpreters (F4.2.7, e.g., JESS, 2003 or Sloman, 2002), planners (F4.2.8, e.g.,
Maes, 1990; Jensen & Veloso, 1998; Stentz, 2002), neural networks (F4.2.9, e.g., Koker et al., 2004), and machine
learning (F4.2.10, e.g., Vijayakumar et al., 2002; R. Russell, 2004). Even less common, and therefore not included
in the evaluation criteria, are support for instruction/teaching (e.g., Skubic & Volz, 1998; Bentivegna & Atkeson,
2002), human robot interaction facilities (e.g., Fong et al., 2003), affect (e.g., Pfeifer, 1988; Moshkina & Arkin, 2003;
Scheutz et al., 2006), and coordination mechanisms (e.g., Hoff & Bekey, 1995; Chaimowicz et al., 2003; Dias &
Stentz, 2003).

4 RDE Feature Criteria Evaluations

For each of the RDEs in Section 2, a value has been assigned for the criteria from Section 3, determined using the
system’s documentation and verified based on usage experience (a synopsis of experimental implementations and the
usability evaluation is provided in Section 5). Three types of assignments are made: (1) binary, signified by for no and
\/ for yes, (2) ternary, signified by O for not supported, B for partially supported, and B for well supported, and (3)
listings, which are text descriptions. Table 2 shows the values assigned to each system for each criteria, while further
explanation is given in the text. The following shorthand column headings are used to designate particular systems:
TB-TeamBots, AR-ARIA, P/S—Player/Stage, Py—Pyro, C-CARMEN, ML-MissionLab, AD-ADE, Mi-Miro, and
MA-MARIE.

F1: Specification

F1.1 Architectural Primitives: To attain a somewhat supported value, a system must provide at least one form of
robot control. Systems that provide additional, likely more complex, methods of robot control receive a well

12

supported value. Player/Stage does not provide any predefined control methods, following their policy of pro-
viding only the framework for implementing robot control and so receives a not supported value. ARIA provides
a set of basic actions and an elementary priority-based action resolver. CARMEN provides a Markov decision
process planner as part of its navigation component. Each receives a somewhat supported value. The rest of
the systems are considered well supported. TeamBots provides schema-based motor control, finite state ma-
chine (FSM) sequencing, and hierarchical behaviors via the Clay behavior configuration system. Pyro provides
both subsumption and fuzzy blending of behaviors, while MissionLab provides schema-based control, behav-
ior sequencing and artifacts. ADE provides access to a general-purpose rule interpreter, schema-based and
subsumption-based behavior primitives, a Prolog interface, and a distributed neural-network style component
model based on APOC (Scheutz & Andronache, 2003). Miro includes a custom “behavior engine”, based on
that introduced in (Brooks, 1991). MARIE, via the RobotFlow and FlowDesigner packages, provides hidden
Markov models, fuzzy blending, FSMs, an interface to Octave software, and other primitives.

-
=
>
=

P/S

=
=
=
=
>

Category Criteria

-]
<

Specification F1.1 Architectural Primitives
F1 F1.2 Software engineering
F1.3 Architecture Neutrality

<. maO

=
ck.omm
=

=
g

F2.1 Operating System
Platform F2.2 Hardware Support

F2 F2.3 Simulator

F2.4 Configuration Method

F3.1 Low-level Communication
F3.2 Logging Facilities

F3.3 Debugging Facilities
Infrastructure | F3.4 Distribution Mechanisms
F3 F3.5 Scalability

F3.6 Component Mobility

F3.7 Monitoring/Management
F3.8 Security

F3.9 Fault-tolerance

O0ooDoooowooo=< . og
DOEBEDOODEBEBYYIOEHBC

QIO DDDODEBEB-BEODBC OO0

=
<
o
+
(@)

F4.1.1 Programming Language
F4.1.2 High-level Language
F4.1.3 Documentation

F4.1.4 Real-time Operation
F4.1.5 Graphical Interface
Implementation | F4.1.6 Software Integration

++

EHQQEIEDDDD]D]D]EEWEDEDD'GQEDE
+
+

EEQQD]DEHD]BHD]EE[D"‘EED]D]CQBHEH
O< QDD DNDHEBBQDDDC<, OH
D]QQD]DEHD]D]EEEED]V’EEHHEHGQD]EH

U<
H< ZUOHOOOBHDO<XDHHA

H
H

Oom

F4 F4.2.1 Map-making
F4.2.2 Localization

F4.2.3 Route Planning
F4.2.4 Speech Recognition
F4.2.5 Speech Production
F4.2.6 Vision Processing
F4.2.7 Rule Interpreters
F4.2.8 Planners

F4.2.9 Neural Networks
F4.2.10 Learning Vv

<< (OO
Lo g
LD H
LKL B H

<< <o

<
L < |b@

<
S AL |IOE o E‘EEEEHHHHBHBHEHEEWBHEDD“QEEEH%
o

LA B H

<

<
LK

Table 2: Feature Criteria Evaluation by RDE

F1.2 Software engineering: To attain a somewhat supported mark, an RDE must explicitly state design principles, be
implemented using an object oriented programming language (e.g., C++ or Java), or make use of a high-level
object language (e.g., CORBA). An explicit theoretical foundation yields a well supported mark. TeamBots,
Player/Stage, ARIA, CARMEN, Pyro, MARIE, and Miro are of the former type, while the use of Societal Agent

13

theory in MissionLab and the APOC formalism in ADE provides the basis for receiving a well supported value.

F1.3 Architecture neutrality: All the systems under consideration are neutral with regard to agent architectures, al-
though MissionLab has a strong association with the AuRA architecture (Arkin & Balch, 1997) and CARMEN
has been described by its authors as an example of the 3T hybrid architecture (Montemerlo et al., 2003b). How-
ever, neither enforces the use of the associated architecture, and can therefore be considered agent architecture
neutral.

F2: Platform Support

F2.1 Operating System: Compatible operating systems have been determined according to information from system
documentation and do not necessarily discount those not listed. If a system, such as TeamBots or ADE, is
implemented in Java, the assumption is made that it will execute on any computer platform for which a Java
Virtual Machine of the required type is implemented. Similarly, no differentiation is made among the various
“flavors” of UNIX, although each system has at least been tested in a Linux environment. Player/Stage, ARIA,
and Pyro run on both UNIX and Windows. CARMEN, MissionLab, Miro, and MARIE run on UNIX systems.
Letter codes in Table 2 are as follows: J=Java, U=UNIX, W=Windows.

F2.2 Hardware Support: Hardware support, as used here, refers to specific robot manufacturers/platforms. We as-
sume a relatively limited pool of sensors and effectors are used across platforms (such as SICK LMS lasers), al-
though all systems allow specification of custom sensors and/or effectors. To attain a somewhat supported value,
a system must support at least three different platforms; more than five earns a well supported value. ARIA sup-
ports only MobileRobots robots, ADE supports MobileRobots and Arrick Trilobot, TeamBots supports Cye and
Nomad 150 robots, Miro supports MobileRobots, iRobot B21, and their in-house Sparrow platforms, Mission-
Lab supports MobileRobots, iRobot, Evolution Robotics ER-1, and Nomad robots, MARIE supports MobileR-
obots platforms natively, in addition to all platforms available through ARIA, Player/Stage, and CARMEN via
its adapters, Player/Stage supports MobileRobots, iRobot, Segway, Acroname, Botrics, Evolution Robotics, and
K-Team platforms, CARMEN supports MobileRobots, Aibo, Nomadics, iRobot, and Segway platforms, and
Pyro supports MobileRobots, Aibo, Cye, iRobot, Khepera, Nomad, and Segway platforms.

F2.3 Simulator: To attain a somewhat supported value, an RDE must at least provide a low-fidelity, 2-dimensional
simulator (which may or may not support multi-robot simulations). To attain a well supported value, an RDE
must provide a high-fidelity, 3-dimensional simulator that supports multi-robot simulations and may be used
to model robotic mechanisms. CARMEN includes a 2-dimensional simulator that supports low-fidelity single-
robot simulation that can, with some manipulation of the IPC communications, be used for multi-robot simu-
lations. TeamBots, ARIA, MissionLab and ADE provide low-fidelity, multi-robot simulators. MissionLab also
supplies a low-fidelity 3-dimensional simulator (although the manual states that its use will halt the system).
A major component of Player/Stage, as indicated by its name, is the Stage 2-dimensional simulator, which is
low-fidelity and supports multiple robots. Also available is the Gazebo high-fidelity 3-dimensional simulator,
which elevates Player/Stage to fully supported status, along with Pyro and MARIE, which provide interfaces to
Stage, Gazebo, and the ARIA and CARMEN simulators.

F2.4 Configuration Method: A system, such as TeamBots, that embeds configuration in source code has a not sup-
ported status. If a system stores configuration in a text file (possibly XML), it receives a somewhat supported
value. Player/Stage, ARIA, Pyro, and Miro all use text files, of which Miro supports XML. A system that pro-
vides a graphical means of accessing and modifying configuration settings gets a well supported value, which
includes CARMEN, MissionLab, and ADE. MARIE also receives a well supported value due to the graphical
interfaces included with FlowDesigner and RobotFlow; MARIE itself uses XML configuration files.

F3: Infrastructure

F3.1 Low-level Communication: All systems considered provide socket support and common networking protocols.
TeamBots, Player/Stage, ARIA, and Pyro use direct socket connections as their primary method of communi-
cation. CARMEN and MissionLab use IPC and IPT, respectively, which adds a level of abstraction to general
TCP/IP sockets. ADE uses Java’s RMI, while Miro relies on CORBA’s IIOP. MARIE makes use of shared

14

memory or sockets, relying on ACE for the latter. Letter codes in Table 2 are as follows: S=Socket, I=IPC/IPT,
R=RMI, C=CORBA IIOP.

F3.2 Logging Facilities: All systems provide some means of monitoring component operation as console output or
graphical display, which forms the baseline for the value assignment (i.e., a not supported value). To gain
a somewhat supported value, at the very least a system must supply a predefined logging facility; to gain a
well supported value, a system must allow for remote data capture, run-time starting and stopping of logging,
and dynamically configurable data capture that can be recorded in one or more files in one or more locations.
TeamBots provides only simple console/graphical output. Logging in ARIA, Player/Stage, CARMEN, ADE,
and Miro is well supported, while logging in Pyro, MissionLab, and MARIE is somewhat supported.

F3.3 Debugging Facilities: To attain a somewhat supported status, a system must allow non-simulated application
interruption and restart in conjunction with the ability to obtain information about component data. To qualify
as well supported, a system must allow run-time suspension, modification, and replacement of arbitrary compo-
nents. TeamBots is the only RDE receiving a not supported value. ARIA receives a somewhat supported value.
Player/Stage, Pyro, CARMEN, MissionLab, ADE, MARIE, and Miro all qualify as well supported, but Mis-
sionLab and MARIE excel due to their integrated and extensive graphical interfaces. MissionLab is unique in
that it also uses the included case-based reasoner to analyze a “mission” after completion to identify the source
of operational errors. Also notable is ADE’s ability to dynamically compile and replace components at run-time
using the ADE class loader.

F3.4 Distribution Mechanisms: To be elevated from a not supported to somewhat supported value, a system must
include a component that functions as middleware. To qualify as well supported, an agent framework that treats
components as independent agents is required. Neither TeamBots nor Pyro provide middleware mechanisms and
receive a not supported. The IPC and IPT software used by CARMEN and MissionLab and the Player server
in Player/Stage act as a centralized naming service, while the ArNetworking package provided in ARIA fills a
similar function. ADE, MARIE, and Miro each specifically incorporate enhanced middleware functionality as
part of their infrastructure, earning a well supported value.

F3.5 Scalability: To use “scalability” as a general reflection of an RDE’s properties, a combination of criteria from
categories F1, F3, and F4 (specification, infrastructure, and implementation) is used. To earn a well supported
value, a system must provide scalability support in all categories (as defined below); a somewhat supported
value indicates support in any two categories, while support for a single category or none at all receives a not
supported value. In the specification category, an RDE must have a well supported value for either architectural
primitives or software engineering (criteria F1.1 or F1.2). For support in the infrastructure category, a system
must earn at least a somewhat supported value for distribution mechanisms (F3.4), while the implementation
category is comprised of satisfaction of at least one of high-level language, rule interpreters, or planners (F4.1.2,
F4.2.7, and F4.2.8, respectively).

F3.6 Component Mobility: To receive a somewhat supported value, an RDE must provide architectural components
to operate independently of one another in addition to continuing system operation when a component is re-
moved, restarted, and reconnects. To attain a well supported value, mechanisms must be in place that can
perform this task automatically. TeamBots, ARIA, and Pyro all use a fixed run-time system architecture that
does not allow mobility and so receive a not supported value. The portability of devices in Player/Stage allows
manual component relocation at run-time, as do the modules in CARMEN and the object structure found in
MARIE and Miro, while MissionLab provides mechanisms to upload robot executables to remote hosts. Each
of these systems receives a somewhat supported status. ADE provides mechanisms for saving state, automatic
component start-up, and automatic component re-location due to detected failures, earning a well supported
value.

F3.7 System Monitoring/Management: To gain somewhat supported status, an RDE must provide an interface that
gives access to all components in the system architecture. To gain well supported status, an RDE must also pro-
vide mechanisms to manage all components. (Note that graphical representations of a robot’s sensors, effectors,
or other individual components do not qualify as infrastructure; see the Graphical Interface in Section 4). None
of TeamBots, Miro, nor CARMEN provide coherent system-wide facilities. ARIA supplies the MobileEyes GUI
for robot display and control, but source code is not freely available and thus earns a not supported status. Pyro,

15

Player/Stage, MissionLab, ADE, and MARIE all have graphical interfaces that not only display component
status, but also allow component control.

F3.8 Security: To gain a somewhat supported value, a system must provide a way to securely authenticate compo-
nents. To gain a well supported value, an RDE must also provide access control and encryption. None of
TeamBots, Player/Stageﬁ, Pyro, CARMEN, MissionLab, Miro, or MARIE use security mechanisms. MARIE
and Miro both might inherit security features from their use of ACE for component communication, but do not
exploit its availability. ARIA provides authentication services as part of the ArNetworking package, earning a
somewhat supported value. ADE explicitly addresses all three aspects of security (encryption, authentication,
and access control).

F3.9 Fault-tolerance: To achieve somewhat supported status, a system must isolate components such that failure of
a single component does not cause the entire application to fail. To receive well supported status, an RDE must
also provide mechanisms in support of failure recovery. None of the TeamBots, ARIA, or Pyro RDEs provide
component isolation. Player/Stage, CARMEN, and MissionLab, through their reliance on IPC software, each
isolates components, while MARIE and Miro’s use of ACE objects serve the same purpose. It is worth noting
that MissionLab also incorporates a case-based reasoning wizard for the purpose of repairing a mission post-
execution (Moshkina et al., 2006) and that ACE implements the Fault Tolerant CORBA specification, although
neither MARIE nor Miro have yet incorporated it. ADE provides both fault detection and fault recovery at the
component level through its use of heartbeats between ADEServer s and clients.

F4: Implementation
F4.1 System Implementation Characteristics

F4.1.1 Programming Language: Both TeamBots and ADE are written in Java, while CARMEN and Pyro are imple-
mented in C and Python, respectively. Player/Stage, ARIA, MissionLab, MARIE, and Miro are implemented in
C++.

F4.1.2 High-level Language: To qualify as supporting a high-level language, an RDE must supply a structured
method for controlling a robot (e.g., a behavior or agent communication language). TeamBots supplies the
Clay behavior hierarchy, ARIA provides action specification via the ArAction class, MissionLab provides both
CDL and CMDL, Pyro and MARIE supply both a set of foundational behavior classes and finite state automata,
and Miro provides a “behavior engine” for behavior specification. None of Player/Stage, CARMEN, nor ADE
provide a high-level language.

F4.1.3 Documentation: To attain a somewhat supported value, an RDE must have well documented source code
and a publication outlining its use. If an RDE also supplies a manual that describes how to use the system
(including installation instructions, guidelines for developing applications and extending capabilities into new
areas, solutions to common problems, and example code), it receives a well supported value. While TeamBots,
ADE, Miro, and MARIE all provide some level of documentation, both web-based and in source code, it is
either incomplete or they do not provide finished manuals that detail their use. Player/Stage, ARIA, CARMEN,
and MissionLab all have complete and detailed manuals available, while Pyro provides the equivalent through
its extensive online documentation.

F4.1.4 Real-time Operation: None of the systems directly provide real-time support, although MissionLab has the
mechanisms in place for use with a purchased license of proprietary software from Honeywell.

F4.1.5 Graphical Interface: To obtain a somewhat supported value, an RDE must supply graphical interfaces for
visualizing component operation or designing control code without actual programming. To receive a well sup-
ported value, an RDE must provide both items just mentioned, in addition to a standard method for creating new
displays. Only TeamBots does not provide a graphical display for a robot at run-time (although it does supply a
graphical simulator facility), and so receives a not supported value. While the MobileEyes GUI is available with
ARIA, source code is not freely available and thus has to be classified as not supported. CARMEN provides

SWhile the Player server in Player/Stage can optionally be set to require authentication, it is explicitly acknowledged that the authentication is
not for security, as keys are passed in plain text.

16

ad hoc, component specific graphical interfaces, but does not provide standard methods for adding visualization
nor graphical control code tools, and so receives a somewhat supported value. MissionLab and Miro provide in-
terfaces that allow developers to design control code without actual programming, but do not provide a standard
method for defining new displays, also earning them a somewhat supported value. Player/Stage, ADE, Pyro,
and MARIE all provide both implemented displays and a standardized method of creating new displays, earning
well supported values.

F4.1.6 Software Integration: To attain somewhat supported status, an RDE must provide a standard API or mecha-
nism for incorporating “outside” software, generally using socket connections (with the recognition that transla-
tion code will always have to be written). Providing additional codified facilities that interface with other RDEs,
thereby allowing their software to be “dropped into” the environment, elevates the status to well supported.
Neither TeamBots, ARIA, nor MissionLab provide such standard APIs or mechanisms. Player/Stage and CAR-
MEN provide such APIs (for their devices and modules, respectively), Pyro and ADE explicitly include steps
to “wrap” external software, MARIE supplies a variety of APIs and mechanisms for integration, while Miro
relies on writing TAO interfaces in Interface Device Language (IDL), used to produce C++ code. Each receives
at least a somewhat supported value. MARIE and Pyro also provide translation facilities such that components
written for CARMEN, Player/Stage, or ARIA can be used and earn a well supported value.

F4.2 Predefined Components

As mentioned earlier, any list of predefined components is open-ended and therefore necessarily incomplete. We
limit this list to components that are commonly available and only list the RDEs that include them. Furthermore, no
quantitative evaluation is given; the intent is not to establish a full taxonomy, but to provide a high-level indication
of system functionality. It should also be noted that both ARIA and MissionLab provide some of the following
components so long as they are licensed; due to the limitation of this survey to open source software, such components
have been excluded.

F4.2.1 Map-making: ARIA provides the Basic Mapper software, which can be used to manually construct maps.
Player/Stage, Pyro, CARMEN, ADE, and MARIE all include map-making facilities, which are combined with
localization.

F4.2.2 Localization: TeamBots provides a landmark-based localization component, while Miro provides particle fil-
ter localization. ARIA provides sonar-based localization, but full localization facilities must be purchased.
Player/Stage, Pyro, CARMEN, ADE, and MARIE all include localization facilities, which are combined with
map-making.

F4.2.3 Route Planning: TeamBots and ADE provide schema-based navigation, ARIA supplies a navigator integrated
with its localization package, Player/Stage provides a wavefront propagation route planner, CARMEN uses a
Markov decision process planner, MissionLab relies on geometric map analysis and an A* graph search, and
MARIE integrates Player/Stage and CARMEN navigation components.

F4.2.4 Speech Recognition: Player/Stage, ARIA, ADE, Pyro, and Miro all provide speech recognition support
through integration of outside software such as Sphinx (Sphinx, 2004) or Sonic (Pellom & Hacioglu, 2003).

F4.2.5 Speech Production: Player/Stage, ARIA, ADE, Pyro, MARIE, and Miro all provide speech production sup-
port through integration of outside software such as Festival (Festival, 2004).

F4.2.6 Vision Processing: MissionLab and Miro have basic image/video capture capabilities, but Miro also provides
stereo image capture and many video filters. TeamBots includes CM Vision software, which can capture images
and perform blob detection. ARIA has two vision packages available, the ActivMedia Color Tracking Software
(ACTS) and VisLib. ACTS is a blob detection package, while VisLib includes image filters, blob detection, and
object tracking. Player/Stage supports both ACTS and CMVision. Pyro includes image/video capture, blob,
edge, and motion detection, assorted filters, and stereoscopic tools, implemented in C++ for speed reasons.
ADE includes both an ACTS interface and custom blob detection, object tracking, and face/emotion detection.
MARIE, via the RobotFlow software, provides custom image capture, blob detection, movement detection,
text/symbol extraction routines, and supports OpenCV.

17

F4.2.7 Rule Interpreters: ADE includes an interface to POP-Rulebase (Sloman, 2002) and Prolog, while MARIE and
MissionLab both include custom rule interpreters.

F4.2.8 Planners: While item F4.2.3 specifically covers navigation planners, these are considered too task-specific to
qualify under the general rubric of “planner”. MissionLab and MARIE both supply generic planners.

F4.2.9 Neural Networks: Pyro, Miro, and MARIE all include neural network software.

F4.2.10 Learning: TeamBots provides both reinforcement and Q-learning components, Pyro has a reinforcement
learning module, while MissionLab includes integrated case based reasoning and Q-learning components. We
do not include neural network software under the learning heading, as it appears as a separate category above.

S RDE Usability Evaluations

The systematic comparison of RDEs with respect to their supported features based on a conceptual framework is one
important part of an RDE evaluation. Another important part is RDE usability, for the extent to which an RDE can
be easily installed and used in research is ultimately a decisive factor for its adoption. Yet, surprisingly, there is only
one previous study (Orebick & Christensen, 2003) that provides a practical RDE evaluation. And while a robotic
architecture was actually implemented and executed on a robot in Orebidck & Christensen, 2003, their study is very
limited in scope (only three RDEs were evaluated according to a small set of criteria based on a single application) and
does not provide a methodology for systematic comparisons and subsequent evaluations that ties together conceptual,
practical, and impact factors. Consequently, the conclusions Orebéck and Christensen (2003) arrived at have limited
applicability.
We believe that a comprehensive evaluation needs to encompass at least the three categories of usability criteria:

Ul: Installation. Basic steps required to obtain a usable system, evaluated in terms of the required time and effort.

U2: Basic usability. Implementation and execution of a simple “lowest common denominator” architecture for RDE
comparison, focussing on “low-level” sensor and effector access and allows for an investigation of architectures
that reside on a single host.

U3: Advanced usability. Usage of individual, predefined, “high-level” components that would commonly form
sub-architectures of a complex, distributed architecture; an effort is made to explore uncommon (and possibly
unique) “high-level” system features.

The following subsections describe the three categories in more detail. As was done with features in Sec-
tions 3 and 4, a set of criteria is defined and subsequently evaluated. Due to the variability of each criteria’s subject,
value meanings are specified per item; in general they can be interpreted as: [for below average, B for average,
and H for above average. While an attempt has been made to adhere to a ternary value assignment, a value of na
is used to indicate that a specific item was not examined in sufficient depth to assign a value for some reason (e.g.,
incompatible hardware, difficulties with prerequisite software, etc.). na values will not be included in an RDE’s score.
Results are shown in Table 3, where the following shorthand column headings are used to designate particular systems:
TB-TeamBots, AR-ARIA, P/S-Player/Stage, Py—Pyro, C-CARMEN, ML-MissionLab, AD-ADE, Mi-Miro, and
MA-MARIE.

All systems were installed on at least two computers out of a selection of five: two laptops, two desktops, and
the onboard PC of an ActivMedia PeopleBot P2DXe robot (shown on the right in Figure 1). None of the computers
were the same make and model, with varying CPUs (§50MHz Pentium III, 1.3GHz and 2.0GHz Pentium M, 2.3GHz
Pentium 4, and a 1.8GHz AMD Athlon) and memory capacities (from 128MB-1GB), although all used Linux (either
Debian or Fedora distributions) running a 2.6.x kernel. Various supporting hardware included microphones, speakers,
a Firewire camera, and both wired and wireless Ethernet networking. All non-simulated experiments were conducted
on the robot, which also has a pan-tilt unit, sonar, bumpers, and a SICK LMS200 laser range finder.

Ul: Installation

Prior to actually using an RDE, it must be properly installed. Since we believe that installation difficulties might often
be a deterrent for potential users, we give “Installation” its own category and criteria.

18

Category | Criteria T | AR |P/S |Py |C ML | AD | Mi | MA
Ul.1 Documentation H H H H H H H H H
Install U1.2 Non-RDE Installation H H H H H H H O O
U1.3 RDE Installation H H H H H O H | =)
Ul .4 Installation Usability H =] H B = O H O |
U2.1 Documentation (] H H H H H = H H
U2.2 Architecture Implementation U H H =) H H H O O
Low-level | U2.3 Architecture Execution H H == H U H H H |
U2.4 Graphical Tools O =] =] 2! = H H =] =)
U2.5 Overhead (memory, CPU) Bt | B B B = gt | #8 gt | &8
U2.6 “Low-level” Usability O =] H B H H H | g
U3.1 Documentation na H H H H = H O B
U3.2 Predefined Components na H H H O H H H H
U3.3 Task Implementation na =] H =2 = H H H =)
High-level | U3.4 Distribution na H H 0 = H H H =)
U3.5 Graphical Tools na (] =] = g H H (] H
U3.6 System Integration na (] H H H H H H H
U3.7 “High-level” Usability na O H =a! = =] =] | =]

Table 3: Usability Criteria Evaluation by RDE (a T indicates that execution of the “low-level” architecture was done
in simulation due to difficulties running it on the robot).

U1.1 Documentation: Installation documentation refers specifically to how well the documentation described the in-
stallation process, including required preparatory steps and supporting software, minimum system specification,
a clearly laid-out sequence of instructions, a list of known or potential issues, inclusion of mailing list or contact
addresses, and references to further information. Satisfying more than five of the above requirements receives a
H value, three or four receives a H value, while less than three receives a [.

U1.2 Non-RDE Installation: In all cases, installation required additional supporting software. In some cases, this is
limited to a single package (e.g., an adequate Java system), while in others, a large set of additional software
is required to enable all available features. A value of H indicates that installing non-RDE software (including,
if necessary, determining what supporting software was required, actual compilation and installation, and any
needed debugging) took less than three hours, a H indicates less than two days, while a [indicates more than
two days. Due to the level of detail necessary to cover the variety and scope of additional software packages,
we do not address many of the related issues encountered, although some additional information is given as part
of criteria Ul.4.

U1.3 RDE Installation: RDE installation refers to the steps necessary to have a usable system, assuming all support-
ing software has been installed. Values are the same as non-RDE installation (U1.2): a B value indicates that
installation took less than three hours, a H indicates less than two days, and a [] indicates two or more days were
required to attain a usable system.

U1.4 Installation Usability: Usability, as related to the installation procedure, is the overall (and ultimately subjec-
tive) impression of the experience. Values are assigned relative to the other systems, thus three systems each
receive U, H, and H values. The following notes provide selected information (presented in no particular order)
gathered during the implementation process that help explain the evaluations:

e Pyro has a bootable “LiveCD” available, which should avoid installation issues altogether. However, actual
robots rarely have a CD drive, making this irrelevant for non-simulated use. The packages in the Pyro yum
repository conflicted in some cases, but manual installation was done without issue.

o The version of MissionLab available required the use of gcc version 3.2 or below and related libraries,
which, due to its age and incompatibility with current versions, was the cause of time-consuming installa-
tion issues.

19

FUNCTION simple_architecture
turning, forward = 0
while true do

R — getRanges()

forallr € Rdo

. - aXcos(r,
turning = turning + (rangte)

Tdistance XTdistance

forward = forward — axsinlrangle
end for
forward = forward + (3
setVelocity(forward, turning)
end while

Tdistance XTdistance

Figure 1: Left: The “simple” architecture algorithm implementing a wander behavior with obstacle avoidance. At
each time step, a set of polar range readings R = (r1,72,...,7y) is obtained, where —7 < rgngie < T (Fangte = 0
is straight ahead) and r4;s¢qnce 1S relative to the center of the robot. The rotational velocity turning is calculated by
summing the x component cos(rangle) of polar readings, divided by square of the distance 74;stqance to account for
obstacles, multiplied by some system-dependent scalar . The translational velocity forward is calculated similarly,
using the y component sin(rqngqie), subtracted from the total to make it repulsive, then adding a constant 3 for default
forward movement. Right: The robot on which experiments were performed.

o Installation of ACE/TAO software, required for Miro and MARIE, was particularly time-consuming, par-
ticularly due to an initial misconfiguration that required multiple manual de- and re-installation. Miro
requires a particular ACE/TAO configuration installation, which is not documented.

o Installation of supporting packages for ADE includes a hardware interface for Java, Player/Stage for sim-
ulation, a secure shell client and server for distribution, and assorted other packages to attain the full
complement of system functionality.

e Few, if any, installation issues were experienced with TeamBots, ARIA, Player/Stage, and CARMEN. The
issues that were encountered mostly concerned platform configuration (e.g., appropriate privileges and
permissions, default hardware settings that differed from the particular configuration in use, etc.).

U2: Basic Usability

Basic usability in this context means to be able to implement and execute a simple robotic architecture to be able to
test a minimal set of capabilities supplied by each RDE. The implemented architecture consists of a basic wander
behavior that incorporates obstacle avoidance. Only motor control and range finder sensors were accessed, in as direct
a manner as possible, providing a “lowest common denominator” for RDE comparison. The basic algorithm, which
uses a potential field method, is shown on the left side of Figure 1. Note that because the robots available to the authors
are not supported by TeamBots, the architecture was implemented but execution could only be done in simulation.
Similarly, MissionLab and Miro were also run in simulation due to repeated failures. Each time an installation was
not successful, the error was located, fixed, and another attempt was made. Once simulated architecture execution was
possible, a few additional attempts were made to run the architecture on the robot; when these also failed, simulated
results were deemed acceptable. Systems that were only evaluated in simulation are marked with a T in Table 3.

U2.1 Documentation: In relation to the “low-level” architecture, documentation refers to information that enhances
basic usability (e.g., APIs, example code, a frequently asked question list, etc.). A [value indicates that it was
difficult to find information concerning either basic functionality (e.g., how to send a command to the robot)
or a solution to a relatively simple problem (e.g., how to start architecture execution). A H value indicates that
information was available but required some effort to locate, while a B value indicates that very little effort was
required to find installation and implementation information.

20

U2.2 Architecture Implementation: Architecture implementation refers to the process of writing the program that
performs the wander behavior with obstacle avoidance. A [J value indicates that implementing the simple ar-
chitecture was a major undertaking (requiring more than two days), a B value indicates that substantial effort
was involved (requiring more than 5 hours), and a H value indicates that implementation required an expected
amount of effort (less than 5 hours). It is important to note that because the simple architecture was a low-level
implementation that circumvented or avoided the abstractions and/or tools supplied by some RDEs (e.g., Team-
Bots’ Clay system, ARIA’s predefined actions, or MissionLab’s behavior libraries), the value is not necessarily
indicative of what might be considered “normal” usage, which is considered instead as part of “high-level”
usability.

U2.3 Architecture Execution: Architecture execution refers to the effort required to start and stop a fully implemented
architecture (including both the control code and supporting software, if they are separate). A [J value indicates
a sequence of more than four steps, perhaps requiring multiple terminal connections that each require separate
initialization. A B value indicates that two to four steps are required, sometimes mitigated by the GUI. A H
value indicates that startup and shutdown requires a single step’ .

U2.4 Graphical Tools: For the “low-level” architecture, graphical tools refer to the non-command line interface pre-
sented by an RDE. A value of H is given if the system provides both a display of basic operational information
and a graphical manner of starting and stopping architecture execution. A value of H is given if an RDE provides
either, while a value of [indicates that neither are provided.

U2.5 Operational Overhead: Operational overhead refers to the memory and CPU (M and C, respectively) resources
used during architecture execution®. Initial conditions were kept constant by rebooting the computer for each
system, turning the swap file off, then executing the architecture three times, recording measurements at one
second intervals. Each execution run is divided into two phases: (1) startup (denoted by a subscript .S), demar-
cated by the time just prior to system startup until robot movement is first detected and (2) execution (denoted
by a subscript F), which begins when robot movement is detected, continuing for 90 seconds.

Figure 2 shows the average (with standard deviation bars) and maximum values across all three runs. The
average values form the basis for calculating evaluation scores by dividing the range in thirds that are assigned
values of 0 for the top third, 1 for the middle third, and 2 for the lower third. More specifically, Mg and Mg
receive: <20MB = 2, <40MB = 1, and >40MB = 0. For C's and Cg, <33% = 2, <66% = 1, and >66% =0.
The values shown in Table 3 are the sum of Mg, Mg, Cg, and C'g, where a total of 6 or better receives a HH, a 4
or 5 receives a H, and 3 or less receives a []. It is interesting to note that, in most cases, the operational overhead
displays the classic memory vs. CPU usage tradeoff in both the startup and execution phases.

U2.6 “Low-level” Usability: Usability, as related to the “low-level” architecture, is the overall (and ultimately sub-
jective) impression of the experience. Values are assigned relative to the other systems, thus three systems each
receive [, H, and B values. The following notes provide selected information (presented in no particular order)
gathered during the implementation process that help explain the evaluations:

e Execution for TeamBots, MissionLab, and Miro were performed in simulation (denoted by a T in Table 3)
due to unsupported laser hardware in TeamBots and difficulties in hardware communication for Mission-
Lab and Miro.

e Although RobotFlow supplies components for interfacing with a Pioneer and SICK lasers, execution for
MARIE used a Player server as the hardware interface so that MARIE functionality was included in the
performance measurements.

e Inclusion of an easily accessible simulator was extremely useful in implementing and debugging an archi-
tecture; Player/Stage and CARMEN are particularly strong in relation to simulator integration, while Miro
was relatively difficult to access.

e The structure of TeamBots is such that implementations that deviate from the included software (e.g.,
non-Clay behaviors or unsupported hardware) are very difficult to program.

7We do not consider placing a sequence of commands in a shell script for execution as a single step.
8While disk space usage and bandwidth are important, neither is considered. We exclude disk space due to the variability of packages required,
while bandwidth is not addressed due to the single-host nature of the “low-level” architecture.

21

T N T T T T T T T 60000 [T @ T T T T T T T]
60000 | . o i s
A& N
¢ 5 = 50000 |- ¢ .
50000 |- s .
= % & 40000 | ¢ g
X 40000 | . < N N
g a g 30000
g 30000 F - g
2 B 2
20000 | . 20000 - % T
10000 - - 10000 5
0 1 1 1 1 1 1 1 1 0 ? 1 1 1 1 1 1 ; 1
TB AR P/IS PY C ML AD Mi MA TB AR P/S PY C ML AD Mi MA
RDE RDE
100 F T T T T T T T T] 100 F T T T T T T T T T 3
80 1 i 80 | } .
S5 e ¢ A ‘ J 5 eop - s o
ol o a
Q) Q ¢
> - N
40 - - 40 7
20F | l } : - 20 | “ s .
-]
¢ o
O 1 ; 1 1 0 i ? 1 1 1 1 1 1

TB AR P/S PY C ML AD Mi MA TB AR P/S PY C ML AD Mi MA
RDE RDE

Figure 2: Operational overhead of each RDE executing the “low-level” architecture. Top Row: Memory usage (in
KB), showing average (with standard deviation bars) and maximum values. The left-hand figure shows the startup
phase, while the right shows the execution phase. Bottom Row: CPU usage (as a % of system load), again showing
average and maximum values. As with the memory overhead, startup is on the left and execution is on the right.

CARMEN and MissionLab require some knowledge of IPC messages to implement custom components
or write routines that access the available components.

Player/Stage, Pyro, and ADE provide a good balance of high-level component abstractions while also
preserving accessibility to low-level sensor and effector interfaces.

Player/Stage and Pyro provide a varied base of example code combined with relatively easy configuration
and relevant documentation.

Both MissionLab and CARMEN provide excellent documentation; MissionLab has a clear and complete
user manual, while CARMEN’s documentation is structured and organized in a manner that made it easy
to find desired information.

Although ARIA provides very good documentation, the “low-level” nature of sensor and effector access
used in this architecture deviates from the standard methods addressed therein, leading to a more difficult
implementation.

While both the FlowDesigner and MissionLab GUIs are extensive and polished, some low-level tasks are
easier to perform using a text editor (in other words, the GUI was actually a hindrance in some respects).

22

U3: Advanced Usability

While the “low-level” architecture provides a lowest common denominator for subjective RDE evaluation, the im-
plementation of what we will refer to as “high-level subarchitectures” provides a basis for evaluating an RDE under
expected normal usage (although with a focus on distributed computing which becomes necessary due to architecture
complexity and real-time processing constraints). Because there are few areas in which all RDEs provide the same
capabilities in the same way, the underlying idea is to obtain an estimate of the effort required to distribute a single
complex architecture over at least two hosts. A model example of such an architecture is DIARC (Scheutz et al.,
2006), which provides a foundation for experiments in human-robot interaction.

The “fundamental” components examined are: (1) vision processing (monocular, that uses blob-detection), (2)
speech recognition, (3) speech production, and (4) the provided robot control primitives, although attempts were
made to use of some (possibly unique) components and capabilities (e.g., MissionLab’s selection of behaviors, ADE’s
autonomous distribution, etc.). The implementation consisted of installing, configuring, and testing individual com-
ponents, then connecting at least two of them across a network as an indication of ease of distribution, with the
assumption that connections among the other components will require similar effort. No attempt was made to im-
plement these tasks in TeamBots, due to both the limited number of predefined components and because the robots
available to the authors are not supported.

U3.1 Documentation: In relation to the varied tasks, documentation refers to information concerning the advanced
RDE functionality (e.g., explanation of available components and their use, example code, etc.). In particular,
the focus was on the components required for the varied tasks (vision, speech recognition, speech production,
and robot control) and their distribution. A [J value indicates either missing or incomplete information for at
least two basic functionalities. A H value indicates that information was either missing or incomplete for only
one basic functionality or that the supplied documentation for any basic component was minimal or unclear. A
B value indicates that documentation was complete, easy to locate, and highly readable.

U3.2 Predefined Components: Predefined components refers to the integrated capabilities included with an RDE. A
(] value indicates that an RDE was either (1) missing at least one component required to implement all “fun-
damental” functionality for the envisioned architecture (robot control, vision, speech production, and speech
recognition) or (2) did not provide at least two additional components for each missing “fundamental” com-
ponent. A H value indicates that the basic components were available or at least two other components were
available for each missing basic component. A H value indicates that the RDE comes packaged with more than
four predefined components beyond what is required for a & value, in addition to other tools or functionality.
Of particular note are Player/Stage, Pyro, MissionLab and MARIE: Player/Stage supports the largest number of
devices, Pyro and MissionLab include various additional functionalities (e.g., Pyro includes working examples
from S. Russell & Norvig, 2002, MissionLab includes a case-based reasoner for post-execution analysis), while
MARIE provides many signal processing and vision tools via the RobotFlow and FlowDesigner packages.

U3.3 Task Implementation: Task implementation refers to the effort required to implement the subarchitectures, both
in terms of accessing individual components and their distribution. As with the “low-level” architecture, a [J
value indicates that implementation was a major undertaking (requiring more than two days), a 5 value indicates
that substantial effort was involved (more than five hours), and a H value indicates that implementation required
an expected amount of effort (of less that five hours). It is imperative to note that the “high-level usability” case
made use of the abstractions and/or tools supplied by some RDEs (which sometimes proved detrimental), which
may account for differences from the value given for the “low-level” architecture.

U3.4 Distribution: Distribution refers to the ease of locating components across hosts once the distribution mecha-
nisms have been implemented, accounting for both startup/shutdown procedures and relocation of components.
A H value indicates that the system provided facilities for automatic login and component startup/shutdown, in
addition to providing the means to reconfigure component location. A H value indicates that only one of those
specifications was met, and a [J value indicates that neither is supported. Of note is that RDEs in which com-
ponents must be implemented with network capabilities (e.g., components in CARMEN or Miro and servers in
Player/Stage or ADE) all have a relative advantage.

U3.5 Graphical Tools: In relation to the “high-level subarchitectures”, graphical tools refers to both the presentation
of an integrated display and the means to graphically implement robot control procedures. This differs from

23

the “low-level” architecture in that (1) an emphasis is placed on integration, such that architecture display and
system control is consolidated and (2) a user does not have to write low-level programs. A value of H is given
if an RDE provides both, a value of H if only one is provided, and UJ if neither is provided.

U3.6 System Integration: System integration refers to the separate issues of (1) easily connecting and controlling
components in a complex architecture and (2) coherent system usage in terms of providing a consistent interface
to the complete system that allows access to and control of individual components. A H value is assigned if
both objectives are met, a 5 if only one is satisfied, and a [if neither.

U3.7 “High-level” Usability: As with the “low-level” architecture, usability is the overall (and subjective) impression
of the experience of using each RDE. Values are assigned relative to the other systems, thus three systems each
receive H and H values, while two receive a [] value (because TeamBots was not evaluated in terms of the
high-level tasks). The following notes provide selected information (presented in no particular order) gathered
during the implementation process that help explain the evaluations:

e Both ARIA and MissionLab have additional components that were not considered here as they require
licensing and were not included in the downloadable package.

o While ARIA’s documentation is in general very good, the distribution package, ArNetworking, lacks
complete documentation. For some basic tasks, MARIE’s documentation is sparse, limited to “node”
listings, while ADE and Miro are comparably spotty.

e Pyro’s interface is well integrated, allowing access to various conceptually separate parts of an application
(i.e., the server, robot, devices, and “brain”), while also providing the ability to enter Python commands
at run-time. However, non-graphical usage is not quite as polished (for instance, hanging when exiting the
system).

e The user interface provided by MissionLab is especially suited to task specification implemented by non-
programmers, matching its objective of providing a high-level view of robot control.

e Systems that require the strict use of abstractions in support of their component model (e.g., the ACE/TAO
in Miro and FlowDesigner networks in MARIE) or, to a lesser extent, require some level of abstraction
removed from actual source code (e.g., IPC/IPT communications in CARMEN and MissionLab and RMI
in ADE) can be either beneficial or detrimental to some degree. For instance, Miro’s requirement that all
components are CORBA objects makes component integration and distribution extremely simple, but the
implementation of an arbitrary component is made more difficult.

6 Discussion

The evaluations presented in Sections 4 and 5 provide the foundation for comparing RDEs, both at a conceptual level
and from a practical perspective. Augmented with an impact evaluation (to be described below), we envision the
results of this survey being useful to the robotics community in at least two ways: (1) by providing researchers with a
practical means of selecting an RDE that will most closely match their requirements and (2) by giving RDE developers
an overview of the innovations being made in other systems, possibly suggesting improvements and extensions to their
own system.

6.1 Researchers

To perform a comprehensive comparison of the RDEs presented, three separate measures are given: (1) a summary
of the evaluations from Section 4 concerning an RDE’s features, (2) a summary of the evaluations from Section 5
concerning an RDE’s usability, and (3) an estimate on the influence an RDE has had on the robotics field (i.e., its
impact), which is gauged by the breadth of publications from different research areas (as listed at the end of each
description from Section 2) and the number of other RDEs that provide interoperability interfaces with a system. A
researcher examining a group of RDEs to find one that best fits their needs might conduct evaluations using either
qualitative or quantitative measures.

A qualitative evaluation is highly contingent on the user’s purpose; on the one hand, very specific capabilities may
be required, while on the the other, needs may be highly abstract or only loosely defined. For instance, an application

24

designer who has a large body of already written Octave software and desires to use it with a robot might look at
the system descriptions in Section 2 and find that MARIE already has an Octave plug-in. Conversely, educators
establishing an “Introduction to Robotics” class might consider the items from the usability evaluation in Section 5 to
be of overriding importance; an examination of the values given to the documentation criteria (U1.1, U2.1, and U3.1)
might lead them to limit attention to Player/Stage, Pyro, and CARMEN.

More likely, however, is that a mixture of characteristics is desired. For example, a developer might require a
system that provides a simulated environment and a fair level of distribution facilities, with a preference for a system
that supplies extensive GUI capabilities and usability oriented towards non-programmers. An examination of Section 4
would lead to considering criteria F2.3 (Simulator), F3.4 (Distribution Mechanisms), F4.1.2 (High-level Language),
and F4.1.5 (Graphical Interface), while Section 5 would U2.4 (Graphical Tools) and U3.1-U3.7 (High-level Usability),
making MissionLab the most likely choice.

To arrive at a quantitative evaluation, an assignment of values to criteria must be made, which can then be applied
to a selection (or all) of the criteria. To arrive at numerical comparison scores, the three categories of criteria mentioned
above are retained, yielding a feature score F', usability score U, and impact score I, which can be summed to give a
total score T'. Within each category, values of 0 or 2 are assigned to binary-valued criteria and values of 0, 1, or 2 to
ternary-valued criteria (listing features are not scored)’.

In formal terms, the selected RDEs form the set S = {T'B, AR, P/S, Py,C,ML, AD, Mi, M A} and are as-
signed a score that is the sum of the category scores F', U, and I. Given a number of individual criteria within each
category (e.g., F1.1 denotes Architectural Primitives, while U1 ;1 denotes Installation Documentation), category scores
are comprised of the sum of individual criteria values F;, U;, and I, where m, n, and o are the total number of feature,
usability, and impact criteriaand 1 < ¢ < m, 1 < 7 < n,and 1 < k < o. In the simplest case, where all criteria are
given equal weight, the RDE comparison scores are given by the formula:

Tses — iFf + Zn: U? + zO:If
=0 i=0 =0

Should a quantitative evaluation that weights some categories or criteria more or less than others be desired, weights
can be assigned at both a coarse-grained level (for each category, «, 3, and ~) and a fine-grained level (for each
criterion within a category, Wr,, Wy, and Wi,). The resultant formula for establishing the total comparison scores
is:

m n o
Tics —ay WrFi+8Y Wy,Uf+7> WiLIf
1=0 1=0 1=0

where a+ S+v=3,>. Wr, =m, > Wy, =n,and >, Wy, = o. This method will give an objective comparison in
that scores are not biased for or against any particular RDE, although the choice of features and their assigned weights
are based on the particular application requirements.

The quantitative evaluation that does not weight any criteria or category more than another follows, supplemented
by a discussion of each category score and the totals. The tabulated scores are shown in Tables 4, 5, and 6, respectively,
and summarized in Table 7.

MARIE and ADE have the highest score (44 and 43, respectively) in terms of the Feature score F'. The Implemen-
tation category contributes more than half of the F' score, exerting the largest influence. This is quite acceptable, as it
corresponds to the expectation that the purpose of an RDE is to provide appropriate tools and abstractions that facilitate
application development. MARIE and Pyro have the highest implementation scores (23 and 22), indicative of their
wide selection of components (partially due to its interoperability with other RDEs) and advanced GUI capabilities.
Pyro is assigned the third highest F’ score (37) due to the Infrastructure category, which accounts for over 25% of the
final score. ADE, which has a score of 18 in the implementation category, ends up with the highest F' score (43) due
to the infrastructure category, as it the only RDE that earns a well supported value for each criterion therein.

Of particular note is the fact that the RDEs with the highest scores (Pyro, ADE, and MARIE) all have explicit
interoperability interfaces with other systems. While providing a boost in total feature score, we also note that this
makes them reliant, to some degree, on the availability of the other systems for certain features, in addition to poten-
tially affecting their stability (in that changes to the other RDEs may impact their operation). We also note again that
comparing RDEs in terms of " alone does not provide a full picture of evaluation, leaving out aspects such as system
usability, discussed next.

9Binary and ternary values range from 0 to 2 so as to not introduce a bias towards ternary criteria.

25

Feature Category

Specification (6) | Platform (6) | Infrastructure (16) | Implementation (30) | Total (58)
RDE | Score % | Score % | Score % | Score % | Score | %
TB 5 83 1 17 0 0 10 33 16 | 28
AR 4 67 2 33 6 38 14 47 26 | 45
P/S 3 50 5 83 9 56 17 57 34 | 59
Py 5 83 5 83 5 31 22 73 37 | 64
C 4 67 5 83 8 50 10 33 27 | 47
ML 6 100 4 67 10 63 15 50 35 | 60
AD 6 100 3 50 16 100 18 60 43 | 74
Mi 5 83 3 50 9 56 14 47 31 | 53
MA 5 83 6| 100 10 63 23 77 44 | 76

Table 4: The raw Feature score F' and %, broken down by categories from Section 4 for each RDE

As noted in Section 3, an appropriate set of criteria must be considered to serve as the basis for comparing RDE:s.
Not only do applications have markedly different characteristics that may impact the designer’s choice of RDE, but
users tend to have different needs and working styles. The Usability score U attempts to address the practical aspects
of RDE usage by adding criteria relevant for the actual implementation and execution of robotic architectures (in
particular, the two classes of tasks described in the previous section), the results of which are summarized in Table 5.

Usability Category

Installation (8) | “Low-level” (12) | “High-level” (14) | Total (34)
RDE | Score % | Score % | Score % | Score | %
TBT 8 100 4 33 na na 12 | 35
AR 7 88 7 58 4 29 18 | 53
P/S 8 100 9 75 11 79 28 | 82
Py 8 100 11 92 11 79 30 | 88
C 6 75 8 67 6 43 20 | 59
ML 3 38 8 67 13 93 24 | 71
AD 6 75 10 83 10 71 26 | 76
Mi 2 25 4 33 4 29 10 | 29
MA 3 38 4 33 10 71 17 | 50

Table 5: The raw Usability score U and %, broken down by categories from Section 5 for each RDE (a T indicates
some criteria were not included).

Pyro, Player/Stage, ADE, and MissionLab have the highest usability scores (30, 28, 26, and 24, respectively).
From a usability point of view, this indicates that each has fulfilled their stated purpose: Pyro is aimed at novice users
for educational purposes, Player/Stage is a flexible and adaptable programming interface, ADE combines robotic de-
velopment with a MAS infrastructure, while MissionLab provides military personnel with non-programming methods
of controlling robots. On the other hand, the low score given to Miro can be attributed to its reliance on the ACE/TAO
communication framework'? and incomplete documentation. In addition, it is necessary to point out that both ARIA
and MissionLab’s scores would be higher if the restriction to open-source components was lifted.

It is interesting to note that MissionLab and MARIE have the widest discrepancy in score between usability cat-
egories, each scoring relatively highly for “high-level” usability but low on the “low-level” architecture. Personal
experience determined that much of the difference can be attributed to predefined components (both their number and
usage) and their integration into a cohesive user interface. Both provide a comprehensive graphical method for con-
necting components, but suffer from either not providing a graphical interface to all parts of the system (e.g., MARIE
requires shell scripts for startup/shutdown and the definition of communication channels) or by their orientation to-

10The impact of ACE/TAQ is acknowledged in the user manual thusly: “The CORBA environment and the Miro framework seem to raise the bar
for an easy entry into robot programming. While this can hardly be denied they facilitate tremendously the task of writing distributed programs.”

26

wards very high-level tasks.

Application Area TB | ART [P/S | Py ML | AD | Mi
SLAM
Planning/Navigation
Learning
Hierarchical Behavior
Education

HRI - Task Allocation
HRI - Learning

HRI - Assistive Robotics Vv
Multi-robot Sensing
Multi-robot Exploration
Multi-robot Mapping
Multi-robot Localization
Multi-robot Planning
Multi-robot Coordination
Multi-robot Formation
Multi-robot Task Allocation
Research areas (out of 16)
Interoperability facilities
Total score (out of 20)

Total %

<Ja
<
L E

O
gL L <
<

<
SN

of
2
2T
10f

0N 9O 3
S O D
S NSO D
0N IO 3

98]
(O8]

& o & R R
<<
L
<
Ll <
<

S N|O N
N WO W
DB —

—

25

Table 6: The raw Impact score I and % for each RDE, the sum of “Application Area References” citations from
Section 2 and the other RDEs that provide interoperability interfaces (a T indicates some criteria were not included).

Finally, an oblique way to determine the strengths of an RDE is to establish an Impact score I that reflects the
influence it has had on the robotics field. The number of research areas in which there are publications serve as an
indicator of successful usage, as does the recognition that widely used systems are most likely to have other RDEs
provide interoperability interfaces. Table 6 summarizes the robotics research subareas and citations given in Section 2
for each RDE, in addition to giving a count of the number of RDEs that interoperate with it. We reiterate that a single
publication is used to satisfy research in any subarea, simply to provide an idea of the breadth of research areas in
which it has been used; we also note the likelihood that some relevant publications were not included, as the particular
RDE used is sometimes not mentioned in a publication. Because criteria are all either binary in nature or a simple
count, total scores are a simple sum of items, deviating slightly from the previous convention of assigning 2 points to
a /. Player/Stage clearly has had the largest impact, reflected by the fact that its score (16) is more than double that
of the next highest system. It is also necessary to point out that ARIA’s impact score is deceptively low (indicated by
the T symbol), due to the fact that the authors were asked not to include references to its ancestral software.

Two overall comparison scores T3 and T,; are shown in Table 7, where T% does not include criteria that were
unevaluated for any RDE and T;; does. Overall scores are the sum of the feature F', usability U, and impact I scores.
Player/Stage has the highest total score T,;; (78 out of a possible 112), partially due to having the highest I score,
even though it had the fourth highest F' score and second highest U score. The next three highest scoring RDEs (ADE
with 75, which had the highest F' score; Pyro with 70, which had the highest U score; and MARIE with 68, which
had the second highest F" score) are all relatively new systems; in addition to providing some level of interoperability
interfaces with other RDEs (thus capitalizing on prior innovations), we believe that part of their score can be attributed
to identifying areas of application development that can be improved, partially based on the examples of already
established RDEs (discussed in more depth in the next section). Of note is that when the unevaluated criteria are
removed, the top four RDEs (ADE, Pyro, Player/Stage, and MARIE, respectively) remain the same.

We reiterate that the total scores T} and T5;; may not reflect the particular requirements of a particular person or
group and that while the evaluations here are comprehensive, they necessarily miss some criteria that may be important
for a specific designer or application. Such items can be added at will to further refine and customize the evaluations,
adjusting the evaluation formula given earlier.

27

Score
Removed T Criteria All Criteria

F (58) U (20) 1@ Total (82) F (58) U (34) 1(20) Total (112)
RDE | Raw | % | Raw | % | Raw % | Raw | % || Raw | % | Raw | % | Raw | % | Raw %
TBT 16 | 28 12 | 60 0 0 28 | 34 16 | 28 12 | 35 2|10 30 27
AR 26 | 45 14 | 70 2 50 42 | 51 26 | 45 18 | 53 2|10 46 41
P/S 34 | 59 17 | 85 4 | 100 55| 67 34 | 59 28 | 82 16 | 80 78 70
Py 37 | 64 19 | 95 0 0 56 | 68 37 | 64 30 | 88 3115 70 63
C 27 | 47 14 | 70 1 25 42 | 51 27 | 47 20 | 59 5|25 52 46
ML 35 | 60 11 | 55 0 0 46 | 56 35 | 60 24 | 71 7|35 66 59
AD 43 | 74 16 | 80 0 0 59 | 72 43 | 74 26 | 76 6 | 30 75 67
Mi 31 | 53 6 | 30 0 0 37 | 45 31 | 53 10 | 29 6 | 30 47 42
MA 44 | 76 7|35 0 0 51 | 62 44 | 76 17 | 50 7|35 68 61

Table 7: The Total comparison score 17" and % for each RDE, comprised of the sum of feature F', usability U, and
impact I scores. The left-hand columns under the Removed ' Criteria heading do not include criteria unevaluated for
any RDE, while columns under the All Criteria include all criteria, using a value of zero for unevaluated items.

6.2 RDE Maintainers and Developers

The selected RDE:s in this survey are, as defined by the constraints of system selection, open source projects. While
their availability is of obvious benefit to users, individual RDE maintainers can also potentially reap some benefit by
examining other systems. Hopefully, this will facilitate the transfer of techniques and tools (e.g., Vaughan et al., 2003;
Montemerlo et al., 2003b; Hattig et al., 2003; RADISH, 2004) across environments and promote progress in the field
of robotics as a whole. Using the Feature and Usability comparison scores from the previous section as a basis (the
Impact score is not considered, as it is not directly controlled by RDE maintainers), it becomes possible to not only
make specific improvement suggestions, but also to make some high-level points. We note here that no suggestions
are made for TeamBots because it is no longer under active development.

To begin, we examine the Feature scores shown in Table 4 by discussing each category. In the Specification
category, all RDEs score at least 50%, while 8 of the 9 score 67% or higher, indicating that all supply adequate support
for application design. Considering the Platform category, only two systems score less than 50%: TeamBots, which is
no longer being actively developed, and ARIA, which has been developed in support of a proprietary platform and thus
has unique objectives. Increasing the hardware support in MissionLab, ADE, and Miro would yield scores of 67% or
higher for all of the remaining systems, such that all could be considered to have adequate platform support. In terms
of the Implementation category, only CARMEN and MissionLab score below 50%. Recalling the information found
in Table 2, it is evident that the score is substantially due to supporting a limited number of predefined components
(although it is important to note that some components are available with MissionLab if licensed). ARIA’s score is
similarly affected by licensing issues, in that an integrated GUI is available; inclusion would put its score at about
60%. ADE, Miro, and MARIE all have inadequate documentation, which would improve their Feature score, while
also increasing their Usability scores. The last category factoring into the feature score is Infrastructure, discussed
very briefly here due to its inclusion in Section 7. ARIA, Pyro, and CARMEN all score 50% or below; again,
ARIA’s licensing requirements affect its score to some degree, leading to a not supported value for the Monitoring and
Management criterion. The most prevalent unsupported criterion is Security, which only ARIA and ADE support at
all. As noted earlier, Player/Stage, Miro, and MARIE all have the potential to easily incorporate security (Player/Stage
by utilizing its authentication mechanism and Miro/MARIE by leveraging the ACE/TAO framework). The next least
supported criteria are Component Mobility and Fault-tolerance, related to Distribution Mechanisms. Suggestions for
improvements in these areas is beyond the scope of this survey, and we again refer to Section 7 for more.

Three categories make up the Usability score, Installation, the “low-level” architecture, and “high-level” subar-
chitectures. Three RDEs are at or below 50% in installation (MissionLab, Miro, and MARIE), two in the “low-level”
category (Miro and MARIE), and three in the “high-level” category (ARIA, CARMEN, and Miro). Discounting un-
available software, ARIA’s individual scores are well distributed among criteria, indicating that while each could be
improved, a good overall mix is established. MissionLab’s installation score is low due to its reliance on older versions
of gcc; a new release would most likely greatly improve its score. As with the Implementation category mentioned

28

above, CARMEN would benefit greatly from additional predefined components. Miro’s framework, relying as it does
on CORBA, has great potential in terms of usability; however, additional tools and documentation are required to
“lower the bar” that, as they say in their user manual, has been placed quite high. In MARIE'’s case, the lowest individ-
ual criteria scores are concentrated in the “low-level” architecture. In particular, the necessity of manually specifying
component connections lowers usability, as does what might be considered a high learning curve.

From the above, one broad point that should be clear is that interoperability tools are of great utility, allowing
one RDE to incorporate any component functionality developed in another RDE. Interoperability has been discussed
in the literature (e.g., Baum et al., 2002; Nesnas et al., 2003; Coté et al., 2005), and while no single technique has
been accepted, MARIE’s foundations suggest a direction for future standards. While Pyro provides a large base of
interoperability tools, MARIE’s stated intention is to provide a well-grounded framework that is not only compatible
with existing systems, but also provides the conceptual basis for adding interoperability in the future. The benefits
of this approach are apparent when considering the available pre-defined component list; components available in
Player/Stage, ARIA, and CARMEN are also available in Pyro and MARIE.

Finally, to gain acceptance, an RDE must pay attention to usability and the quality of its user and developer
interfaces (see Steinfeld, 2004 for a general treatment). An area that is receiving increasing attention is robotics
education. In addition to opening up the field to new people, an RDE that caters to novices should, almost by definition,
promote usability. Pyro is particularly strong in this respect. Another aspect of usability concerns those who are
not interested in going beyond the functionality already provided by an RDE, but rather use the already established
components to implement their own applications without programming. In this sense, the FlowDesigner package
(related to MARIE) provides a graphical method for defining data flow throughout an application. Taking this a step
further, MissionLab provides graphical tools not concerned with robot particulars at all, but only with their actions.
Additionally, the MissionLab developers have conducted many usability studies (e.g., MacKenzie & Arkin, 1998;
Collins et al., 2000; Endo et al., 2004; Moshkina et al., 2006) in conjunction with system development.

7 Conclusion & Outlook

This survey has evaluated nine RDEs with respect to an extensive set of relatively common criteria supporting the
development of robotic applications. Results were then compiled and used to compare the systems according to three
types of score (Feature, Usability, and Impact), providing robotic architecture designers with information useful in
picking an RDE for themselves. Finally, the comparisons provided the foundation for suggesting potential areas of
improvement to RDE maintainers based on features currently found in other systems. In conclusion, we extrapolate
from the results and attempt to identify some likely future trends.

The comparison of different RDEs suggests that common features will increasingly be expected in all systems,
strengthened by the interoperability mechanisms found in some recent systems (e.g., Pyro and MARIE). In addition
to creating a set of (possibly de facto) standards, this will lead to an increasing number of predefined components that
can be expected in any given RDE. Furthermore, we expect the list of predefined components given in Section 3 to
continue to expand, both in relation to high-level functionality (e.g., various types of robot control) and more specific
low-level functionality (e.g., “vision processing” will split into separate categories such as monocular vs. stereo vision
processing). We feel that a similar trend will develop in relation to RDE infrastructure (see Section 3), such that
users expect inclusion of a suite of tools that implement various non-architectural functions. This suspicion is borne
out by a cursory examination of the origination of RDEs. Early systems (e.g., TeamBots, 1998) provide little in the
way of infrastructure: an application in TeamBots is the sum of the Java classes that implement it. Player/Stage
(2001) incorporates a minimal amount of infrastructure; the authors acknowledge and deliberately reject this trend,
making the system “free from the computational and programmatic overhead that is generally associated with the
practical application” of such mechanisms (Gerkey et al., 2003). More recent RDEs, such as MARIE (2004) and ADE
(2004), explicitly incorporate substantial infrastructure into their design and use, with the stated aims, respectively, of
improving interoperability and distribution.

The necessity of providing infrastructural interoperability and distribution is illustrated by a quote from the authors
of the GRACE project (Simmons et al., 2003): “One of the more difficult parts of the Challenge for us was determining
how to integrate a vast amount of software that had been developed by the participating institutions, mostly on different
hardware platforms.” Such mechanisms should immediately bring to mind multi-agent systems (MAS) research, which
has found particular traction in the robotics field in the form of multi-robot applications (such as the citations listed
at the bottom of Table 6; see also K. P. Sycara & Zeng, 1996; Altmann et al., 2001; Dias & Stentz, 2003; Gerkey

29

& Matarié, 2004). We suggest that it will be critical for future RDEs to incorporate other aspects of MAS research,
including, but not limited to security (e.g., Singh & Sycara, 2004) and system-wide management facilities (such as
those discussed in Bellifemine et al., 1999; K. Sycara et al., 2003).

A final trend we expect to take shape in RDEs in the future is the prominent promotion of autonomic computing
functionality (e.g., Bantz et al., 2003). On the one hand, we expect improvements in low-level system characteristics
that are transparent to users such as fault tolerance (e.g., Varakantham et al., 2002; Long et al., 2003; Melchior &
Smart, 2004). ADE, for example, already explicitly incorporates features for monitoring, relocating, and restarting of
components integrated into its infrastructure. Moreover, MARIE and Miro can potentially take advantage of recent
advances in middleware, e.g., the Fault Tolerant CORBA specification (see Chapter 23 in CORBA, 2005), which
incorporates mechanisms that promote robust system operation. On the other hand, we expect that development of
high-level Al techniques that enhance a robot’s apparent intelligence will increasingly find inclusion in RDEs, like the
tools found in MissionLab. We expect that robot learning (e.g., R. Russell, 2004; Blank et al., 2005), findings from
human-robot interaction (HRI) research (e.g., Salter et al., 2005; Fong et al., 2006; Moshkina et al., 2006; Scheutz et
al., 2006), and the study of social robotics (e.g., Bruce et al., 2002; Breazeal, 2003) will become commonplace.

In sum, we believe that the increase in capability of robotic applications will soon require extensive infrastructure
support, with expanding development of support for autonomic computing in the future. Such tools and techniques
will be used not only for the development and debugging of robotic architectures, but also for the execution and
maintenance of robotic architectures as part of application deployment. If true, the choice of one RDE over another
will be based on more than just the development support offered, but increasingly on the features it provides for the
long-term operation of robotic applications. Furthermore, and perhaps more significantly, the integration of system
infrastructure with the development of intelligent robotic architectures will lead to robots that display ever greater
levels of autonomy.

References

Activmedia robotics mobilerobots developer support. (2005). http://robots.mobilerobots.com/.

Altmann, J., Gruber, F., Klug, L., Stockner, W., & Weippl, E. (2001, June). Using mobile agents in real world: A
survey and evaluation of agent platforms. In T. Wagner (Ed.), Proceedings of the second international workshop
on infrastructure for agents, MAS, and scalable MAS at the 5th international conference on autonomous agents
(pp- 33-39). Montreal, Canada: ACM Press.

Andronache, V., & Scheutz, M. (2004a). ADE - a tool for the development of distributed architectures for virtual and
robotic agents. In Proceedings of the 4th international symposium “from agent theory to agent implementation”.

Andronache, V., & Scheutz, M. (2004b). Integrating theory and practice: The agent architecture framework APOC
and its development environment ADE. In Proceedings of AAMAS 2004.

Arkin, R., & Balch, T. (1997). AuRA: principles and practice in review. JETAI, 9(2-3), 175-189.

Arkin, R., Collins, T., & Endo, T. (1999, Sept). Tactical mobile robot mission specification and execution. Mobile
Robots XIV, 150-163.

Arkin, R., Endo, Y., Lee, B., MacKenzie, D., & Martinson, E. (2003, March). Multistrategy learning methods for
multirobot systems. In Proceedings of the 2nd international workshop on multi-robot systems (pp. 137-150).
Washington, D.C.

Austin, D. (2004). Dave’s robotic operating system. http://dros.org/.

Balch, T. (2000). Hierarchic social entropy: An information theoretic measure of robot group diversity. Autonomous
Robots, 8(3), 209-238.

Balch, T. (2002). Teambots proposal. http://www.cs.cmu.edu/ trb/robocupjr/.

Balch, T. (2004). Teambots. http://www.teambots.org/.

Balch, T., & Arkin, R. (1999). Behavior-based formation control for multi-robot teams. IEEE Transactions on
Robotics and Automation, 20(5).

Balch, T., & Ram, A. (1998). Integrating robotics research with JavaBots. In Working notes of the AAAI 1998 spring
Symposium.

Bantz, D., Bisdikian, C., Challener, D., Karidis, J., Mastrianni, S., Mohindra, A., et al. (2003). Autonomic personal
computing. IBM Systems Journal, 42(1), 165-176.

Baum, W., Bredenfeld, A., Hans, M., Hertzberg, J., Ritter, A., Schonherr, F,, et al. (2002, June). Integrating hetero-

30

geneous robot and software components by agent technology. Robotik 2002 Leistungsstand - Anwendungen -
Visionen - Trends, 655-660.

Beaudry, E., Brosseau, Y., Coté, C., Raievsky, C., Létourneau, D., Kabanza, F., et al. (2005). Reactive planning in a
motivated behavioural architecture. In Proceedings american association for artificial intelligence conference
(pp. 1242-1247).

Bellifemine, F., Poggi, A., & Rimassa, G. (1999, April). JADE - a FIPA-compliant agent framework. In Proceedings
of the 4th international conference and exhibition on the practical application of intelligent agents and multi-
agents (pp. 97-108). London.

Bentivegna, D., & Atkeson, C. (2002). Learning how to behave from observing others. (SAB02 Workshop on Motor
Control in Humans and Robots: on the interplay of real brains and artificial devices)

Bergbreiter, S., & Pister, K. (2003, Oct). CotsBots: An off-the-shelf platform for distributed robotics. In Proceedings
of 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Vol. 3, pp. 1632—
1637).

Bergbreiter, S., & Pister, K. (2005). CotsBots: An off-the-shelf distributed robot platform. http://www-
bsac.eecs.berkeley.edu/projects/cotsbots/.

Biggs, G., & MacDonald, B. (2003, December). A survey of robot programming systems. In Proceedings of the
australasian conference on robotics and automation. Brisbane, Australia.

Bitting, E., Carter, J., & Ghorbani, A. (2003, May). Multiagent systems development kits: An evaluation. In
Proceedings of the 1st annual conference on communication networks and services research (CNSR 2003) (pp.
101-107). Moncton, Canada.

Blank, D., Kumar, D., & Meeden, L. (2002). A developmental approach to intelligence. In S. Conlon (Ed.), Proceed-
ings of the thirteenth annual midwest artificial intelligence and cognitive science society conference.

Blank, D., Kumar, D., Meeden, L., & Marshall, J. (2005). Bringing up robot: Fundamental mechanisms for creating
a self-motivated, self-organizing architecture. Cybernetics and Systems, 36(2).

Blank, D., Kumar, D., Meeden, L., & Yanco, H. (2003). Pyro: A python-based versatile programming environment
for teaching robotics. Journal on Educational Resources in Computing, 3(4), 1-15.

Blank, D., Kumar, D., Meeden, L., & Yanco, H. (To appear). Pyro: A python-based versatile programming environ-
ment for teaching robotics. ACM Journal on Educational Resources in Computing (JERIC).

Breazeal, C. (2003). Towards sociable robots. Robotics and Autonomous Systems, 42(3-4), 167-175.

Brooks, A., Kaupp, T., Makarenko, A., Oreb ack, A., & Williams, S. (2005). Towards component-based robotics. In
IEEE/RSJ international conference on intelligent robots and systems (IROS 2005) (pp. 163—168).

Brooks, R. (1990). The behavior language: User’s guide (Tech. Rep. No. AIM-1227). Massachusettes Institute of
Technology.

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence Journal, 47, 139-159.

Bruce, A., Nourbakhsh, I., & Simmons, R. (2002). The role of expressiveness and attention in human-robot interaction.
In Proceedings of the IEEE international conference on robotics and automation.

Bruyninckx, H. (2001). Open robot control software: the OROCOS project. In Proceedings of IEEE international
conference on robotics and automation (ICRA) 2001 (Vol. 3, pp. 2523-2528).

Bruyninckx, H. (2005). The OROCOS project. http://www.orocos.org/.

Chaimowicz, L., Cowley, A., Sabella, V., & Taylor, C. (2003, Oct). ROCI: A distributed framework for multi-robot
perception and control. In Proceedings of 2003 IEEE/RSJ international conference on intelligent robots and
systems (IROS 2003) (Vol. 3, pp. 266-271).

The CMU sphinx group open source speech recognition engines. (2004).
http://cmusphinx.sourceforge.net/html/cmusphinx.php. The Sphinx Group at Carnegie Mellon University.
Collins, T., Arkin, R., Cramer, M., & Endo, Y. (2000, July). Field results for tactical mobile robot missions. In

Unmanned systems 2000. Orlando, FL.

Common object request broker architecture (CORBA/IIOP). (2005). http://www.omg.org/technology/documents/corba_spec_catalog.htm
Object Management Group.

Coté, C. (2005). Mobile and autonomous robotics integration environment (MARIE). http://marie.sourceforge.net/.

Coté, C., Brosseau, Y., Létourneau, D., Raievsky, C., & Michaud, F. (2006). Robotic software integration using
MARIE. International Journal on Advanced Robotics Systems, 3(1), 55-60.

Coté, C., Létourneau, D., Michaud, F., & Brosseau, Y. (2005). Software design patterns for robotics: Solving
integration problems with MARIE. Submitted for workshop to ICRA2005.

Coté, C., Létourneau, D., Michaud, F., Valin, J., Brosseau, Y., Raievsky, C., et al. (2004). Programming mobile robots

31

using RobotFlow and MARIE. In Proceedings IEEE/RSJ international conference on robots and intelligent
systems.

Desai, M., & Yanco, H. (2005, August). Blending human and robot inputs for sliding scale autonomy. In Proceedings
of the 14th IEEE international workshop on robot and human interactive communication. Nashville, TN.

Dias, M., & Stentz, A. (2003, Oct). A comparative study between centralized, market-based, and behavioral multirobot
coordination approaches. In Proceedings of 2003 IEEE/RSJ international conference on intelligent robots and
systems (IROS 2003) (Vol. 3, pp. 2279-2284).

Eiter, T., & Mascardi, V. (2002). Comparing environments for developing software agents. Al Communications, 15(4),
169-197.

Endo, Y., MacKenzie, D., & Arkin, R. (2004, May). Usability evaluation of high-level user assistance for robot
mission specification. IEEE Transactions on Systems, Man, and Cybernetics, 34(2), 168—180.

ERSP 3.0 robotic development platform. (2004). http://www.evolution.com/products/ersp/. Evolution Robotics.

Fay, R., Kaufmann, U., Schwenker, F., & Palm, G. (2004). Learning Object Recognition in a NeuroBotic System. In
H. GroB, K. Debes, & H. Bohme (Eds.), 3rd workshop on selforganization of adaptive behavior SOAVE 2004
(pp- 198-209). Dusseldorf: VDI

The festival speech synthesis system. (2004). http://www.cstr.ed.ac.uk/projects/festival/. Centre for Speech Technology
Research.

FIPA ACL message structure specification (SC00061G). (2002). http://www.fipa.org/specs/fipa00061/. Foundation
for Intelligent Physical Agents.

Fleury, S., Herrb, M., & Chatila, R. (1997). Genom: A tool for the specification and the implementation of operating
modules in a distributed robot architecture. In International conference on intelligent robots and systems (Vol. 2,
p. 842-848). 1EEE.

Fleury, S., & Mallet, A. (2004). LAAS open software for autonomous systems.
http://softs.laas.fr/openrobots/tools/genom.php.

Fong, T., Kunz, C., Hiatt, L., & Bugajska, M. (2006). The human-robot interaction operating system. In Proceedings
of the ACM conference on human-robot interaction (HRI2006). ACM.

Fong, T., Nourbakhsh, 1., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous
Systems, 42, 143-166.

Fredslund, J., & Matari¢, M. (2002, Oct). A general, local algorithm for robot formations. IEEE Transactions on
Robotics and Automation, Special Issue on Multi-Robot Systems, 18(5), 837-846.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of reusable object-oriented
software. Addison-Wesley.

Gassull, G. (2001). Communication services and user interfaces for tele-operating mobile robots via the internet.
Master’s thesis, University of Barcelona and University of Ulm, Neuroinformatics.

Gerkey, B., Howard, A., & Vaughan, R. (2005). Player/Stage. http://playerstage.sourceforge.net/.

Gerkey, B., & Matari¢, M. (2002, Oct). Sold!: Auction methods for multi-robot coordination. IEEE Transactions
on Robotics and Automation, Special Issue on Multi-Robot Systems, 18(5), 758-768. (Also Technical Report
IRIS-01-399)

Gerkey, B., & Matari¢, M. (2004). Are (explicit) multi-robot coordination and multi-agent coordination really so
different? In Proceedings of the AAAI spring symposium on bridging the multi-agent and multi-robotic research
gap (pp. 1-3).

Gerkey, B., Vaughan, R., & Howard, A. (2003, June). The Player/Stage project: Tools for multi-robot and distributed
sensor systems. In Proceedings of the 1lth international conference on advanced robotics (pp. 317-323).
Coimbra, Portugal.

Gerkey, B., Vaughan, R., Stgy, K., Howard, A., Sukhatme, G., & Matari¢, M. (2001, October). Most valuable player:
A robot device server for distributed control. In Proceedings of the IEEE/RSJ international conference on
intelligent robots and systems (pp. 1226—1231). Wailea, Hawaii.

Guilbert, N., Beauregard, M., Michaud, F., & Lafontaine, J. de. (2003). Emulation of collaborative driving systems
using mobile robots. In Proceedings ieee conference on systems, man, and cybernetics (pp. 856-861).

Hattig, M., Horswill, I., & Butler, J. (2003, Oct). Roadmap for mobile robot specifications. In Proceedings of 2003
IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Vol. 3, pp. 2410-2414).

Heckel, F. (2005). ROLE robotics development environment. http://www.cse.wustl.edu/ fwph/role/.

Hoff, J., & Bekey, G. (1995). An architecture for behavior coordination learning. In IEEE international conference
on neural networks.

32

Horswill, I. (2000). Functional programming of behavior-based systems. Autonomous Robots, 9(1), 83-93.

Howard, A., Matari¢, M., & Sukhatme, G. (2002). An incremental self-deployment algorithm for mobile sensor
networks. Autonomous Robots Special Issue on Intelligent Embedded Systems, 13(2), 113-126.

Howard, A., Matari¢, M., & Sukhatme, G. (2003, Sep). Putting the ‘I’ in ‘Team’: An ego-centric approach to
cooperative localization. In IEEE international conference on robotics and automation (pp. 868—892). Taipei,
Taiwan.

Howard, A., Parker, L., & Sukhatme, G. (2004, Jun). The SDR experience: Experiments with a large-scale heteroge-
nous mobile robot team. In 9th international symposium on experimental robotics 2004. Singapore.

Howard, A., & Roy, N. (2004). Robotics data set repository (RADISH). http://radish.sourceforge.net/index.php.

Jensen, R., & Veloso, M. (1998, Oct). Interleaving deliberative and reactive planning in dynamic multi-agent domains.
In Proceedings of the AAAI fall symposium on integrated planning for autonomous agent architectures. AAAI
Press.

JESS - the expert system shell for the java platform. (2003). http://herzberg.ca.sandia.gov/jess/. Sandia National
Laboratories.

Jia, J., Chen, W., & Xi, Y. (2004). Design and implementation of an open autonomous mobile robot system. In
Proceedings of IEEE international conference on robotics and automation (ICRA) 2004 (Vol. 2, pp. 1726—
1731).

Jones, C., & Matari¢, M. (2004, Sep). Automatic synthesis of communication-based coordinated multi-robot systems.
In IEEE/RSJ international conference on intelligent robots and systems (pp. 381-387). Sendai, Japan.

Jung, B., & Sukhatme, G. (2002, Nov). Tracking targets using multiple robots: The effect of environment occlusion.
Autonomous Robots, 13(3), 191-205.

Kaupp, T. (2005). Orca robotics. http://orca-robotics.sourceforge.net/.

Koker, R., Oz, C., Cakar, T., & Ekiz, H. (2004, December). A study of neural network based inverse kinematics
solution for a three-joint robot. Robotics and Autonomous Systems, 49(3-4), 227-234.

Konolige, K. (1997). COLBERT: A language for reactive control in saphira. In Proceedings of the german conference
on artificial intelligence (pp. 31-52). Freiburg, Germany.

Konolige, K. (2000). A gradient method for realtime robot control. In Proceedings of the IEEE/RSJ international
conference on intelligent robotic systems (IROS).

Konolige, K. (2002, April). Saphira robot control architecture (Tech. Rep.). Menlo Park, CA: SRI International.

Konolige, K., Myers, K., Ruspini, E., & Saffiotti, A. (1997). The Saphira architecture: A design for autonomy. Journal
of experimental & theoretical artificial intelligence: JETAI, 9(1), 215-235.

Kraetzschmar, G., Gassull, G., & Uhl, K. (2004, July). Probabilistic quadtrees for variable-resolution mapping of
large environments. In M. 1. Ribeiro & J. Santos Victor (Eds.), Proceedings of the 5th IFAC/EURON symposium
on intelligent autonomous vehicles.

Kraetzschmar, G., Sablatnog, S., Enderle, S., Utz, H., Simon, S., & Palm, G. (2000, October). Integration of Multiple
Representations and Navigation Concepts on Autonomous Mobile Robots. In H. GroB3, K. Debes, & H. Bohme
(Eds.), Workshop SOAVE-2000: Selbstorganisation von adaptivem verhalten (Vol. 10/643). Ilmenau, Germany:
VDI Verlag.

Kramer, J., & Scheutz, M. (2003). GLUE - a component connecting schema-based reactive to higher-level deliberative
layers for autonomous agents. In R. Weber (Ed.), Proceedings of the 16th international FLAIRS conference (p.
22-26). AAAI Press.

Labonté, D., Michaud, F., Boissy, P., Corriveau, H., Cloutier, R., & Roux, M. (2005). Evaluation methodology of user
interfaces for teleoperated mobile robots in home environments. (Submitted to IEEE International Conference
on Robotics and Automation)

LaFary, M., & Newton, C. (2005, October). Aria html documentation.

Laukkanen, M. (1999). Evaluation of FIPA-compliant agent platforms. Unpublished master’s thesis, Lappeenranta
University of Technology.

LEGO.com educational division — mindstorms for schools. (2005). http://www.lego.com/eng/education/mindstorms/default.asp.
LEGO.

Lemay, M., Michaud, F., Létourneau, D., & Valin, J. (2004). Autonomous initialization of robot formations. In /[EEE
international conference on robotics and automation.

Lindstrom, M., Orebick, A., & Christensen, H. (2000, April). BERRA: A research architecture for service robots. In
Proceedings of international conference on robotics and automation (ICRA) (Vol. 4, pp. 3278-3283).

Logan, B. (1998). Classifying agent systems. In B. Logan & J. Baxter (Eds.), Proceedings of AAAI-98 conference

33

workshop on software tools for developing agents. Menlo Park, California: American Association for Artificial
Intelligence.

Long, M., Murphy, R., & Parker, L. (2003, October). Distributed multi-agent diagnosis and recovery from sensor
failures. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3, 2506-2513.

Lucas, G. (2004). The rossum project. http://rossum.sourceforge.net/.

MacDonald, B., Yuen, D., Wong, S., Woo, E., Gronlund, R., Collett, T., et al. (2003, September). Robot programming
environments. In ENZCon2003 10th electronics New Zealand conference. University of Waikato, Hamilton.

MacKenzie, D., & Arkin, R. (1993, Nov). Formal specification for behavior-based mobile robots. Mobile Robots VIII,
94-104.

MacKenzie, D., & Arkin, R. (1998, April). Evaluating the usability of robot programming toolsets. The International
Journal of Robotics Research, 17(4), 381-401.

MacKenzie, D., Arkin, R., & Cameron, J. (1997). Multiagent mission specification and execution. Autonomous
Robots, 4(1), 29-52.

Maes, P. (1990). Situated agents can have goals. In P. Maes (Ed.), Designing autonomous agents (pp. 49-70). MIT
Press.

Mallet, A., Fleury, S., & Bruyninckx, H. (2002). A specification of generic robotics software components: future
evolutions of GenoM in the Orocos context. In International conference on intelligent robotics and systems.
IEEE.

Matari¢, M. (2004, Mar). Robotics education for all ages. In Proceedings, AAAI spring symposium on accessible,
hands-on Al and robotics education.

Mayfield, J., Labrou, Y., & Finin, T. (1996). Evaluation of KQML as an agent communication language. In
M. Wooldridge, J. P. Miiller, & M. Tambe (Eds.), Proceedings on the IJCAI workshop on intelligent agents
II: Agent theories, architectures, and languages (Vol. 1037, pp. 347-360). Springer-Verlag.

Melchior, N., & Smart, W. (2004). A framework for robust mobile robot systems. In D. W. Gage (Ed.), Proceedings
of SPIE: Mobile robots XVII (Vol. 5609).

Metta, G., Fitzpatrick, P., & Natale, L. (2006). YARP: Yet another robot platform. International Journal on Advanced
Robotics Systems, 3(1), 43-48.

Michaud, F. (2005). Engineering education and the design of intelligent mobile robots for real use. (Submitted to
International Journal of Intelligent Automation and Soft Computing, Special Issue on Global Look at Robotics
Education)

Michaud, F., & Létourneau, D. (2004). Robotflow: Open source robotics toolkit for flowdesigner.
http://robotflow.sourceforge.net/.

Michel, O. (2004). Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems,
1(1), 39-42.

Miro - middleware for robots. (2005). http://smart.informatik.uni-ulm.de/MIRO/index.html. Robotics Group, Univer-
sity of Ulm.

Missionlab v6.0. (2003). http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/. Mobile Robot Labora-
tory.

Modular controller architecture. (2005). http://mca2.sourceforge.net/.

Montemerlo, M., Roy, N., & Thrun, S. (2003a). CARMEN, Carnegie Mellon Robot Navigation Toolkit.
http://carmen.sourceforge.net/.

Montemerlo, M., Roy, N., & Thrun, S. (2003b). Perspectives on standardization in mobile robot programming: The
carnegie mellon navigation (CARMEN) toolkit. In JROS 2003 (Vol. 3, p. 2436-2441). Las Vegas, NV.

Moshkina, L., & Arkin, R. (2003). On TAMEing robots. In IEEE international conference on systems, man and
cybernetics (Vol. 4, pp. 3949-3959).

Moshkina, L., Endo, Y., & Arkin, R. (2006). Usability evaluation of an automated mission repair mechanism for mo-
bile robot mission specification. In Proceedings of the ACM conference on human-robot interaction (HRI20006).
ACM.

Nesnas, 1., Simmons, R., Gaines, D., Kunz, C., Diaz-Calderon, A., Estlin, T., et al. (2006). CLARAty: Challenges
and steps toward reusable robotic software. International Journal on Advanced Robotics Systems, 3(1), 23-30.

Nesnas, 1., Wright, A., Bajracharya, M., Simmons, R., & Estlin, T. (2003). CLARAty and challenges of developing
interoperable robotic software. In Proceedings of 2003 IEEE/RSJ international conference on intelligent robots
and systems (IROS 2003) (Vol. 3, pp. 2428-2435).

34

Nguyen, G., Dang, T., Hluchy, L., Balogh, Z., Laclavik, M., & Budinska, I. (2002, Jun). Agent platform evaluation
and comparison (Tech. Rep.). Bratislava, Slovakia: Pellucid SFP IST-2001-34519.

Nowostawski, M., Bush, G., Purvis, M., & Cranefield, S. (2000). Platforms for agent-oriented software engineering.
In J. Dong, J. He, & M. Purvis (Eds.), Proceedings of APSEC 2000 (pp. 480—488). IEEE Computer Society
Press.

Orebick, A., & Christensen, H. (2003). Evaluation of architectures for mobile robotics. Autonomous Robots, 14(1),
33-49.

Osentoski, S., Manfredi, V., & Mahadevan, S. (2004). Learning hierarchical models of activity. In IEEE/RSJ interna-
tional conference on robots and systems (IROS 2004).

Pellom, B., & Hacioglu, K. (2003). Recent improvements in the CU SONIC ASR system for noisy speech: The SPINE
task. In Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP).

Pfeifer, R. (1988). Artificial intelligence models of emotion. In V. Hamilton, G. H. Bower, & N. H. Frijda (Eds.),
Cognitive perspectives on emotion and motivation, volume 44 of series d: Behavioural and social sciences (pp.
287-320). Netherlands: Kluwer Academic Publishers.

Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2002). Towards robotic assistants in nursing homes:
challenges and results. In T. Fong & 1. Nourbakhsh (Eds.), Workshop notes (WSS8: Workshop on robot as partner:
An exploration of social robots), IEEE international conference on robots and systems. Lausanne, Switzerland:
IEEE.

Poggi, A., Rimassa, G., & Turci, P. (2002). What agent middleware can (and should) do for you. Applied Artificial
Intelligence, 16(9-10), 677-698.

Provost, J., Kuipers, B., & Miikkulainen, R. (2004). Self-organizing perceptual and temporal abstraction for robot
reinforcement learning. In AAAI-04 workshop on learning and planning in markov processes.

Pyro, python robotics. (2005). http://emergent.brynmawr.edu/pyro/?page=Pyro. Python Robotics.

Ricordel, P., & Demazeau, Y. (2000, Dec). From analysis to deployment: A multi-agent platform survey. In Engi-
neering societies in the agents world (Vol. 1972, pp. 93—-105). Springer-Verlag.

Rivard, F. (2005, June). Localisation relative de robots mobiles opérant en groupe (Tech. Rep.). Mémoire de maitrise,
Département de génie électrique et de génie informatique, Université de Sherbrooke.

Russell, R. (2004). Mobile robot learning by self-observation. Autonomous Robots, 16(1), 81-93.

Russell, S., & Norvig, P. (2002). Artificial intelligence: A modern approach (2 ed.). Prentice Hall.

Salter, T., Michaud, F., Dautenhahn, K., Létourneau, D., & Caron, S. (2005). Recognizing interaction from a robot’s
perspective. In Proceedings IEEE international workshop on robot and human interactive communication (pp.
178-183).

Scheutz, M. (2004). APOC - an architecture for the analysis and design of complex agents. (Forthcoming In Darryl
Davis, editor, Visions of Mind)

Scheutz, M. (2006, April). ADE - steps towards a distributed development and runtime environment for complex
robotic agent architectures. Applied Artificial Intelligence, 20(4-5).

Scheutz, M., & Andronache, V. (2003). APOC - a framework for complex agents. In Proceedings of the AAAI spring
symposium (pp. 18-25). AAAI Press.

Scheutz, M., & Andronache, V. (2004). Architectural mechanisms for dynamic changes of behavior selection strategies
in behavior-based systems. /EEE Transactions of System, Man, and Cybernetics Part B: Cybernetics, 34(6).

Scheutz, M., Andronache, V., Kramer, J., Snowberger, P., & Albert, E. (2004). Rudy: A robotic waiter with personality.
In Proceedings of AAAI robot workshop (p. forthcoming). AAAI Press.

Scheutz, M., Schermerhorn, P., Kramer, J., & Middendorff, C. (2006). The utility of affect expression in natu-
ral language interactions in joint human-robot tasks. In Proceedings of the ACM conference on human-robot
interaction (HRI2006). ACM.

Schmidt, D. (1994). The ADAPTIVE communication environment: An object-oriented network programming toolkit
for developing communication software. In 12th annual sun users group conference (pp. 214-225). San Fran-
cisco, CA.

Silva, A., Romao, A., Deugo, D., & Silva, M. da. (2001). Towards a reference model for surveying mobile agent
systems. Autonomous Agents and Multi-Agent Systems, 4, 187-231.

Simmons, R. (1994, Feb). Structured control for autonomous robots. IEEE Transactions on Robotics and Automation,
10(1), 34-43.

Simmons, R. (2004). Inter process communication (IPC). http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/ TCA/www/ipc/.

35

Simmons, R., Apfelbaum, D., Fox, D., Goldmann, R., Haigh, K., Musliner, D., et al. (2000). Coordinated deployment
of multiple heterogeneous robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots
and systems (IROS).

Simmons, R., Goldberg, D., Goode, A., Montemerlo, M., Roy, N., Sellner, B., et al. (2003). GRACE: an autonomous
robot for the AAAI robot challenge. Al Mag., 24(2), 51-72.

Simplified wrapper and interface generator. (2004). http://www.swig.org/.

Singh, R., & Sycara, K. (2004). Securing multi agent societies (Tech. Rep. No. CMU-RI-TR-04-02). Robotics
Institute, Carnegie Mellon.

Skubic, M., & Volz, R. A. (1998). Learning force-based assembly skills from human demonstration for execution in
unstructured environments. In Proceedings of international conference on robotics and automation (ICRA9S)
(pp- 1281-1288).

Sloman, A. (1998, July). What’s an Al toolkit for? In B. Logan & J. Baxter (Eds.), Proceedings of the AAAI-98
workshop on software tools for developing agents (pp. 1-10).

Sloman, A. (2002, Feb). Help poprulebase.

Sloman, A., & Scheutz, M. (2002). A framework for comparing agent architectures. In Proceedings of UK workshop
on computational intelligence (pp. 169—-176).

SOAP version 1.2. (2003, June). http://www.w3.org/TR/soap12/. W3C XML Protocol Working Group.

Sprouse, J. (2005). Nomadic.sourceforge.net. http://nomadic.sourceforge.net/.

Steinfeld, A. (2004). Interface lessons for fully and semi-autonomous mobile robots. In Proceedings of IEEE
international conference on robotics and automation (ICRA) 2004 (Vol. 3, pp. 2752-2757).

Stentz, A. (2002, July). CD*: A real-time resolution optimal re-planner for globally constrained problems. In
Proceedings of AAAI 2002 (p. 605).

Sycara, K., Paolucci, M., Velsen, M. V., & Giampapa, J. (2003). The RETSINA MAS infrastructure. Autonomous
Agents and Multi-Agent Systems, 7(1), 29—48.

Sycara, K. P, & Zeng, D. (1996). Coordination of multiple intelligent software agents. International Journal of
Cooperative Information Systems, 5(2/3), 181-212.

Tews, A., Matari¢, M., & Sukhatme, G. (2003, Sep). A scalable approach to human-robot interaction. In IEEE
international conference on robotics and automation (p. 1665-1670). Taipei, Taiwan.

Thrun, S. (2003). Robotic mapping: A survey. In G. Lakemeyer & B. Nebel (Eds.), Exploring artificial intelligence
in the new millennium (pp. 1-35). San Francisco, CA, USA: Morgan Kaufmann.

Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2000). Robust monte carlo localization for mobile robots. Artificial
Intelligence, 128(1-2), 99-141.

Utz, H., Kraetzschmar, G., Mayer, G., & Palm, G. (2005, August). Hierarchical behavior organization. In Proceedings
of IROS 2005. Edmonton, Canada.

Utz, H., Sablatnog, S., Enderle, S., & Kraetzschmar, G. (2002, August). Miro — middleware for mobile robot
applications. IEEE Transactions on Robotics and Automation, Special Issue on Object-Oriented Distributed
Control Architectures, 18(4), 493-497.

Utz, H., Stulp, F., & Miihlenfeld, A. (2004). Sharing belief in teams of heterogeneous robots. In D. Nardi, M. Ried-
miller, & C. Sammut (Eds.), RoboCup-2004: The eighth RoboCup competitions and conferences. Springer
Verlag.

Valin, J., & Létourneau, D. (2004). Flowdesigner. http://flowdesigner.sourceforge.net/.

Varakantham, P., Gangwani, S., & Karlapalem, K. (2002). On handling component and transaction failures in multi
agent systems. SIGecom Exch., 3(1), 32-43.

Vaughan, R., Gerkey, B., & Howard, A. (2003, Oct). On device abstractions for portable, resuable robot code. In
Proceedings of IROS 2003 (pp. 2121-2427). Las Vegas, Nevada.

Vijayakumar, S., D’souza, A., Shibata, T., Conradt, J., & Schaal, S. (2002). Statistical learning for humanoid robots.
Autonomous Robots, 12(1), 55-69.

Volpe, R., Nesnas, L., Estlin, T., Mutz, D., Petras, R., & Das, H. (2001, March). The CLARAty architecture for robotic
autonomy. In Proceedings of the 2001 IEEE aerospace conference.

Walters, D. (2003). Open automation project (OAP). http://oap.sourceforge.net/.

Webots 5. (2005). http://www.cyberbotics.com/. Cyberbotics.

White box robotics. (2005). http://whiteboxrobotics.com/. White Box Robotics.

Wolf, D., & Sukhatme, G. (2005, Jul). Mobile robot simultaneous localization and mapping in dynamic environments.
Autonomous Robots, 19(1), 53-65.

36

Current State of the Art in Distributed
Autonomous Mobile Robotics

Lynne E. Parker

Center for Engineering Science Advanced Research

Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge TN 37831-6355, USA
email: ParkerLEQornl.gov

Keywords: Distributed robotics, survey, cooperative robotics, multi-robot
systems

Abstract. As research progresses in distributed robotic systems, more and more
aspects of multi-robot systems are being explored. This article surveys the current
state of the art in distributed mobile robot systems. Our focus is principally on
research that has been demonstrated in physical robot implementations. We have
identified eight primary research topics within multi-robot systems — biological
inspirations, communication, architectures, localization/mapping/exploration, ob-
ject transport and manipulation, motion coordination, reconfigurable robots, and
learning — and discuss the current state of research in these areas. As we describe
each research area, we identify some key open issues in multi-robot team research.
We conclude by identifying several additional open research issues in distributed
mobile robotic systems.

1 Introduction

The field of distributed robotics has its origins in the late-1980’s, when sev-
eral researchers began investigating issues in multiple mobile robot systems.
Prior to this time, research had concentrated on either single robot systems
or distributed problem-solving systems that did not involve robotic compo-
nents. The topics of particular interest in this early distributed robotics work
include:

o Cellular (or reconfigurable) robot systems, such as the work by Fukuda,
et al. [20] on the Cellular Robotic System (CEBOT) and the work on
cyclic swarms by Beni [8],

e Multi-robot motion planning, such as the work by Premvuti and Yuta [38]
on traffic control and the work on movement in formations by Arai, et
al. [2] and Wang [48], and

o Architectures for multi-robot cooperation, such as the work on ACTRESS
by Asama, et al. [4].

Since this early research in distributed mobile robotics, the field has grown
dramatically, with a much wider variety of topics being addressed. This paper

examines the current state of the art in autonomous multiple mobile robotic
systems. The field of cooperative autonomous mobile robotics is still so new
that no topic area within this domain can be considered mature. Some areas
have been explored more extensively, however, and the community is begin-
ning to understand how to develop and control certain aspects of multi-robot
teams. Thus, rather than summarize the research into a taxonomy of cooper-
ative systems (see Dudek [18] and Cao [12] for previous related summaries),
we instead organize this research by the principal topic areas that have gen-
erated significant levels of study, to the extent possible in a limited space. As
we present the review, we identify key open research issues within each topic
area. We conclude by suggesting additional research issues that have not yet
been extensively studied, but appear to be of growing interest and need in
distributed autonomous multi-robot systems.

2 Biological Inspirations

Nearly all of the work in cooperative mobile robotics began after the intro-
duction of the new robotics paradigm of behavior-based control [10,3]. This
behavior-based paradigm has had a strong influence in much of the coopera-
tive mobile robotics research. Because the behavior-based paradigm for mo-
bile robotics is rooted in biological inspirations, many cooperative robotics
researchers have also found it instructive to examine the social character-
istics of insects and animals, and to apply these findings to the design of
multi-robot systems’.

The most common application of this knowledge is in the use of the sim-
ple local control rules of various biological societies — particularly ants, bees,
and birds — to the development of similar behaviors in cooperative robot sys-
tems. Work in this vein has demonstrated the ability for multi-robot teams
to flock, disperse, aggregate, forage, and follow trails (e.g., [30,15,17]). The
application of the dynamics of ecosystems has also been applied to the de-
velopment of multi-robot teams that demonstrate emergent cooperation as a
result of acting on selfish interests [32]. To some extent, cooperation in higher
animals, such as wolf packs, has generated advances in cooperative control.
Significant study in predator-prey systems has occurred, although primarily
in simulation [7,21]. Competition in multi-robot systems, such as found in
higher animals including humans, is beginning to be studied in domains such
as multi-robot soccer [46,29].

These areas of biological inspiration and their applicability to multi-robot
teams seem to be fairly well understood. More recently identified, less well un-
derstood, biological topics of relevance include the use of imitation in higher

! For a more detailed analysis of various types of biological systems — what Tin-
bergen called differentiating (e.g., ants) and integrative (e.g., birds) — and their
relationship to cooperative robotics work (i.e., “swarm” vs. “intentional”), see
[35].

animals to learn new behaviors, and the physical interconnectivity demon-
strated by insects such as ants to enable collective navigation over challenging
terrains.

3 Communication

The issue of communication in multi-robot teams has been extensively stud-
ied since the inception of distributed robotics research. Distinctions between
implicit and explicit communication are usually made, in which implicit com-
munication occurs as a side-effect of other actions, or “through the world”,
whereas explicit communication is an specific act designed solely to convey
information to other robots on the team. Several researchers have studied the
effect of communication on the performance of multi-robot teams in a variety
of tasks, and have concluded that communication provides certain benefit for
particular types of tasks [27,6]. Additionally, these researchers have found
that, in many cases, communication of even a small amount of information
can lead to great benefit [6].

More recent work in multi-robot communication has focused on represen-
tations of languages and the grounding of these representations in the physical
world [22,23]. Additionally, work has extended to achieving fault tolerance in
multi-robot communication, such as setting up and maintaining distributed
communications networks [51] and ensuring reliability in multi-robot com-
munications [34]. While progress is being made in these more recent issues of
communication, much work remains to enable multi-robot teams to operate
reliably amidst faulty communication environments.

4 Architectures, Task Planning, and Control

A great deal of research in distributed robotics has focused on the develop-
ment of architectures, task planning capabilities, and control. This research
area addresses the issues of action selection, delegation of authority and
control, the communication structure, heterogeneity versus homogeneity of
robots, achieving coherence amidst local actions, resolution of conflicts, and
other related issues. Each architecture that has been developed for multi-
robot teams tends to focus on providing a specific type of capability to the
distributed robot team. Capabilities that have been of particular emphasis
include task planning [1], fault tolerance [36], swarm control [31], human
design of mission plans [26], and so forth.

A general research question in this vein is whether specialized architec-
tures for each type of robot team and/or application domain are needed,
or whether a more general architecture can be developed that can be easily
tailored to fit a wider range of multi-robot systems. Relatively little of the
previous work has been aimed at unifying these architectures. Perhaps an all-
encompassing architecture would be too unwieldy to implement in practical

applications. It remains to be seen if a single general architecture for multi-
robot teams can be developed that is applicable to a much wider variety of
domains than is currently possible with existing architectures.

5 Localization, Mapping, and Exploration

An extensive amount of research has been carried out in the area of local-
ization, mapping, and exploration for single autonomous robots. Only fairly
recently has much of this work been applied to multi-robot teams. Almost all
of the work has been aimed at 2D environments. Additionally, nearly all of
this research takes an existing algorithm developed for single robot mapping,
localization, or exploration, and extends it to multiple robots, as opposed to
developing a new algorithm that is fundamentally distributed. One excep-
tion is some of the work in multi-robot localization, which takes advantage
of multiple robots to improve positioning accuracy beyond what is possible
with single robots [42,19].

As is the case with single robot approaches to localization, mapping, and
exploration, research into the multi-robot version can be described using the
familiar categories based on the use of landmarks [14], scan-matching [11],
and/or graphs [40,39], and which use either range sensors (such as sonar
or laser) or vision sensors. While the single robot version of this problem
is fairly well understood, much remains to be studied in the multi-robot
version. For example, one question is the effectiveness of multi-robot teams
over single-robot versions, and to what extent adding additional robots brings
diminishing returns. This issue has begun to be studied (see [39]), but much
much remains to be determined for the variety of approaches available for
localization, mapping, and exploration.

6 Object Transport and Manipulation

Enabling multiple robots to cooperatively carry, push, or manipulate common
objects has been a long-standing, yet difficult, goal of multi-robot systems.
Many research projects have dealt with this topic area; fewer of these projects
have been demonstrated on physical robot systems. This research area has a
number of practical applications that make it of particular interest for study.

Numerous variations on this task area have been studied, including con-
strained and unconstrained motions, two-robot teams versus “swarm”-type
teams, compliant versus non-compliant grasping mechanisms, cluttered ver-
sus uncluttered environments, global system models versus distributed mod-
els, and so forth. Perhaps the most demonstrated task involving cooperative
transport is the pushing of objects by multi-robot teams [43,45]. This task
seems inherently easier than the carry task, in which multiple robots must
grip common objects and navigate to a destination in a coordinated fashion

[49,24]. A novel form of multi-robot transportation that has been demon-
strated is the use of ropes wrapped around objects to move them along de-
sired trajectories [16].

Nearly all of the previous work in this area work involves robots moving
across a flat surface. A challenging open issue in this area is cooperative
transport over uneven outdoor terrains.

7 Motion Coordination

A popular topic of study in multi-robot teams is that of motion coordination.
Research themes in this domain that have been particularly well studied in-
clude multi-robot path planning [52], traffic control [38], formation generation
[2], and formation keeping [5,48]. Most of these issues are now fairly well un-
derstood, although demonstration of these techniques in physical multi-robot
teams (rather than in simulation) has been limited. More recent issues stud-
ied within the motion coordination context are target tracking [37], target
search [25], and multi-robot docking [33] behaviors.

Nearly all of the previous work has been aimed at 2D domains, although
some work has been aimed at 3D environments [52]. One of the most limiting
characteristics of much of the existing path planning work is the computa-
tional complexity of the approaches. Perhaps as computing processor speed
increases, the computational time will take care of itself. In the meantime,
this characteristic is a limiting factor to the applicability of much of the path
planning research in dynamic, real-time robot teams.

8 Reconfigurable Robotics

Even though some of the earliest research in distributed robotics focused on
concepts for reconfigurable distributed systems [20,8], relatively little work
has proceeded in this area until the last few years. More recent work has
resulted in a number of actual physical robot systems that are able to re-
configure. The motivation of this work is to achieve function from shape,
allowing individual modules, or robots, to connect and re-connect in various
ways to generate a desired shape to serve a needed function. These systems
have the theoretical capability of showing great robustness, versatility, and
even self-repair.

Most of the work in this area involves identical modules with intercon-
nection mechanisms that allow either manual or automatic reconfiguration.
These systems have been demonstrated to form into various navigation con-
figurations, including a rolling track motion [53], an earthworm or snake mo-
tion [53,13], and a spider or hexapod motion [53,13]. Some systems employ
a cube-type arrangement, with modules able to connect in various ways to
form matrices or lattices for specific functions [9,54,44,47].

Research in this area is still very young, and most of the systems developed
are not yet able to perform beyond simple laboratory experiments. While
the potential of large numbers of robot modules has, to some extent, been
demonstrated in simulation, it is still uncommon to have implementations
involving more than a dozen or so physical modules. The practical application
of these systems is yet to be demonstrated, although progress is being made
in that direction. Clearly, this is a rich area for continuing advances in multi-
robot systems.

9 Learning

Many multi-robot researchers believe that an approach with more potential
for the development of cooperative control mechanisms is autonomous learn-
ing. While a considerable amount of work has been done in this area for
multi-agent learning [50], somewhat less work has been accomplished to date
in multi-robot learning. The types of applications that are typically studied
for this area of multi-robot learning vary considerably in their characteristics.
Some of the applications include predator/prey [7,21], box pushing [28], for-
aging [31], multi-robot soccer [46,29,41], and cooperative target observation
[37].

Particularly challenging domains for multi-robot learning are those tasks
that are inherently cooperative — that is, tasks in which the utility of the
action of one robot is dependent upon the current actions of the other team
members. Inherently cooperative tasks cannot be decomposed into indepen-
dent subtasks to be solved by a distributed robot team. Instead, the success
of the team throughout its execution is measured by the combined actions of
the robot team, rather than the individual robot actions. This type of task is
a particular challenge in multi-robot learning, due to the difficulty of assign-
ing credit for the individual actions of the robot team members. Multi-robot
learning in general, and inherently cooperative task learning in particular,
are areas in which significant research for multi-robot systems remains.

10 Additional Open Issues in Distributed Autonomous
Mobile Robotics

It is clear that since the inception of the field of distributed autonomous mo-
bile robotics less than two decades ago, significant progress has been made on
a number of important issues. The field has a good understanding of the bio-
logical parallels that can be drawn, the use of communication in multi-robot
teams, and the design of architectures for multi-robot control. Considerable
progress has been made in multi-robot localization/mapping/exploration,
cooperative object transport, and motion coordination. Recent progress is
beginning to advance the areas of reconfigurable robotics and multi-robot

learning. Of course, all of these areas have not yet been fully studied; we
have identified key open research challenges for these areas in the previous
sections.

Several other research challenges still remain, including:

e How do we identify and quantify the fundamental advantages and char-
acteristics of multi-robot systems?

e How do we easily enable humans to control multi-robot teams?

e Can we scale up to demonstrations involving more than a dozen or so
robots?

e Is passive action recognition in multi-robot teams possible?

e How can we enable physical multi-robot systems to work under hard
real-time constraints?

e How does the complexity of the task and of the environment affect the
design of multi-robot systems?

These and other issues in multi-robot cooperation should keep the re-
search community busy for many years to come.

Acknowledgments

This work is sponsored by the Engineering Research Program of the Office of Basic
Energy Sciences, U. S. Department of Energy. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U. S. Government purposes.
Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Dept.
of Energy under contract DE-AC05-000R22725.

References

1. R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot co-
operation in the Martha project. IEEE Robotics and Automation Magazine,
1997.

2. T. Arai, H. Ogata, and T. Suzuki. Collision avoidance among multiple robots
using virtual impedance. In Proceedings of the Intelligent Robots and Systems
(IROS), pages 479-485, 1989.

3. Ronald C. Arkin. Integrating behavioral, perceptual, and world knowledge in
reactive navigation. Robotics and Autonomous Systems, 6:105-122, 1990.

4. Hajime Asama, Akihiro Matsumoto, and Yoshiki Ishida. Design of an
autonomous and distributed robot system: ACTRESS. In Proceedings of
IEEERSJ International Workshop on Intelligent Robots and Systems, pages
283-290, Tsukuba, Japan, 1989.

5. T. Balch and R. Arkin. Behavior-based formation control for multi-robot teams.
IEEE Transactions on Robotics and Automation, December 1998.

6. Tucker Balch and Ronald C. Arkin. Communication in reactive multiagent
robotic systems. Autonomous Robots, 1(1):1-25, 1994.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. Benda, V. Jagannathan, and R. Dodhiawalla. On optimal cooperation of
knowledge sources. Technical Report BCS-G2010-28, Boeing AI Center, August
1985.

. Gerardo Beni. The concept of cellular robot. In Proceedings of Third IEEE

Symposium on Intelligent Control, pages 5761, Arlington, Virginia, 1988.

. H. Bojinov, A. Casal, and T. Hogg. Emergent structures in moduluar self-

reconfigurable robots. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1734-1741, 2000.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1):14-23, March 1986.

W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative
multi-robot exploration. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 476-481, 2000.

Y. Uny Cao, Alex Fukunaga, Andrew Kahng, and Frank Meng. Cooperative
mobile robotics: Antecedents and directions. In Proceedings of 1995 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS ’95), pages
226-234, 1995.

A. Castano, R. Chokkalingam, and P. Will. Autonomous and self-sufficient
conro modules for reconfigurable robots. In Proceedings of the Fifth Interna-
tional Symposium on Distributed Autonomous Robotic Systems (DARS 2000 —
this volume), 2000.

G. Dedeoglu and G. Sukhatme. Landmark-based matching algorithm for co-
operative mapping by autonomous robots. In Proceedings of the Fifth Interna-
tional Symposium on Distributed Autonomous Robotic Systems (DARS 2000 —
this volume), 2000.

J. Deneubourg, S. Goss, G. Sandini, F. Ferrari, and P. Dario. Self-organizing
collection and transport of objects in unpredictable environments. In Japan-
U.S.A. Symposium on Flezible Automation, pages 1093-1098, 1990.

B. Donald, L. Gariepy, and D. Rus. Distributed manipulation of multiple ob-
jects using ropes. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 450—457, 2000.

Alexis Drogoul and Jacques Ferber. From Tom Thumb to the Dockers: Some
experiments with foraging robots. In Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, pages 451-459, 1992.
Gregory Dudek et al. A taxonomy for swarm robots. In Proceedings of 1993
IEEE International Conference on Intelligent Robots and Systems (IROS ’93),
pages 441-447, 1993.

D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Collaborative multi-robot
exploration. Autonomous Robots, 8(3), 2000.

T. Fukuda and S. Nakagawa. A dynamically reconfigurable robotic system
(concept of a system and optimal configurations). In Proceedings of IECON,
pages 588-595, 1987.

Thomas Haynes and Sandip Sen. Evolving behavioral strategies in predators
and prey. In Gerard Weiss and Sandip Sen, editors, Adaptation and Learning
in Multi- Agent Systems, pages 113-126. Springer, 1986.

L. Hugues. Collective grounded representations for robots. In Proceedings
of Fifth International Conference on Distributed Autonomous Robotic Systems
(DARS 2000 - this volume), 2000.

David Jung and Alexander Zelinsky. Grounded symbolic communication be-
tween heterogeneous cooperating robots. Autonomous Robots, 8(3), July 2000.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

0. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal. Ve-
hicle/arm coordination and mobile manipulator decentralized cooperation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
546-553, 1996.

S. M. LaValle, D. Lin, L. J. Guibas, J-C. Latombe, and R. Motwani. Finding
an unpredictable target in a workspace with obstacles. In submitted to 1997
International Conference on Robots and Automation, 1997.

D. MacKenzie, R. Arkin, and J. Cameron. Multiagent mission specification
and execution. Autonomous Robots, 4(1):29-52, 1997.

Bruce MacLennan. Synthetic ethology: An approach to the study of communi-
cation. In Proceedings of the 2nd interdisciplinary workshop on synthesis and
simulation of living systems, pages 631-658, 1991.

S. Mahadevan and J. Connell. Automatic programming of behavior-based
robots using reinforcement learning. In Proceedings of AAAI-91, pages 8-14,
1991.

S. Marsella, J. Adibi, Y. Al-Onaizan, G. Kaminka, I. Muslea, and M. Tambe.
On being a teammate: Experiences acquired in the design of RoboCup teams.
In O. Etzioni, J. Muller, and J. Bradshaw, editors, Proceedings of the Third
Annual Conference on Autonomous Agents, pages 221-227, 1999.

Maja Mataric. Designing emergent behaviors: From local interactions to collec-
tive intelligence. In J. Meyer, H. Roitblat, and S. Wilson, editors, Proc. of the
Second Int’l Conf. on Simulation of Adaptive Behavior, pages 432—-441. MIT
Press, 1992.

Maja Mataric. Interaction and Intelligent Behavior. PhD thesis, Massachusetts
Institute of Technology, 1994.

David McFarland. Towards robot cooperation. In D. Cliff, P. Husbands, J.-A.
Meyer, and S. Wilson, editors, Proceedings of the Third International Confer-
ence on Simulation of Adaptive Behavior, pages 440-444. MIT Press, 1994.

B. Minten, R. Murphy, J. Hyams, and M. Micire. A communication-free behav-
ior for docking mobile robots. In Proceedings of Fifth International Symposium
on Distributed Autonomous Robotic Systems (DARS 2000 - this volume), 2000.
P. Molnar and J. Starke. Communication fault tolerance in distributed robotic
systems. In Proceedings of Fifth International Symposium on Distributed Au-
tonomous Robotic Systems (DARS 2000 — this volume), 2000.

L. E. Parker. Adaptive action selection for cooperative agent teams. In Jean-
Arcady Meyer, Herbert Roitblat, and Stewart Wilson, editors, Proceedings of
the Second International Conference on Simulation of Adaptive Behavior, pages
442-450. MIT Press, 1992.

L. E. Parker. ALLIANCE: An architecture for fault-tolerant multi-robot co-
operation. IEEE Transactions on Robotics and Automation, 14(2):220-240,
1998.

L. E. Parker. Multi-robot learning in a cooperative observation task. In Pro-
ceedings of Fifth International Symposium on Distributed Autonomous Robotic
Systems (DARS 2000 — this volume), 2000.

Suparerk Premvuti and Shin’ichi Yuta. Consideration on the cooperation of
multiple autonomous mobile robots. In Proceedings of the IEEE International
Workshop of Intelligent Robots and Systems, pages 59—63, Tsuchiura, Japan,
1990.

39

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

N. S. V. Rao. Terrain model acquisition by mobile robot teams and n-
connectivity. In Proceedings of the Fifth International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS 2000 — this volume), 2000.

I. Rekleitis, G. Dudek, and E. Milios. Graph-based exploration using multiple
robots. In Proceedings of the Fifth International Symposium on Distributed
Autonomous Robotic Systems (DARS 2000 — this volume), 2000.

P. RlIley and M. Veloso. On behavior classification in adversarial environmentts.
In Proceedings of Fifth International Symposium on Distributed Autonomous
Robotic Systems (DARS 2000 - this volume), 2000.

S. Roumeliotis and G. Bekey. Distributed multi-robot localization. In Proceed-
ings of the Fifth International Symposium on Distributed Autonomous Robotic
Systems (DARS 2000 — this volume), 2000.

D. Rus, B. Donald, and J. Jennings. Moving furniture with teams of au-
tonomous robots. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 235—242, 1995.

D. Rus and M. Vona. A physical implementation of the self-reconfiguring crys-
talline robot. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1726-1733, 2000.

Daniel Stilwell and John Bay. Toward the development of a material transport
system using swarms of ant-like robots. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 766-771, 1993.

P. Stone and M. Veloso. A layered approach to learning client behaviors in the
robocup soccer server. Applied Artificial Intelligence, 12:165-188, 1998.

C. Unsal and P. K. Khosla. Mechatronic design of a modular self-reconfiguring
robotic system. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1742-1747, 2000.

P. K. C. Wang. Navigation strategies for multiple autonomous mobile robots.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 486—493, 1989.

Z. Wang, Y. Kimura, T. Takahashi, and E. Nakano. A control method of a
multiple non-holonomic robot system for cooperative object transportation.
In Proceedings of Fifth International Symposium on Distributed Autonomous
Robotic Systems (DARS 2000 - this volume), 2000.

Gerhard Weiss and Sandip Sen, editors. Adaption and Learning in Multi-Agent
Systems. Springer, 1996.

A. Winfield. Distributed sensing and data collection via broken ad hoc wireless
connected networks of mobile robots. In Proceedings of Fifth International
Symposium on Distributed Autonomous Robotic Systems (DARS 2000 - this
volume), 2000.

A. Yamashita, M. Fukuchi, J. Ota, T. Arai, and H. Asama. Motion planning
for cooperative transportation of a large object by multiple mobile robots in a
3d environment. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 3144-3151, 2000.

M. Yim, D. G. Duff, and K. D. Roufas. Polybot: a modular reconfigurable
robot. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 514-520, 2000.

E. Yoshida, S. Murata, S. Kokaji, and K. Tomita dn H. Kurokawa. Micro
self-reconfigurable robotic system using shape memory alloy. In Proceedings of
the Fifth International Symposium on Distributed Autonomous Robotic Systems
(DARS 2000 - this volume), 2000.

Distributed Robotic Mapping of Extreme Environments

S. M. ThayerE! M. Bernardine Dias, B. Nabbe, B. Digney, M. Hebert, and A. Stentz
Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

ABSTRACT

In the extreme environments posed by war fighting, fire fighting, and nuclear accident response, the cost of direct human
exposure is levied in terms of injury and death. Robotic alternatives must address effective operations while removing
humans from danger. This is profoundly challenging, as extreme environments inflict cumulative performance damage on
exposed robotic agents. Sensing and perception are among the most vulnerable components. We present a distributed robotic
system that enables autonomous reconnaissance and mapping in urban structures using teams of robots. Robot teams scout
remote sites, maintain operational tempos, and successfully execute tasks, principally the construction of 3-D Maps, despite
multiple agent failures. Using an economic model of agent interaction based on a free market architecture, a virtual platform
(a robot colony) is synthesized where task execution does not directly depend on individual agents within the colony.

Keywords: Distributed Robotics, Free Market Architecture, Cooperative Stereo, 3-D Mapping, Robot Colony

1. MOTIVATION

Military Operations in Urban Terrain (MOUT) pose fierce constraints such as limited visibility, complex and expansive
fortifications, limited intelligence, and the presence of native populations and other non-combatants that prohibit deployment
of large forces [1,2]. Further, the use of asymmetric threats, e.g. biological and chemical agents, against both land forces and
indigenous populations in urban settings is an increasing likelihood [3]. These conditions place land forces and non-
combatants in a highly non-deterministic, dangerous, confrontational, and volatile environment. An effort to identify and
improve the ability of ground forces to project sufficient force and safeguard non-combatants is underway. This program,
called the MOUT Advanced Concept Technology Development (ACTD), focuses on improving operational effectiveness in
urban areas [4, 5].

The development of robotics technology will enable minimally invasive and precise MOUT operations that reduce risk to
both ground forces and non-combatants by removing soldiers from dangerous and sometimes confrontational tasks [6].
Potential tasks for robotic systems include mine sweeping, reconnaissance, security and monitoring presence, and
communications infrastructure [7]. DARPA has undertaken the task of enabling distributed robotics technology to execute
urban reconnaissance missions. As a part of this effort, DARPA’s Software for Distributed Robotics (SDR) program is
looking at revolutionary approaches to the development of multi-agent robotic systems within this task domain. Under the
auspices of the SDR Program, our team is producing software technology designed to construct interior maps of urban
structures using groups of homogenous mobile robots. This concept software will be demonstrated on surrogate, simplistic
mobile robotic platforms and eventually ported to mission capable mobile robotic systems.

Our approach to the problem focuses initially on the production of reliable, accurate, and fault-tolerant software by exploiting
the redundancy inherent in a group of homogenous robots, or colony. Our methodology is to model multi-agent dynamics in
terms of economic activity; thus, the motivation for robot effort is directly coupled to the rewards of task-execution [8]. We
will incorporate learning and perception to build systems that degrade gracefully when faced with component or agent
failures, that learn to execute tasks more efficiently than is possible as individual agents, and that deliver timely and accurate
intelligence with respect to urban reconnaissance operations.

2. APPROACH
Some tasks, such as robotic exploration or reconnaissance, can be effective only if carried out by a team of robots. A robot
team can accomplish a given task more quickly than a single agent can by dividing the task into sub-tasks and executing them

* Correspondence: Email sthayer@ri.cmu.edu : Phone (412)-268-7816, Fax (412) 268-5895

concurrently. A team can also make effective use of specialists (e.g., an agent that scouts an area, picks up objects, hauls
payload) rather than require that each robot be a generalist, capable of performing all tasks but expert at none.

Difficulty arises, however, in coordinating all of these robots to perform a single, global task. One approach is to consider the
robot team as a single robot “entity” with many degrees of freedom. A central computer coordinates the group optimally to
perform the specified task. The problem is that optimal coordination is computationally difficult; the best known algorithms
are exponential in complexity, so this approach is intractable for teams larger than a few robots. Further, the approach
assumes that all information about the robots and their environment can be transmitted to a single location for processing and
that this information does not change during the construction of an optimal plan. These assumptions are unrealistic for
applications such as exploration in an unknown environment where communication is limited and robots behave in
unpredictable ways. Another weakness with this approach is that it produces a highly vulnerable system. If the leader (the
central planning unit) malfunctions, a new leader must be available or the entire team is disabled. A system that surmounts a
single point of failure is crucial in applications such as urban reconnaissance.

Local and distributed approaches address the problems that arise with centralized, globally coordinated approaches. Each
robot operates largely independently, acting on information that is locally available through its sensors. The robots are better
able to respond to unknown or changing environments, since they sense and respond to the environment locally. A robot may
coordinate with other robots in its vicinity, perhaps to divide a problem into sub-problems or to work together on a sub-task
that cannot be accomplished by a single robot. Typically, little computation is required, since each robot need only plan and
execute its own activities. Also, little communication is required, since the robots communicate only with others in their
vicinity. The disadvantage of distributed approaches is that the solutions can be grossly suboptimal.

Consider an economic system for coordinating robots. In market economies, individuals are free, within given bounds, to
exchange goods and services and enter into contracts at will. Individuals are in the best position to understand their needs and
the means to satisfy them. At times they cooperate with other members of the society to achieve an outcome greater than that
possible by each member alone. At times they compete with other members to provide goods or services at the lowest
possible cost, thus eliminating waste and inefficiency. Combining the best of both approaches, market economies are robust
and nimble like distributed approaches, yet allow for some centralization for optimization when time and computational
resources permit.

In the past decade there has been growing interest in multi-agent systems. Mataric presents a comprehensive summary
of some of the principal efforts in this area of research. Jensen and Veloso [[5], Svestka and Overmars [£8], and Brumitt
and Stentz are examples of the centralized approach to control a multi-robot system organized hierarchically. A number
of researchers have developed biologically inspired, locally reactive, behavior-based systems to carry out simple tasks |E,
. These distributed systems have found applications in many different domains. Additional review of recent
approaches to multi-robot teaming can be found in [8]. To the best of our knowledge, we are the first to use a free market
architecture for controlling a team of self-interested agents that perform tasks and solve problems.

3. FREE MARKET ARCHITECTUREII-'I
3.1 Revenues and Costs in the Economy
When a team of robots is modeled as an economy to perform a task, the goal of the team is to execute the task well while
minimizing costs. A function, #rev, is needed that maps possible task outcomes onto revenue values. Another function, fcost,
is needed that maps possible schemes for performing the task onto cost values. As a team, the goal is to execute some plan P
such that profit, trev(P) — tcost(P), is maximized. Individual cost and revenue functions must also be designed to provide a
means for distributing the revenue and assessing costs to individual robots.

The sum of individual revenues and costs will determine the team’s revenues and costs. However, the distribution is not
even: individuals are compensated in accordance with their contribution to the overall task, based on factors that are within
the control of each. An individual that maximizes its personal production and minimizes its personal cost receives a larger
share of the overall profit. Therefore, by acting strictly in their own self-interests, individuals maximize not only their own
profit but also the overall profit of the team.

3.2 Determining Price via the Bidding Process

" See [8] for a more detailed description of the free market architecture.

The team’s revenue function is not the only source of income for the robots. A robot can also receive revenue from another
robot in exchange for goods or services. In general, two robots have incentive to deal with each other if they can produce
more aggregate profit together than apart. Such outcomes are win-win rather than zero-sum. The price dictates the payment
amount for the good or service. Since many factors that could affect the price may be hidden or complex, a common
approach to determining price is to bid for a good or service until a mutually acceptable price is found. A plausible bidding
strategy is to start by bidding a price that is personally most favorable, and then successively retreat from this position until a
price is mutually agreed upon.

Note that a given robot can negotiate several potential deals at the same time. It bids the most favorable price for itself for all
of the deals, successively retreats from this position with counter bids, and closes the first deal that is mutually acceptable.
Note also that a deal can be multi-party, requiring that all parties agree before any part of the deal is binding. The negotiated
price will tend toward the intersection of the supply and demand curves for a given service. If a service is in high demand or
short supply, the price will be high. This information will prompt other suppliers to enter the fray, driving the price down.
Likewise, if demand is low or supply high, the low price will drive suppliers into another line of business. Thus, price serves
to optimize the matching of supply to demand. Finally, it is important to note that price and bidding are low bandwidth
mechanisms for communicating aggregate information about costs.

3.3 Opportunistic Optimization, Learning, and Adaptation

Conspicuously absent from the free market system is a rigid, top-down hierarchy. Instead, the robots organize themselves in a
way that is mutually beneficial. Thus, robots will cooperate if they have complementary roles, i.e., if all robots involved can
make more profit by working together than by working individually. Conversely, robots will compete if they have the same
role, i.e., if the amount of profit that some can make is negatively affected by the services provided by the others. The
flexibility of the market model allows the robots to cooperate and compete as necessary to accomplish the assigned task.
Since the aggregate profit amassed by the individuals is directly tied to the success of the task, this self-organization yields
the best results. But this does not preclude centralized optimization; instead, it is opportunistic as circumstances permit.

One of the greatest strengths of the market economy is its ability to deal successfully with changing conditions. Since the
economy does not rely on a hierarchical structure for coordination and task assignment, the system is highly robust to
changes in the environment, including destroyed or injured robots. Disabling any single robot will not jeopardize the
system’s performance. By adding escape clauses for “broken deals,” any tasks undertaken by a robot that malfunctions can
be re-bid to other robots, and the entire task can be accomplished. It is also important to realize that a robot does not need to
remain idle if only a portion of its functionality is disabled. The market architecture allows a partially disabled robot to bid
out the use of its available resources opportunistically. For example, if a robot gets stuck while executing a task, it can still
use its computing resources as needed while attempting to recruit another robot to mobilize itself. Another key to optimality
is that a robot can always sub-contract a task it undertook if the conditions change and it becomes more profitable to
outsource (i.e., get a different robot to carry out the task). Thus, the market model allows the robots to deal with dynamic
environments in an opportunistic and adaptive manner.

Within the market economy, a robot can learn new behaviors and strategies as it executes missions. This learning applies to
both individual behaviors and negotiations as well as to the entire team. Individual robots may learn that certain strategies are
not profitable, or that certain robots are apt to break a contract by failing to deliver the goods or proper payment. Individuals
may also learn to identify areas where the risk of injury is high and share this knowledge with members of the colony. The
robot team may learn that certain types of robots are in over-supply, indicated by widespread bankruptcy or an inability to
make much money. Conversely, the robot team may learn that certain types of robots are in under-supply, evidenced by
excessive profits captured by members of the type. Thus, the population can learn to exit members of one type and recruit
members of another.

3.4 Constructing the Free Market Architecture

Consider a team of robots assembled to perform a task. A software agent, representing the user, negotiates with the team to
perform the task. The user desires the team to perform the task well while minimizing costs. To accomplish this, the user
defines a revenue function that maps possible task outcomes onto revenue values, and a cost function that maps possible
schemes for performing the task onto cost values. With the aim of maximizing their individual profits, the robots bid on parts
of the task. They receive revenue for performing their subtasks, and they are charged for costs incurred during execution.
Once they have received their assignments, the robots can continue to negotiate among themselves, buying and selling
subtasks to minimize costs. If the task changes during execution, perhaps due to new information, new subtasks are created
that are bid out to the robots. If a robot malfunctions or dies during execution, its subtasks are bid out to the surviving robots.
Robot resources, such as sensing, communication, and computing, can be bought and sold in the marketplace to concentrate
resources where they are most productive.

Negotiation N
Negotiations Protocol \ earning
Other Robot / Module
Exec

Agents / \
Tasks Send Message to “B”
Roles Leader
...m..\............
Resources Radio -| Locomotor |_Sensors CPU

Figure 1: Robot software architecture for each individual in a robot colony

As shown in Figure 1, the architectural for each robot is layered. In the bottom layer are the resources under the robot’s
control, such as sensors, effectors, locomotors, computers, and communication devices. These resources are available to the
robot to perform its tasks, and any unused resources can be sold to other robots in the colony. The next layer consists of the
robot’s roles for accomplishing tasks. Roles are application-specific software modules that implement particular robot
capabilities or skills, such as collecting sensor data or hauling materials. The roles utilize resources (in the layer below) to
execute their tasks. Roles execute tasks that match their specific capabilities. They receive assignments by bidding on tasks
offered by other robots. As they execute their tasks, they may generate other tasks or subtasks to be bid out to the other
robots.

At the top layer in the architecture, the robot executive coordinates the activities of the robot and its interactions with other
robots. The executive bids on tasks for the robot to perform and offers tasks for sale. It matches tasks to roles, schedules the
roles to run, resolves contention for resources, and offers unused resources for sale to other robots. The executive is
equipped with a learning module that enables it to perform better over time by learning which negotiation strategies are the
most effective.

4. COOPERATIVE STEREO MAPPING ROLE
One important role for individuals within robot colonies is distributed mapping. This role is illustrated in Figure 2, where
robots 1 and 2, each equipped with one camera, are controlled by the planner so that the fields of view of their cameras
provide maximum coverage of the environment. Assuming that the planner has also controlled the robots so that the fields of
view overlap (at positions A and B for example), it is possible to reconstruct the 3-D geometry of the environment at those
positions by processing the images from the two robots. Reconstructing 3-D maps from two robots is the cooperative stereco
approach to map reconstruction. Collecting 3-D maps reconstructed from different positions provides a complete
representation of the environment built cooperatively (the mapped area is shown in yellow or lightly shaded for b/w prints in
Figure 2). This representation is suitable for:
e Viewing: The user can see the environment from different viewpoints, measure distances to or sizes of objects of
interest, and generate floor plans for future use.
¢ Route planning: The location of potential obstacles can be derived from the 3-D maps. The obstacles can be detected at
far greater range than can be achieved by conventional safeguarding sensors such as sonar. This information can be used
directly by a route planner.

e Coverage planning: A difficult problem in exploration by multiple robots is to decide where to look next in order to
ensure coverage of the environment. Using the maps, it is possible to reason about the relative positions of surfaces in
order to plan paths for coverage. In particular, it is possible to detect parts of the environment that are occluded by
surfaces visible from the recorded robot positions, and which should be explored.

.

Figure 2: Distributed mapping scenario with two robots cooperatively constructing a stereo map.

It is important to note that while in principle it is possible to recover 3-D data from a single robot with stereo cameras, using
cooperating robots has important advantages. One obvious advantage is the savings in hardware and computation time since a
single camera is needed on each robot and the full load of the stereo computation does not reside on any given robot. A more
important advantage, however, is that stereo reconstruction accurate enough for rendering can be achieved from a long range
by taking advantage of the fact that the robots may be separated by a wide baseline. To be useful, the system must generate at
least qualitatively correct reconstruction up to 10-20m, which is not possible using the short baseline that is typical on small
robots. To illustrate this point, the graph in Figure 3 shows the error in depth Z as a function of Z for the type of camera
currently used with a field of view of 60 degrees and for different baseline values B=0.1, 0.2,0.5,1,2m. The error is plotted
using the standard stereo error formula AZ = Z%/Bf. The graphs clearly show that reconstruction past a few meters from the
robot is not practical for short baselines and that baselines on the order of one meter or more become necessary. Such large
baselines can be achieved only through the use of multiple robots.

Depth error (meters)
~ w IS o @

[2 4 6 8 10 12 14 16 18 20
Depth (meters)

Figure 3: Error in reconstructed depth as a function of distance from the camera for different baselines.

Robust recovery of the scene geometry from multiple robots and extraction of information from the maps involves:

Cooperative Calibration: Although the relative positions and orientations of robots 1 and 2 are known to some degree from
dead-reckoning and other means of internal pose estimation, the accuracy of the relative pose between them is typically not
sufficient for stereo reconstruction. Cooperative calibration recovers relative poses of robot cameras automatically from
image features.

Spare Feature Estimation: Once the robots are mutually calibrated, the next task is to compute the 3-D positions of sparse
features in the scene.

Dense Reconstruction: The final step in reconstructing scene geometry from robots 1 and 2 is to convert the sparse structure
to a dense reconstruction of the environment suitable for rendering and texture mapping.

4.1 Cooperative Calibration

Given images of a scene from arbitrary robot positions, the first task is to recover the relative poses of the cameras. These
poses must be computed precisely since an error of a few image pixels in mapping points from one image to the next may
lead to large errors in the 3-D reconstruction. In particular, the pose estimates from dead reckoning are not precise enough for
image matching. The general approach is to extract point features from the images, find correspondences between the two
sets of features and recover the relative poses of the cameras from the feature matches. Typical features used for calibration
are shown in Figure 4. These features were extracted using an interest operator derived from the Harris operator [43].

Figure 4: Typical sparse features extracted from indoor images using the Harris operator.

4.1.1 Feature matching using photometric invariants

Instead of using local correlation to match the features, we use a technique based on photometric invariants that was
originally introduced in [37] and used for image matching in [42]. Given a feature location p = (x,y), the general idea is to
compute the derivatives up to order 3 (I, Iy, Ly, etc.) of the image in a neighborhood around p. Then, combine the
derivatives into quantities that are invariant to rotation and translation in the image. For example, the quantity I, + Iy2 is the
magnitude of the gradient, which is clearly invariant by rotation. For derivatives up to order 3, it can be shown that 8 such
invariants exist so that each feature m, can be described by a 8-vector v'; which characterizes the local distribution of
intensity and is geometrically invariant.

Invariance to scale is also important since the scale of the features may vary substantially across images in general poses.
Although direct scale invariance is not possible, the derivatives can be easily computed at different scales since they are
computed by convoluting derivatives of Gaussian filters of variance, for example, I, = G4(0) ® I, where © is the variance of
the Gaussian filters. The vectors v'; are computed over a range of values of ¢ corresponding to a range of image scale factors.
Features that have similar invariant vectors are matched. The similarity between vectors is defined as the weighted sum of
squared differences between their coordinates. A similar approach is used in [39] for recovering epipolar geometry.

4.1.2 Using Prior Pose Estimates

The second enhancement to the standard image-based calibration algorithm is to take advantage of the fact that we do have
information about the relative poses from the robots’ own internal pose estimation systems. In fact, we not only have an
approximate estimate of the robot pose but also an estimate of the uncertainty of the pose. The situation is illustrated in

Figure 5. Using camera 1 as the reference camera, the true pose of camera 2 with respect to camera 1 is (R,T); the relative
pose reported by the positioning systems is (R’,T”); and the error between the true and estimated poses is (d0,dT) where d6 is
the error in orientation in the plane of travel of the robot. Although (d6,dT) is not known, the positioning system can provide
a bound on d6,,,, — the maximum angular deviation from the true orientation — and dT,,,x — the maximum position error
which places all the possible positions of camera 2 in a disk centered at T (Figure 5(a)). Those bounds define a region in
which the true pose (R,T) may lie: (R,T) is in the region defined by all the possible (T’+dT) and R(6’+d6) with ||dT|| <
dT,..x- Given a feature position in image 1, m,, the set of corresponding epipolar lines in image 2 is defined by the parameter
vectors (T’+dT) X R(6’+d0) m; for all possible values of dT and d6. This set of lines defines a search region for the
correspondences with m; — shown in green (gray shaded area for b/w prints) in Figure 5(b) around the initial estimate of the
epipolar line shown in red (darker line for b/w prints). If the initial position error is small, the search problem is reduced to
searching in the vicinity of the epipolar line and the calibration amounts to a small adjustment of R and T. For larger
position errors, the region covers a larger area of the image but still eliminates most of the outliers in practice.

(a) (b)

Figure 5: Using prior pose estimations to limit search

4.2 Sparse Feature Estimation

Given the calibration information from the two robots, the 3-D locations of each feature can be recovered by triangulation. In
this case, the coordinates of each feature are computed independently. We have also applied global estimation techniques,
which attempt to refine robot positions and feature positions by minimizing the distance between the image features and the
image projection of the corresponding points — bundle adjustment technique [33]. Such global techniques become beneficial
only when a substantial number of images are used. In our case, the experiments show that those techniques do not
substantially affect the result and that straight triangulation is sufficient.

For example, Figure 6 (left) shows the depth reconstructed of matched features of Figure 4, as well as the same result (right)
(right) in which the 3-D points corresponding to the features are shown in an oblique view. The lines are drawn from the
point features to the ground plane. A few objects are indicated to facilitate visual registration of the data. This first
reconstruction step provides a representation of the sparse structure of the environment. This sparse information can be
reasonably used for planning or partial occlusion reasoning.

2- a3
B ?
15
]
- : 3
-3 Al r
L o5
0-
I3
-05.. =
5 e e
g et |
0 e
By g
¥ = Depth

5 10 15 20

Figure 6: (Left) Sparse depth map computed from the features of Figure 4. The depth is indicated by a color-coded
square centered at each feature. The color scale is indicated below the figure. (Right) Oblique view of the
reconstructed 3-D points corresponding to features of Figure 4.

4.3 Dense Reconstruction

Figure 7: Color-coded depth map after filtering (left) and corresponding mask (right)

Sparse feature estimation provides useful information for visualization and planning but is insufficient for realistic rendering
of the environment, which requires the recovery of the coordinates of a dense set of pixels in the image. Given two robot
positions and assuming that the calibration problem has been solved using the techniques previously described, the problem
is equivalent to the standard problem of stereo except that the images are taken from different robots instead of from a single
camera rig, as is normally the case.

The general approach to stereo is to rectify the images so that the epipolar lines are the scanlines of the images and to search
along the scanlines for matching locations based on a local comparison criterion such as correlation or sum of squared
differences (SSD.) The rectification is critical because searching along arbitrary scanlines is not computationally practical.
While in principle this approach is feasible, there are two key differences with standard stereo from fixed cameras, which are
both related to the fact that the relative positions and orientations of the robots are arbitrary. First, as noted, the baseline
between the robots may be large. Although necessary for accuracy reasons, this complicates the matching between images
because of potentially large distortions between the two images. Second, the search for correspondences is complicated by
the fact that rectification may lead to unacceptable warping of the images. Some preliminary results are shown in Figures 7
and 8(a) and 8(b).

Monitor

Cahinets

Figure 8: 3-D View of the point cloud constructed by our cooperative stereo mapping

5. RESULTS
This architecture was first verified by tasking a team of mobile robots with distributed mapping. IZIThe mobile robots, located
at different starting positions in a known simulated world, were assigned the task of visiting a set of pre-selected observation
points. The robot colony was structured as illustrated below:

Robots

-

Tasks
performed

O<my| Operator

(GUD)

Revenue
paid Operator
- Exec

Figure 9: Organizational structure for a colony of robots engaged in distributed mapping

This problem is equivalent to the distributed traveling salesman problem, where the observation points are the cities to visit.
Each agent was equipped with a map of the world, which enabled it to calculate the cost associated with visiting each of these
cities. The costs were the lengths of the shortest paths between cities in an eight-connected grid, interpreted as money. The
interface between the human operator and the team of robots was a software agent, the operator executive (exec). The exec

? Detailed descriptions of the implementation and results can be found in [8].

conveyed the operator’s commands to the members of the team, managed the team revenue, monitored the team cost, and
carried out the initial city assignments. Being a self-interested agent, the exec aimed to assign cities quickly while minimizing
revenue flow to the team. In our initial implementation, the exec adopted a greedy algorithm for assigning tasks. Once the
exec had completed the initial city assignments, the robots negotiated among themselves to subcontract city assignments.
Only single-city deals were considered, and the robots continued to negotiate among themselves until no new, mutually
profitable deals were possible. Thus, negotiations ceased once the system settled into a local minimum of the global cost.
Dias and Stentz published preliminary results[8].

We also tested system response to dynamic conditions in a scenario similar to exploration of a partially known world. The
operator designated a set of 14 observation points, or cities, to be visited in a simulated world. Four robots negotiated, won
tours, and set off to explore. Whenever a robot approached a doorway, a new observation point was triggered inside the
“newly observed” room. When a new goal was triggered, the robots ceased their current tours and began negotiations to
determine new tours that were most profitable in light of the new inf(ﬁmation. This resulted in an additional six cites for
exploration, for a total of 20 cites. Through this exploration scenario., the robots evolved by adapting to dynamic conditions.

X= ==X - =X

Figure 10: Results from dynamic re-negotiations.

6. SUMMARY
We have outlined the design of a colony of mobile robots capable of providing maps from the interior of urban structures.
Traditionally, new paradigms are brittle and may not convey any advantage when deployed outside of the laboratory
environment [9]. Our primary mission is to exploit multiple robots as a means to develop capability that is robust to
individual failure much in the same way as traditional military units operate. These units exploit redundancy such that critical
capability is preserved when losses are incurred; consequently, they can continue to operate when faced with multiple
casualties.

Our architecture is unique in that task execution is only loosely coupled to the existence of individual robots. This is an
important technological leap that must be developed in order to place robot colonies into extreme environments to perform
dangerous tasks. Colony performance can be enhanced by the development of accelerated learning through “on-line” and
instantaneous exchange of experiences. The ubiquitous connectivity within a colony provides the infrastructure to promote
the exchange of successful skills and behaviors in a trivial fashion. Through our research, apprenticeship in established robot
colonies will be measured in “seconds of download time.”

Secondary goals of this effort are to equip this software architecture such that new applications can be readily programmed.
As a first order enabler, the design of this software infrastructure has been abstracted from the task. In the worst case, new
applications would require coding with provided application programmer interfaces (APIs). To eliminate this requirement,
we are also pursuing the construction of task archives and behavioral seeding technologies that would enable robots to learn
new tasks by downloading “seeds” from an archive. These seeds would grow into fully functional, perhaps even optimal, task
level capabilities within our fertile distributed learning infrastructure. Once matured, this functionality would be stored in a

> A movie of this evolution is available at http://www.frc.ri.cmu.edu/projects/colony/freworld.shtml

task archive for future mission capability. Thus, a process of iterative refinement for colonies of robots would be available.
This archive of robot-derived experience, knowledge, and data is a first step in creating accelerated cultural learning and
knowledge acquisition for robots, a distinctly human phenomenon.

7. FUTURE WORK
The results described above provide the building blocks for geometric environment reconstruction from multiple robots.
Many issues must be addressed before they can be assembled into an effective mapping system. First, there are many choices
of parameters for rectification and stereo — for example, size of matching window or interpolation mode — and extensive
experiments are needed to determine the optimal choices in a typical environment. Secondly, there is the need to incorporate
maps from multiple pairs of robots into composite maps. The multi-map approach will support addressing of maps from
different locations, but registration of individual maps is necessary to ensure coherence of the representation throughout the
environment. Map integration can be accomplished by one of two means. First, the individual 3-D maps from robot pairs can
be iteratively modified to yield an optimal combined map. An alternative that we have used successfully is to find
correspondences between the individual maps constructed from pairs of robots and to estimate the relative poses between the
maps based on the correspondences. A global optimization approach is then used to find the optimal set of poses and
correspondences between maps. This is the approach we proposed in [36]. We will apply both approaches to the multi-robot
map building problem and will design the integration system based on the evaluation of those approaches. In addition, we are
examining the following:
Interactive Queries: An operator-designated region, line, or point of interest from an approximate floor plan is used to guide
retrieval and reconstruction from local stereo matching.
Generating Floor Plans: A cross section from an integrated map consisting of all the points from all the cooperative stereo
maps taken in that location.

View-Based Rendering: generating realistically rendered views from arbitrary positions.

ACKNOWLEDGEMENTS
This research was sponsored in part by DARPA under contract “Cognitive Colonies” (contract number N66001-99-1-8921,
monitored by SPAWAR). The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies or endorsements, either expressed or implied, of the U.S. Government. The
authors thank the additional members of the Cognitive Colonies group for their valuable contribution: Charles Smart, Brian
Frederick, Vanessa De Gennero, and Dean Boustead.

REFERENCES

Brig. General J. R. Groves, Jr. “Operations in Urban Environments” Military Review, August 1998.

MOUT ACTD Program Overview. http://mout.actd.org|

Lt. Gen. J. Rhodes, “Jane’s Defense Weekly Interview” Jane'’s Defense Weekly, Feb 4, 1998.

MOUT ACTD Fact Sheet. [http://mout.actd.org|

MOUT ACTD Operational Requirements. http://mout.actd.org/req.html|

SFC L. Lane, “Robots out Front” Soldier’s Online, April 1995.

D. G. Knichel, “Robotics Insertion Technology” May 1997.

M. B. Dias and A. X. Stentz, “A Free Market Architecture for Coordinating Multiple Robots” CMU-RI-TR-99-42,

Carnegie Mellon University, December 1999

L. W. Grau, “Bashing the Laser Range Finder with a Rock” Military Review, May 1997.

10. Arkin, R. C., “Cooperation without Communication: Multiagent Schema-Based Robot Navigation” Journal of Robotic
Systems, Vol. 9, No.3, pp. 351-364, 1992.

11. Arkin, R. C., Balch, T., “AuRA: Principles and Practice in Review” Journal of Experimental & Theoretical Artificial
Intelligence, Vol. 9, No. 2/3, pp.175-188, 1997.

12. Brooks, R. A., “Elephants Don’t Play Chess” Robotics and Autonomous Systems, Vol. 6, pp.3-15, 1990.

13. Brumitt, B. L., Stentz, A., “Dynamic Mission Planning for Multiple Mobile Robots” Proceedings of the IEEE
International Conference on Robotics and Automation, No. 3, pp. 2396-2401, 1996.

14. Golfarelli, M., Maio, D., Rizzi, S., “A Task-Swap Negotiation Protocol Based on the Contract Net Paradigm” Technical
Report CSITE, No. 005-97, 1997.

15. Jensen, R. M., Veloso, M. M., “OBDD-based Universal Planning: Specifying and Solving Planning Problems for
Synchronized Agents in Non-Deterministic Domains” Lecture Notes in Computer Science, No. 1600, pp. 213-248, 1999.

16. Johnson, N. F., Jarvis, S., Jonson, R., Cheung, P., Kwong, Y. R., Hui, P. M., “Volatility and Agent Adaptability in a
Self-Organizing Market” Physica A, Vol. 258, No. 1-2, pp. 230-236, 1998.

RN E DD =

©

http://mout.actd.org/
http://mout.actd.org/
http://mout.actd.org/req.html

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33

34

35
36

37

38

39

40

41

42

43

44
45

Lux, T., Marchesi, M., “Scaling and Criticality in a Stochastic Multi-Agent Model of a Financial Market” Nature, Vol.
397, No. 6719, pp. 498-500, 1999.

Mataric, M. J., “Issues and Approaches in the Design of Collective Autonomous Agents” Robotics and Autonomous
Systems, Vol. 16, pp. 321-331, 1995.

Pagello, E., D’Angelo, A., Montsello, F., Garelli, F., Ferrari, C., “Cooperative Behaviors in Multi-Robot Systems
through Implicit Communication” Robotics and Autonomous Systems, Vol. 29, No. 1, pp. 65-77, 1999.

Parker, L. E., “ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation” IEEE Transactions on
Robotics and Automation, Vol. 14, No.2, pp. 220-240, 1998.

Sandholm, T., “An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations” Proceedings,
Eleventh National Conference on Artificial Intelligence (AAAI-93), pp. 256-262, 1993.

Sandholm, T., Lesser, V., “Issues in Automated Negotiation and Electronic Commerce: Extending the Contract Net
Framework” Proceedings, First International Conference on Multiagent Systems (ICMAS-95), pp. 328-335, 1995.
Schneider-Fontan, M., Mataric, M. J., “Territorial Multi-Robot Task Division” IEEE Transactions on Robotics and
Automation, Vol. 14, No. 5, 1998.

Schneider-Fontan, M., Mataric, M. J., “A Study of Territoriality: The Role of Critical Mass in Adaptive Task Division”
Proceedings, From Animals to Animats 4, Fourth International Conference on Simulation of Adaptive Behavior (SAB-
96), MIT Press/Bradford Books, pp. 553-561, 1996.

Schwartz, R., Kraus, S., “Negotiation On Data Allocation in Multi-Agent Environments” Proceedings of the AAAI
National Conference on Artificial Intelligence, pp.29-35, 1997.

Shehory, O., Kraus, S., “Methods for Task Allocation via Agent Coalition Formation” Artificial Intelligence Journal,
Vol.101, No:1-2, pp.165-200, May, 1998.

Smith, R., “The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver” /[EEE
Transactions on Computers, Vol. C-29, No. 12, December, 1980.

Svestka, P., Overmars, M. H., “Coordinated Path Planning for Multiple Robots” Robotics and Autonomous Systems, Vol.
23, No. 4, pp. 125-133, 1998.

Tambe, M., “Towards Flexible Teamwork” Journal of Artificial Intelligence Research, Vol. 7, pp. 83-124, 1997.
Veloso, M., Stone, P., Bowling, M., “Anticipation: A Key for Collaboration in a Team of Agents” Submitted to the 3
International Conference on Autonomous Agents, pp. 1-16, 1998.

Wellman, M., Wurman, P., “Market-Aware Agents for a Multiagent World” Robotics and Autonomous Systems, Vol. 24,
1998.

Zeng, D., Sycara, K., “Benefits of Learning in Negotiation” Proceedings of the AAAI National Conference on Artificial
Intelligence, pp.36-41, 1997.

P. Beardsley, A. Zisserman, D. Murray, “Sequential Updating of Projective and Affine Structure from Motion”
International Journal of Computer Vision, Vol. 23, No. 3, 1997.

P. Chang, M. Hebert, “Omnidirectional Structure from Motion” Proc. Workshop on Omnidirectional Vision, IEEE Press,
2000.

O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint MIT press, 1993.

D. Huber, O. Carmichael, M. Hebert, “3-D Map Reconstruction from Range Data” Proc. IEEE International Conference
on Robotics and Automation, 2000.

J.J. Koenderink, A.J. van Doorn, “Representation of Local Geometry in the Visual System” Biological Cybernetics,
55:367-375, 1987.

S. Laveau, O.D. Faugeras “3-D scene representation as a collection of images” Proceedings of the 12" IAPR
International Conference on Pattern Recognition, 1994.

P. Montesinos, V. Gouet, R. Deriche, D. Pele, “Differential Invariants for Color Images” Proc. I 4™ International
Conference on Pattern Recognition, 1998.

M. Pollefeys, R. Koch, L. Van Gool, “A Simple and Efficient Rectification Method for General Motion” Proc. I[EEE
International Conference on Computer Vision, Corfu, 1999.

S. Roy, J. Meunier, I. Cox, “Cylindrical Rectification to Minimize Epipolar Distortion "Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 1997.

C. Schmid, R. Mohr, “Local Grayvalue Invariants for Image Retrieval ” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):530-534, 1997.

C. Schmid, R. Mohr, “Comparing and Evaluating Interest Points” Proc. International Conference on Computer Vision,
1997.

P. Sturm and R. Hartley, “Triangulation” Computer Vision and Image Understanding, 68(2), 1997.

Z. Zhang, R. Deriche, O. Faugeras, Q.T. Luong, “A Robust Technique for Matching Two Uncalibrated Images Through
the Recovery of the Unknown Epipolar Geometry” Artificial Intelligence Journal, Vol. 78, 1995.

Proceedings of the 2001 |EEE/RSJ
International Conference on Intelligent Robots and Systems

Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001

Fault Tolerant Localization for Teams of Distributed Robots

Renato Tinds
Department of Electrical Engineering
EESC
University of SAo Paulo
SAo Carlos, SP 13560-970, Brazl
tinos@sel .eesc.sc.usp.br

Abstract

To combine sensor information from distributed robot
teams, it is critical to know the locations of all the robots
relative to each other. This paper presents a novel fault
tolerant localization algorithm devel oped for centimeter-
scale robots, called Millibots. To determine their
locations, the Millibots measure the distances between
themselves with an ultrasonic distance sensor. They then
combine these distance measurements with dead
reckoning in a maximum likelihood estimator.

The focus of this paper is on detecting and isolating
measurement faults that commonly occur in this
localization system. Such failures include dead
reckoning errors when the robots collide with
undetected obstacles, and distance measurement errors
due to destructive interference between direct and multi-
path ultrasound wave fronts.

Simulations show that the fault tolerance algorithm
accurately detects erroneous measurements and
significantly improves the reliability and accuracy of the
localization system.

1. Introduction and Related Work

No longer confined to industrial applications, robots are
more often entering the human environment. Toy robots,
robotic wheelchairs, surgical robots, and robots in
hospitals and nursing homes all come in close contact
with humans. Some research suggests that, by 2010, the
number of robots in homes will reach 5 million [5]. Asa
result, a failure in a robotic system can not only cause
unacceptable economic losses but also put the safety of
the peopleinits environment at risk [18].

This situation is aggravated by the fact that robot
failures are relatively common. Even in well-structured
industrial environments, the recorded mean time to failure
for manipulators ranges from only 500 to 2500 hours [4].

0-7803-6612-3/01/$10.0000 2001 | EEE

Luis E. Navarro-Serment and Christiaan J.J. Paredis

Institute for Complex Engineered Systems

Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890
{lenscmu, paredis} @cmu.edu

We expect that robot failures will be even more common in
household robots for which, most likely, rigorous
preventive maintenance schedules will not be enforced.
According to Parker [19], it is due to the lack of research
on fault tolerance and adaptivity of robot teams that robot
autonomy and multi-robot cooperation have not yet been
adequately demonstrated.

This paper investigates fault tolerance issuesin agroup
of robot systems that are particularly vulnerable to
failures. The CMU Millibots are very small (7x7x7cm) and
inexpensive robots that contain little a no redundancy
within each robot but rely on collaboration within a team
to identify and overcome failures. These Millibots provide
a good test-bed for fault tolerance as they reflect the
limited reliability and capabilities of future inexpensive
household robots.

Fault tolerance is usually achieved in two steps: The
system first detects and isolates the faults, after which it
reconfigures itself to overcome the faults. Generaly, for
individual mobile robots, this approach requires
considerable redundancy in sensing, actuation,
communication, and computation, resulting in large,
complex, and expensive systems. For multi-robot systems,
redundancy is also available at the team level. For
instance, sensing capabilities on one robot may be
replaced by a combination of sensing modalities on other
robots. As aresult, fault tolerance can still be implemented
for robots with limited capabilities (and possibly without
any redundancy) such asthe Millibots.

In this paper, the problem of fault tolerance in the
localization system of the CMU Millibots is addressed.
The objective of the Millibots is to collaboratively map
and explore an unknown environment. When a robot
moves, its new position is estimated from a combination of
dead reckoning measurements and distance measurements
between robots. Faults in these measurements produce
incorrect position estimates, and correspondingly, errors
in the maps of the environment. This paper presents a
method to detect and overcome such errors, based on the

1061

information redundancy in the dead reckoning and
distance measurements.

2. The Millibots

The Millibots are configured from modular components
including communication, computation, mobility, camera,
sonar, and IR modules [10]. Assembling different types of
modules creates specialized robots that collaborate to
accomplish a given task. Because of their small size (7x7x7
cm), the computational and sensing capabilities of
Millibots are limited. Higherlevel functions such as
mapping and localization are provided by a larger robot or
team leader.

The knowledge of the position and orientation of each
Millibot is crucia to achieve accurate mapping and
exploration of the environment. Conventional localization
systems, based on dead reckoning, GPS, landmark
recognition or map-based positioning [17], do not offer a
viable solution due to limitations in size, power, or sensing
of the Millibots. To overcome these problems, a novel
method was developed that utilizes dead reckoning and
ultrasonic distance measurements between robots[14].

The Millibot localization system is based on
trilateration [2], i.e., determination of the position based on
distance measurements to known landmarks or beacons
[11, 12]. GPS is an example of a trilateration system; the
position of a GPS unit on earth is calculated from distance
measurements to satellites in space. Similarly, the Millibot
localization system determines the position of each robot
based on distance measurements to stationary robots with
known positions.

As isillustrated in Figure 1, the distance between two
robots is measured using synchronized ultrasound and RF
pulses. A onical reflector mounted above a low-cost
transducer allows the Millibots to detect and transmit

; Bea:on\\:%
1 \
Radio Pulse | w"

|
Acoustic Pulse' |

Transmitter
| Radio Pulse
% I—‘ ! Acoustic Pulse
i Receiver
i
|

Millibot

J———— >| Time of Flight

_______________ e Time

Figure 1: Ultrasonic distance measur ement.

ultrasonic pulses in any direction [10]. Periodically, each
robot that serves as a beacon emits simultaneously aradio
frequency (RF) pulse and an ultrasonic pulse. Using the
RF pulse for synchronization, the distance to the beacon
is measured as the time-of-flight of the ultrasonic pulse
multiplied by the speed of sound (343m/s at 20°C). The
team leader coordinates the pinging seguence to ensure
that beacon signals from multiple robots do not interfere
with one another. To improve the accuracy, this procedure
is repeated several times and the sample mean is utilized to
estimate the distance to the beacon. A similar multi-modal
localization system is being developed by Girod et al. [7,
8].

All the Millibots transmit their distance measurements
to the team leader who cal cul ates the new robot positions.
A maximum likelihood a gorithm determines the most likely
position of the robot given the measured distances to the
current beacons. Assuming that the dead reckoning and
distance measurements are normally distributed random
variables, the likelihood of being located at a position (x,y)
isgiven by

P(X,y X4, Ya. % @), (2),--. 7 (m)) =
N(x- xe,s ZN(y- a5 JONGG)- 7 (s 2) ¥

i=1

where N(p,s?) is anormal distribution with zero mean and
variance of s® evaluated at p, (XgYs) iS the position
measured through dead reckoning, r(i) isthe distance from
the beacon i to the Millibot, mis the number of beacons,
and r_b(i) is the sample mean of the distance

measurements from beaconi to the Millibot.

The estimated new position of the Millibot is given by
the value of .y) that maximizes the probability density
function in Equation (1), and is computed using the BFGS
non-linear optimization algorithm [6]. The algorithm is
initialized with the dead reckoning estimate (X3,yq) or an
estimate based on the closed form trilateration expression
derived in [13]. In genera, only a few iterations are
necessary to reach the optimum value because of its
proximity to the starting point.

It seems that similar results could have been achieved
with a Kalman filter, as is commonly used in many other
localization schemes [11, 12]. However, because the state
eguations are non-linear, they require an Extended Kaman
Filter (EKF) obtained by linearizing the state equations
around the estimated state. This linearization is only an
acceptable approximation in a small neighborhood around
the current state, so that the EKF only produces good
results when the state varies slowly relative to the rate at
which sensor data is incorporated. Because the Millibots
use their sonar beacons only after relatively large steps,
this condition is violated, causing the Kalman filter to
diverge quickly.

1062

On the other hand, the maximum likelihood approach
described above does not assume linearity of the state
equations allowing the optimization to converge to the
true optimal estimate. For that reason and only in this
application, it tends to perform better than Kalman filters,
even though it does not take any cross-correlations or
uncertainty in the beacon positions into account as would
have been possible with an EKF.

3. Fault Modes and Effects Analysis

Although the localization algorithm described above
has the potential to provide very accurate position
estimates [14], practice has shown that it is susceptible to
multiple failures, some of which occur relatively often.
Before developing a fault tolerance scheme, we analyze
these failure modes using Fault Modes and Effects
Analysis (FMEA) [1].

3.1. Incorrect ultrasonic distance

measurements

We have identified three different causes for erroneous
distance measurements.

A first failure occurs when the ultrasonic pulseis either
not emitted by the beacon or not received by the Millibot.
This could happen due to afailure in the transducers, the
circuitry, or the communication with the team l|eader.
These faults do not occur often and result in a clearly
identifiable effect: failing to register an ultrasonic pulse.

Incorrect distance measurements also result when there
is an obstacle between the beacon and the Millibot
blocking the ultrasonic pulse. The effect, in this case, is
more complicated because an ultrasonic pulse that
bounces around the obstacle (multi-path) may still be
detected, resulting in a distance measurement larger than
the actual distance.

[

Poc ~+~——0T 3
=

| | | |
e d d B3

o ot o4 o6 0 I It 14 16 18 %
distance (m)

direct path
>

multi-path

d/’2

»le
L] >

Figure2: Destructiveinterference.

The same effect can occur due to destructive
interference. As is illustrated in Figure 2, at certain
distances between the robots, the wave propagated in the
direct path interferes destructively with the wave that
bounces off the floor. For the Millibots this failure mode is
especially pronounced at distances of 0.5m and 0.8m (the
interference at 2.5m, shown in Figure 2, is outside the
range of the sensor). The effect, again, is that a secondary
echo is measured instead, resulting in too large a distance
measurement.

3.2. Incorrect dead reckoning measurements

The motion commands for the Millibots are executed by
alocal PID controller that receives feedback from optical
encoders. Although the control loop is sufficiently
accurate to ensure that the motors actually execute the
desired movement (within a certain variance due to thread
slippage), the following failures can still occur.

A first group of faultsis aresult of hardware failures of
the actuators, mechanical transmissions, wheels, encoders
or controllers. These faults are rather uncommon and
result in a movement to the wrong position, no movement
at all, or continuous movement without stopping. A more
common failure mode occurs when the Millibots run into
an undetected obstacle. The effect varies from stopping
before reaching the desired position to falling over. Due to
thread slippage, these failures cannot be detected through
the encoder readings.

In conclusion, both groups of faults result in a
discrepancy between the actual position and the estimated
position based on dead reckoning.

4. Fault Tolerance

As pointed out in the previous section, faults affecting
localization occur commonly in the Millibot system—
especialy the destructive interference failure mode occurs
often. To ensure accurate position estimation, it is critical
that these faults are detected and isolated so that they can
be taken into account by the estimation algorithm. Such a
fault tolerance schemeis presented in this section.

4.1. Fault Detection and | solation

Past research in fault detection and isolation (FDI) has
focused on faults in individual mobile robots with
redundant sensors [9, 16]. For example, encoder readings
are compared with integrated gyroscope measurements to
detect faulty estimates of the robot orientation. The
Millibots, however, do not have this level of sensing
redundancy. Instead, they take advantage of the
information redundancy in the combined dead reckoning
and ultrasonic distance measurements for the entire team
of robots.

1063

Based on the dead reckoning information, we can
compute the expected distance from the moving Millibot
to each of the beacon Millibots. Assuming that the
distance traveled and the distance to the beacons is
relatively large, this expected distance is approximately
normally distributed. The ultrasonic distance measurement
is also a sample from a population that is approximately
normally distributed (the discretization error in the
ultrasonic sensor is much smaller than the measurement
error). Our FDI scheme is based on statistical tests that
verify whether the two normally distributed distance
measurements (based on dead reckoning and ultrasonic
pulses) are consistent, i.e., have the same expected value.
If they are not consistent, afault has occurred.

Thetest is based on the following statistical properties.
Consider two random variables, (x1 ,xz), from two

different populations both with a normal distribution. It
can be shown that the difference of the sample means,
(%,- X,), is also normally distributed with a mean and

variance equal to[3]:
2

S S
L+22 2
n N

Xl X2 rr!. rr& S ;1' iz =

where n; and n, are the sample sizes. Or, as a direct
corollary:

_ (% - %)- M3-% _ (%~ %)- (m - my)
87l'XZ S:I.Z +522 (3)
N n;

isnormally distributed with zero mean and unit variance.

To test whether both populations, X; and X, , have
the same expected value (mi:mz), we can use the
following hypothesis:

Hom-m,=0if-2.,,,£2£2,), 4
where a isthelevel of significance, and zis
N ®
S S5
; n ¥ n,

An alternative hypothesisis
Him-mt0if zE-2 ,,0r23 2 ,,,. (6)

For agiven a, the value of z,__,, can befound in the

standard normal tables.

We now apply this test to the two distance
measurements: r4(i), the distance from the beacon i to the
Millibot based on dead reckoning, and ry(i), the

Tablel: Hypothesistestsfor the FDI procedure.

Hyp. Fault Region
Ho No faults - zla/2£2()£zla/2
fori=1,2, ...,
Incorrect .
ultrasonic “Zarnz’® Z(]),
H, distance - Zeap EA)E Zasz o
measurement for i=1,2,...m, it]
beacon |
Incorrect dead
H, reckoning otherwise
information

corresponding ultrasonic distance measurement. The
hypothesisvariable, z(i), is then:

ra(i)- (i) 12

s , ’...,m
, 2 ()
S (i) +S%b(i)

where ny(i) is the number of independent ultrasonic
measurements by beacon i. Assuming that the variances
on the position coordinates, x and y, are small, the

variances fj () €an be obtained from:

2(i) =

aa]rd()
gﬂy ra

Table 1 summarizes the different fault scenarios and
corresponding statistical hypotheses: If no faults occur,
the variable z(i) of every beacon is small, confirming the
hypothesis H,. If an error in the ultrasonic distance
measurement between the Millibot and beacon j occurs
(hypothesis H,), z(j) is negative and large (negative
because an erroneous measurement is always larger than
the true distance, as explained in Section 3). Since we
assume that only one error occurs at a time, the other
variables, z(i) with it j, will al be small. If this is not the
case, then we conclude that an error in the dead reckoning
measurement has occurred (hypothesisH,).

2 :gé[rd(i)
g X g

)

4.2. Reconfiguration

After the fault has been detected and isolated, the
localization algorithm is easily reconfigured by ignoring
the erroneous measurement. If an incorrect distance
measurement for beacon j is detected, Equation (1) is
modified to

POGY DX Yo Fo(1) Fo(2). . To(m)) =

2Ny yq.s)8N()- 7)s2) ©

i=1
it]

N(x X4,S

1064

Estimated distance,
Robot A _J

Estimated position,

Raobot B
o ¢
4
Robot A éx
\/\
] (] A,
- iz "< Real position,
Robot B
Al L= :I

ki

Figure 3: Faulty position estimation for Robot B when an
erroneous ultrasonic measurement occurred with
respect to beacon A.

If incorrect dead reckoning measurements are detected,
Equation (1) becomes

Pl y 150,72+ 5 () = ON(G)- 7 (0)s2) (10

in which the dead reckoning information is not utilized.
This requires that at least three Millibots serve as beacons
for aunique maximum to exist.

5. Reaults

A series of experiments have been conducted to test
the effectiveness of ateam of Millibots to explore and map
a given area [10]. In these experiments, a human operator
who controlled the Millibot team could plan the individual
robot motions to avoid distances at which destructive
interference occurs. The robot motions were also planned
to avoid ill-conditioned configurations, such as collinear
beacons. The experiments showed that the localization
algorithm performs well when no faulty distance
measurements occur. However, it becomes very difficult to
avoid these faults (i.e. avoid collinearity and destructive
interference) with more than four robots on ateam.

We performed several simulations to test the fault
tolerance algorithms. The Figures 3 and 4 show snapshots
from a GUI that controls four Millibots in a mapping task.
The simulations performed without the fault tolerance
system (Figure 3) show that significant errors result when
incorrect distance estimates are considered in the
localization algorithm. The gray region around the robot B
indicates the area covered by the sonar sensors used to

detect objects; errors in the estimated position translate
into significant mapping errors.

The simulations in which the fault tolerance system was
active show that the faults described in Section 3 could be
detected correctly. One such scenario is illustrated in
Figure 4. In this simulation, destructive interference
occurred in the distance measurement between the robots
A and B. The values of zin Equation (7) were -6.03 for
beacon A, and 0.41 and —0.04 for the other beacons. For a
significance of a=0.01, z,,,, equals 2.326 resulting in a
confirmation of hypothesis H, (since —6.03 < -2.326). Asa
result, the localization algorithm ignored the erroneous
distance measurement to robot A and estimated the robot
position based only on the dead reckoning information
and the distance measurements to the other two robots.

The fault tolerance algorithm has the additional
advantages that it is not computationally expensive, and
that it provides additional quantitative information to the
human operator with respect to the performance of the
localization system. This information can be used to
improve the individual robot motion operation.

6. Conclusion

Due to destructive interference of ultrasonic pulses or
collisions with undetected obstacles, faults occur
commonly in the Millibot localization system. It is
therefore important to employ fault tolerance mechanisms
to improveitsreliability and accuracy.

This paper introduced an FDI system based on
statistical hypothesis testing that can identify which of
the measurements (distance measurements and dead

Pk ' P P

% | ak e o e o] S e Clop T T !
e
1 Estimated distance,
@ Robot A il 1
e Estimated position,
= Robot B
Robot A
B El e
' \Red position
Robot B
Al T— :I
[

Figure4: Correct position estimatefor robot B. The FDI
procedur e detected the erroneous distance measur ement
with respect to beacon A.

1065

reckoning) is incorrect. Because of the structure of the
maximum likelihood estimator, the localization agorithm
can be easily modified to omit these erroneous
measurements. Simulations showed that the fault tolerance
procedure successfully detected and compensated for
incorrect measurements, thus improving the accuracy and
reliability of the localization system.

In the future, the fault tolerance procedure should be
tested with the real Millibots. In particular, research
should focus on incorporating of fault tolerance
procedures into the real-time Millibot path-planning
system. The problem of multiple simultaneous faults
should be addressed too, along with a characterization of
the reliability of the localization system under this
scenario.

Acknowledgements

The authors would like to thank Robert Grabowski, who
developed the Millibot simulator, for his contributions.
The Millibots project is funded in part by the Distributed
Robotics program of DARPA/ETO under contract
DABT63-97-1-0003 and, by the Institute of Complex
Engineered Systems at Carnegie Mellon University.
Renato Tinds is supported by FAPESP under grant
98/15732-5.

7. References

[1] Birdlini, A., Reliability Engineering: Theory and
Practice, Third ed. New Y ork: Springer, 1999.

[2] Borenstein, J., Everett, H. R, and Feng,
Navigating Mobile Robots: Sensors
Techniques. Wellesley, MA: A K. Peters, 1996.

[3] Chase, W. and Bown, F., General Statistics, Fourth
ed. New York: John Wiley & Sons, 2000.

[4] Dhillon, B. S.,, Robot Reliability and Safety. New
York: Springer-Verlag, 1991.

[5] Dhillon, B. S. and Fashandi, A. R. M., "Robotic
Systems Probabilistic Analysis," Microelectronics
and Reliability, vol. 37, pp. 211-224, 1997.

[6] Fletcher, R., Practical Methods of Optimization,
Second ed. New Y ork: John Wiley & Sons, 1987.

[7] Girod, L., "Development and Characterization of an
Acoustic Rangefinder," University of California, Los
Angeles, Los Angeles, CA, Technical Report USC-
CS-00-728, April 2000.

[8] Girod, L. and Estrin, D., "Robust Range Estimation
Using Acoustic and Multimodal Sensing," |EEE/RSJ

L.,
and

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

1066

International Conference on Intelligent Robots and
Systems (IROS 2001), Maui, Hawaii, 2001.

Goel, P., Dedeoglu, G., Roumedlictis, S. I., and
Sukhatme, G. S., "Fault Detection and Identification
in a Mobile Robot Using Multiple Model Estimation
and Neural Network,” |EEE International
Conference on Robotics and Automation, Leuven,
Belgium, 1998.

Grabowski, R., Navarro-Serment, L. E., Paredis, C. J.
J., and Khosla, P. K., "Heterogeneous Teams of
Modular Robots for Mapping and Exploration,”
Autonomous Robots, val. 8, pp. 293-308, 2000.
Kleeman, L., "Optimal Estimation of Position and

Heading for Mobile Robots Using Ultrasonic
Beacons and Dead-Reckoning,” 1992 IEEE
International Conference on Robotics and

Automation, Nice, France, pp. 2582-2587, 1992.
Leonard, J. F. and Durrant-Whyte, H. F., "Mobile
Robot Localization by Tracking Geometric Beacons,"
IEEE Transactions on Robotics and Automation,
vol. 7, pp. 376-382, 1991.

Manolakis, D. E. "Efficient Solution and
Performance Analysis of 3-D Position Estimation by
Trilateration,” |EEE Transactions on Aerospace and
Electronic Systems, vol. 32, pp. 1239-1248, 1996.
Navarro-Serment, L. E., Paredis, C. J. J.,, and Khodla,
P. K., "A Beacon System for the Localization of
Distributed Robotic Teams," International
Conference on Field and Service Robotics,
Pittsburgh, pp. 232-237, 1999.

Parker, L. E., "ALLIANCE: An Architecture for Fault

Tolerant Multi-Robot ~ Cooperation,” IEEE
Transactions on Robotics and Automation, vol. 14,
pp. 220-240, 1998.

Roumdlictis, S. I., Sukhatme, G. S., and Bekey, G. A.,
"Sensor Fault Detection and Identification in a
Mobile Robot," 1998 IEEE/RSJ] International
Conference on Intelligent Robots and Systems,
Victoria, Canada, pp. 1383-1387, 1998.

Stuck, E. R., Manz, A., Green, D. A., and Elgazzar, S.,
"Map Updating and Path Planning br Real-Time
Mobile Robot Navigation,” 1994 |EEE/RSJ
International Conference on Intelligent Robots and
Systems, Munich, Germany, pp. 753-360, 1994.
Visinsky, M. L., Cavdlaro, J. R., and Walker, I. D.,
"Robotic Fault Detection and Fault Tolerance: A
Survey," Reliability Engineering and System Safety,
vol. 46, pp. 139-158, 1994.

	Seminar
	Bruyninckx
	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	Cao
	Chaimowicz,
	Corke
	Grabowski
	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	Iocchi
	Jung
	Kramer
	Parker
	Thayer
	Tinos

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 3024
	02: 3025
	03: 3026
	04: 3027
	05: 3028
	06: 3029

