
1 J. Kaiser, IVS-EOS Embedded Networks 09

Embedded Networks

Summer Term 2009

Models of Communication

2 J. Kaiser, IVS-EOS Embedded Networks 09

Which model of communication?

What kind of addressing and
routing should be supported by

the network?

Which abstractions in the
programming model?

CO-OPERATIVE SYSTEMS

3 J. Kaiser, IVS-EOS Embedded Networks 09

Message Passing
Explicit communication via send and receive: Message passing.

comm.
network

send

P P

P
P

queue

process
Distributed
Processes

Problem: very low level, very general, poorly defined semantics of communication

P

send.

receive receive

4 J. Kaiser, IVS-EOS Embedded Networks 09

Remote Procedure Call
Function shipping initiates computations in a remote processing entity.
Example: Remote Procedure call.

comm.
network

call
proc.

call
proc. P P

P
P

memory

process
Distributed
Processes

Problem: computation bottlenecks, fault semantics, references.

P

5 J. Kaiser, IVS-EOS Embedded Networks 09

Distributed Shared memory

DSM (Data shipping) maintains the read/write semantics of memory

comm.
network

read

write

read

write

read

write

read

write
P P

P
P

memory

process
Distributed
Shared
Memory

Problem: Consistency in the presence of concurrency and communcation delays

read

write
P

6 J. Kaiser, IVS-EOS Embedded Networks 09

Abstractions for Communication

Message passing

Remote Procedure Call

Remote Object Invocation

Distributed shared memory

Notifications

Publish Subscribe

Shared data spaces

7 J. Kaiser, IVS-EOS Embedded Networks 09

Abstractions for Communication

Space Coupling: References must be known
Explicit specification of the destination, i.e. producer must know where to send
the message. Message contains an ID specifying an address or name.

Flow coupling: Control transfer with communication
Defines whether there is a control transfer coupled with a message transfer.
E.g. if the sender blocks until a message is correctly received.

Coupling in time: Both sides must be active
Communication can only take place if all partners are up and active.

Dimensions of Dependencies:

8 J. Kaiser, IVS-EOS Embedded Networks 09

Message passing

producer abstraction consumer interface thread

logical channel

Notation acc. P. Eugster: Type-Based
Publish Subscribe, PhD-thesis, EPFL,
Nr. 2503, 2001

*

*

primitives: send (), receive ()

Coupling: space, time

Connected socket, e.g. TCP

9 J. Kaiser, IVS-EOS Embedded Networks 09

Remote Procedure Call (RPC)

proxy, stub skeleton

Coupling:
Space: destination is explicitely specified
Flow: blocks until message is delivered
Time: both sides must be active

Relation: one-to-one

10 J. Kaiser, IVS-EOS Embedded Networks 09

Asynchronous RPC with pull

Variations of RPC

Asynchronous RPC with call-back

Coupling:
Space: destination is
 explicitely specified
Flow: no flow coupling
Time: both sides must be active

Example: Concurrent Smalltalk

Example: Eiffel

Relation: one-to-one

11 J. Kaiser, IVS-EOS Embedded Networks 09

Examles:
Java

Relation: one-to-many

Coupling:
Space: Yes (Observable/Observer pattern (delegation))
Flow: none
Time: both sides must be active (notification performed by RMI)

Notification

Observer/
listener

observable

registration

notification

12 J. Kaiser, IVS-EOS Embedded Networks 09

managebility

Interaction Structure in Co-operative Systems

many-

to-

many

sharing information and co-ordinating acitvities
goal

13 J. Kaiser, IVS-EOS Embedded Networks 09

logical
container

Relation: many-to-many

Coupling:
Space: none
Flow: none
Time: none

Examples:
Linda Tuple Space
Java Spaces
ADS Data field

Shared Data Spaces

14 J. Kaiser, IVS-EOS Embedded Networks 09

Shared Data Spaces

Processes communicate via the "Tuple" Space,
A tuple is only data, no address, no identifier,
A tuple is a data structure similar to a struct in C,

Examples: ("3numbers", 3, 6, 7), ("matrix" , 1, 5, 3.23, 8),
 ("faculty", "is_member_of", "franz", "maria", "otto")

Primitives (operations) in LInda:
 op. in: takes (and removes) an element from the tuple space
 op. read: reads an element from the tuple space
 op. out: puts a tuple into the tuple space
 op. eval: allows to eveluate the fields of a tuple, results are put in the
 tuple space [example: ("product", mult(4,7))]

No Tuple is ever (over-) written! "out" always put a new item in the space.

15 J. Kaiser, IVS-EOS Embedded Networks 09

Shared Data Spaces
Content-Based Addressing by Tuple matching:

All fields in a template are compared to all tuples.
A match of a template occurs if:
 tuple has the same number of fields
 AND types of fileds are equivalent
 AND contents corresponds

Example:
<"distance´_sensor", "N", 23>
<"distance´_sensor", "E", 127>
<"distance´_sensor", "S", 127>
<"distance´_sensor", "W", 12>

in(<"distance_sensor", " ", ?i> : reads all distance sensors and removes their
 values from the space.
read(<"distance_sensor", S, ?i>: subsequent read blocks until new S-value has been
 put to the Space.

16 J. Kaiser, IVS-EOS Embedded Networks 09

Shared Data Spaces

<"counter", 64>

<s.count> := myTS.take (<"counter", ?i>);
myTS.write (<"counter", count+1>);

Pk

<s.count> := myTS.take (<"counter", ?i>);
myTS.write (<"counter", count+1>);

Pm

Co-ordination

17 J. Kaiser, IVS-EOS Embedded Networks 09

Shared Data Spaces

Immutable Data Storage:

 no write operation!

 "out" always adds a data element to the storage

 destructive "in" and non-destructive "read"

 consistency is preserved by ordering accesses

 examples: Linda, JavaSpaces

18 J. Kaiser, IVS-EOS Embedded Networks 09

logical
channel

Publish/Subscribe

Relation: many-to-many

Coupling:
Space: none
Flow: none
Time: none

Examples:
Information Bus
NDDS
Real-Time P/S
COSMIC
....
....

19 J. Kaiser, IVS-EOS Embedded Networks 09

The Publisher/Subscriber Model

Many-to-many communication

Support for event-based spontaneous (generative) communication

Anonymous communication

event
channel

notify

Subscriber

publish (push)

Publisher Principle: Keep control local and link
 systems via event channels

Information Bus (Oki, Pfluegl, Siegel, Skeen)
iBus (Maffeis)
Real-Time P/S (Rajkumar, Gagliardi, Sha)
NDDS (Real-Time Innovations, Inc.)
SIENA (Carzanoga, Rosenblum, Wolf)
Directed Diff. (Intanagonwiwat, Govindan, Estrin)

Publisher

Subscriber Subscriber

Subscriber

20 J. Kaiser, IVS-EOS Embedded Networks 09

Event Handler

Per. RT-C
[acceleration]

Spor. RT-C
[alarm]

Non- RT-C
[config.-params.]

P/S in a smart sensor application
acceleration sensor

event: acceleration
publish (subject,attr.,
[acceleration]);

configuration parameters
subscribe (subject-uid, ...)

acceleration
measurement

&
crash detection

<network address,
[config.params]>

<network address
[acceleration]>

network interface

<network address
[crash alarm]>

event: alarm
publish (subject, attr.,
[alarm]);

21 J. Kaiser, IVS-EOS Embedded Networks 09

Abstraction Space Coupling Time Coupling Flow Coupling

•  Connected Sockets Yes Yes Yes
•  Unconnected Sockets Yes Yes Consumer
•  RPC Yes Yes Consumer
•  Oneway RPC Yes Yes No
•  async (Pull) Yes Yes No
•  async (Callback) Yes Yes No
•  Implicit Future Yes Yes No
•  Notifations Yes Yes No
 (Observer Design Pattern)
•  Tuple Spaces (Pull) No No Consumer
•  Message Queues (Pull) No No Consumer
•  Subject-Based P/S No may be No
•  Content-Based P/S No may be No

Overview

22 J. Kaiser, IVS-EOS Embedded Networks 09

What are the options?

message based

Remote procedure Call

Communication

relation

Routing

mechanism

Binding

Time

Distributed shared memory

Shared Data Spaces

Publish-Subscribe

symmetric
 address
 design time

client-server
 address
 design time

central
 address
 design time

central
 contents
 run time

Producer-

consumer

contents/

subject

run time

Communication

abstraction

message

invocation

memory cell

object,tupel

event

Communication

model

23 J. Kaiser, IVS-EOS Embedded Networks 09

HW1
Pentium

HW2
XScale

HW3
PPC

HW4
68K

linux linux windows PalmOS abstracting
from HW

Distributed system architecture

24 J. Kaiser, IVS-EOS Embedded Networks 09

network

TCP/IP TCP/IP TCP/IP TCP/IP

HW1
Pentium

HW2
XScale

HW3
PPC

HW4
68K

linux linux windows PalmOS abstracting
from HW

abstracting
from local OS middleware

appl.2 appl.1 appl.1 appl.3 appl.3

Distributed system architecture

