Embedded Networks

Jörg Kaiser

Institut for Distributed Systems (IVS) Embedded systems and Operating Systems (EOS)

Summer Term 2008

1

J. Kaiser, IVS-EOS

Organization

- Lecture: Prof. Dr. Jörg Kaiser Institut für Verteilte Systeme (IVS) Arbeitsgruppe Eingebettete Systeme und Betriebssysteme kaiser@ivs.cs.uni-magdeburg.de
- Secretary: Petra Duckstein / Dagmar Dörge Bu29 / Room 405 duckstein@ivs.cs.uni-magdeburg.de
- Exercises:Michael Schulze, Sebastian Zug
Institut for Distributed Systems (IVS)
Department Embedded Systems and Operating Systems
mschulze@ivs.cs.uni-magdeburg.de

Organization

Lectures: Exercises:	Tuesday Tuesday Wednesday	9:00 - 11:00 15.00 - 17:00 9:00 - 11:00	G29-E037 G29-334 G29-334
Requirements:	Need: Nice:	Vordiplom, Bachelor VL Betriebssysteme 1, VL Technische Informatik II, VL Embedded Systems.	
Creditpoints:		6 ECTS	

Successful participation: Exercises, Exam

Course Category: Informatik II and III

- Exercises: Infos on the web.
- Slides on the web

http://ivs.cs.uni-magdeburg.de/eos/lehre/SS2008/vl_en/

- infos also available via UNIVIS

Participants must register on the web-page :

http://eos.cs.uni-magdeburg.de/register/

Paulo Veríssimo, Luís Rodrigues: **Distributed Systems for System Architects** Kluwer Academic Publishers, Boston, January 2001

Hermann Kopetz: **Distributed Real-Time Systems** Kluwer Academic Publishers, 1997

Konrad Etschberger: **CAN - Controller Area Network, Grundlagen, Protokolle, Bausteine, Anwendungen** Carl Hanser Verlag, München, Wien, 1994

Sape Mullender (Hrsg.): **Distributed Systems** ACM Press, 1989

Further literature will be provided during the course.

CAN: http://www.can-cia.de Profibus: http://profibus.com/downloads.html FIP: http://worldfip.org/downloads LON: http://echelon.com

Embedded Networks or Communication networks to monitor and control the physical environment

Application Areas for Embedded Networks

- Industrial Automation
- Automotive
- Buildings
- Mechanical Engineering

Embedded Networks in a CIM environment

Controlling a Car

Elektrischer Schaltplan (Volkswagen)

- 11.136 electrical parts
- 61 ECUs
- Optical bus for information and entertainment
- Sub networks based on proprietary serial bus
- 35 ECUs connected to 3 CAN-Busses

EQ.

• 2500 signals in 250 CAN messges

Levels of Communication in a CAR

T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, M. Walther: "Time Triggered Communication on CAN"

Future: Distributed Cooperative Control

Distributed Control with Co-operating Smart Components

Requirement: Predictability of Communication !

Sources of Unpredictability ?

Sources of Unpredictability

Network is a shared medium

 \rightarrow Arbitration, Collisions

Sender and Receiver must run in Sync

 \rightarrow bounded buffers, lost messages

Transmission Errors

\rightarrow re-send

Requirements for a predictable communication system

- bounded, predictable transmission times
- execution time for protocol stack is bounded and small
- variations of the execution time (Delay Jitter) is small
- error detection in sender and receiver
- error detection with minimal latency
- no thrashing under high load conditions (constant throughput)
- support for multicast communication
- support for many-to-many communication
- Composability

End-to-End communication costs

end-to-end-transmission time for a message

- 1. Send-task becomes ready
- 2. Latest point in time when the message is in the ordered transmission queue (OQ).
- 3. All pakets of message m in OQ are put to the network medium. Transmission of last paket starts. wctt: worst case transmit time ppd: physical propagation delay
- 4. Last paket of m reaches the Communication Controller of receipient.
- 5. "Paket received" interrupt is triggered.

t.notif: worst case delay between successful reception of the paket (in the CC) and notification of the task. Receive task will become ready at this time instant..

Autonomous sentient systems

Hardware for Sensornets "Smart Dust"

tiny-board, CORE, Ulm

a mica mote, Berkeley, Crossbow

Developed Sensors at CORE

- infrared motion detector
- infrared distance sensor
- acceleration sensor
- embedded gyro
- weather station
- magnetic field detector
- in-house location system

68HC11 CAN-Sensor Boards, CORE, Ulm

WeC "Smart Rock" UCB

The EYES prototype $_{20} \ \ \,$

Smart-its: ETH Zurich,

cpu, memory on back side

Sensornets

Ó

0

00

- heterogeneous Sensors
- stationary and mobile entities
- very large number of components
- through away product (in the true sens of the word)
- life time = battery life time
- constraints in performance and memory

Behaviour:

- sponteneous behaviour
- not always active
- division of labour required

Network:

- bandwidth constraints
- Multi-hop
- Aging of information
- Quality of dissemination

- (still) no standards
- alternation of sleep and active times is a challenge for MAC protocols
- inherently multi-hop
 - address-, contents- und location-based routing

embedded networks: fieldbusses vs. sensornets

common properties:

- communicate information to perceive and control the physical environment,
- transfered information is subject to aging,
- meeting indivudual timing constraints is more important than throughput,
- considers trade-offs concerning energy consumption, bandwidth, reliability and priority of message traffic.

major differences:

fieldbusses	sensornets
low to moderate	very large (in theory)
very high to moderate	low
very high	low to moderate
1 to few	many
very high to moderate	very low
	fieldbusseslow to moderatevery high to moderatevery high1 to fewvery high to moderate

Embedded Networks

- o Introduction
- o Models of communication
- o Dependability and fault-tolerance
 - * Attributes and measures of Dependability
 - * Basic techniques of Fault-Tolerance
- o Time, Order and Clock synchronization
- o The physical network layer
- o Protocols for timely and reliable communication
 - * Introduction, problem analysis and categories
 - * Interbus-S, ProfiBus, WorldFip,
 - * Controller Area Network (CAN-Bus)
 - * Time Triggered Protokoll (TTP/C)
 - * Real-Time CSMA-Networks (VTCSMA)
 - * Lon (Echelon)
 - * Token protocols

o Sensornets

- * Requirements for sensor nets
- * Protokols for wireless communication
- * Energy-efficient MAC-protocols

