
J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed
File Systems

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

-Distributing data over multiple disks
- higher disk access bandwidth
- higher reliability

RAID: Reliable Array of Inexpensive Disks

-Distributing file access across multiple nodes
- single homogeneous large file system

NFS: Network File System
AFS: Andrew File System

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RAID: Reliable Array of Inexpensive Disks

D.A. Patterson, G.A. Gibson, R. Katz: A Case for Redundand Arrays of
Inexpensive Disks (RAID), Proc. ACM SIGMOD Intern. Conference on
Management of Data, 1988

Goals:

Performance Improvement: parallel disks can be accessed concurrently.

Reliability and availability: RAID exploits redundancy of disks.

Transparency: RAID looks like a single large, fast and reliable disk (SLED).

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RAID-level 0

stripe 0 stripe 1 stripe 2 stripe 3

stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11

stripe 12 stripe 13 stripe 14 stripe 15

RAID-level 0

 non-redundant
high transfer rates

RAID-level 1

 mirrored disk
high transfer rates

stripe 0 stripe 1 stripe 2 stripe 3

stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11

stripe 12 stripe 13 stripe 14 stripe 15

1

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RAID-level 2

b0 b1 b2 b3

RAID-level 2

word- or byte-oriented

f0(b) f1(b) f2(b)

Hamming code

Needs strictly synchronized disks!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RAID-level 2

b0
b1 b2b3

RAID-level 2

word- or byte-oriented

f0(b) f1(b) f2(b)

Needs strictly synchronized disks!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RAID-level 3

b0 b1 b2 b3

RAID-level 3

word- or byte-oriented

P(b)

Parity

Allows error correction in case of a defective disk because the positon of the
defective bit is known !

Needs strictly synchronized disks!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RAID-level 4

 block parity

RAID-level 4

stripe 0 stripe 1 stripe 2 stripe 3

stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11

stripe 12 stripe 13 stripe 14 stripe 15

P(0-3)
P(4-7)
P(8-11)
P(12-14)

P0-3(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) starting point
P'0-3(i) = X3(i) ⊕ X'2(i) ⊕ X1(i) ⊕ X0(i) changing stripe 2
P'0-3(i) = X3(i) ⊕ X'2(i) ⊕ X1(i) ⊕ X0(i) ⊕ X2(i) ⊕ X2(i)
P'0-3(i) = P0-3(i) ⊕ X'2(i) ⊕ X2(i)

A write operation requires 2 reads and 2 writes

k bits k bits k bits k bits

X0(i) X1(i) X2(i) X3(i)

k bits

P0-3(i)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RAID-level 5

 Block parity

stripe 0 stripe 1 stripe 2 stripe 3

stripe 4 stripe 5 stripe 6
stripe 8

stripe 7
stripe 9 stripe 10 stripe 11

stripe 12 stripe 15stripe 14

P(0-3)
P(4-7)

P(8-11)
P(12-14)

RAID-level 5

stripe 13

Problem with RAID-4: Parity disk becomes a bottleneck.

P(15-19) stripe 16 stripe 17 stripe 18 stripe 19

Raid-level 6 tolerates two disk crashes and guarantees a very high availability
of data. Needs N+2 disks and has to write 2 Parity blocks on a write operation.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Requirements for Distributed File Systems

Transparencies (access, location, mobilty, performance, scalability)
Concurrent File Update
Replication of Files
Openess (Heterogeneity of OS and Hardware)
Fault-Tolerance
Consistency
Security
Efficiency

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

B. Walker, G. Propek, R. English, C. Kline, and G. Thiel (UCLA)
The LOCUS Distributed Operating System
Proceedings of the Ninth ACM Symposium on Operating Systems
Principles, October 10-13, 1983, pages. 49-70

R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh
The Design and Implementation of the SUN Network File System
Proceedings Usenix Conference, Portland, Oregon 1985

J. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S. Rosenthal, F.D. Smith
Andrew: A distributed personal computing environment
Comm. of the ACM, Vol.29, No. 3, 1986

first
commercial
system

Early milestones in distributed file systems

AFS inspired the development of the "Distributed Computing Environment (DCE)"

D.R. Brownsbridge, L.F. Marshall, B. Randell: "The Newcastle Connection or
UNIXes of the World Unite!", Software-Practice and Experience, Vol.12, 1147-
1162, 1982

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

First Approaches: The Newcastle Connection

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

First Approaches: The Newcastle Connection

Principles:
- Extending the hierachical Unix Naming Scheme by a "Super Root",
- Using RPC to perform remote file access

unix 1 unix 2

/.

EE CS ME

unix 1 unix 2

OvGM

D

/.

F UK

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed File Systems

Newcastle connection provides a single name space for files.

Problems with the Newcastle Connection:
No Location transparency
No Replication or Chaching
No Mobility Transparency

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed File Systems

Naming distinguishes between:

- User-Level Names e.g. UNIX path names (structured ns)
- Unique File Identifiers (UFID) System-wide unambiguous number (flat ns)

- Hierarchical naming system is established using (flat) file
 system UIDs (UFID), and a directory service.

- UFIDs support location transparency.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Network File Service (NFS) Architecture

• location transparency

• migration transparency

• robustness against client and server faults

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Client-Server Architectures

system calls

virtual file system

local FS
interface NFS client

RPC client
stub

system calls

virtual file system

local FS
interfaceNFS client

RPC client
stub

client server

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS: File Service Architecture

Client Computer Server Computer

flat file service

directory service

client module
(NFS client)

app.
progr.

app.
progr.

network
conv. file sys.interface

DS interface

flat FS interface

Client-Server architecture using SUN RPC
Flat FS uses Unique File IDs (UFIDs) instead of hierarchical path names
DS associates file text names with Unique File IDs (UFID)

DS retrieves
UFID

2.

client accesses files
via their UFID

4.

3.

DS provides
UFID

client requests UFID
presenting the text name

1.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Flat File Service Operations

Read (FileId, i,n) → Data If l≤ i ≤ Length(File): Reads a sequence of up to n items
- throws BadPosition from a file starting at item i and returns it in Data

Write (FileId, i,n) → Data If l≤ i ≤ Length(File)+1: Writes a sequence of Data to a
- throws BadPosition file starting at item i, extending the file if necessary

Create() → FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes a file from the file store.

GetAttributes(FileId)→ Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes for the file (except owner, type and ACL).

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Directory Service Operations

Lookup (Dir, Name) → FileId Locates the text name in the directory and returns the respective
- throws NotFound UFID. If Name is not found, an exception is raised.

AddName (Dir, Name, File) If Name is not in the directory, adds (Name, File) to the directory
- throws NameDuplicate and updates the file's attribute record. Throws and exception if

Name is already in the directory.

UnName (Dir, Name) If Name is in the directory it is removed.
- throws NotFound If Name is not in the directory an exception is raised.

GetNames (Dir, Pattern) → NameSeq Return all the text names in the directory that match the regular
expresssion Pattern.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Differences to the Unix File System API

Stateless File Server:
no state information about open file
no information about the number and state of clients

every request must be self-contained.

Benefit: A client or a server crash does not
require extensive recovery activities.

- no open or close
- operations are idempotent except "create"

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Recall: file allocation in Unix

addresses
of first
10 blocks

single indir.

double indir.

triple indir.

file
information

i-nodeopen files
file descriptor
tables

father

child

- act. file pos.
- R/W
- pointer to
 i-node
- act. file pos.
- R/W
- pointer to
 i-node

Unix file system remembers which
files are open and the position of
the last file access!

→ read and write NOT idempotent!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

SUN NFS Architecture
Client Computer Server Computer

app.
progr.

app.
progr.

network

virtual file sys. VFS

Unix
 FS

other
 FS

NFS
client

local remote

Unix sys calls

NFS protocol (RPC)

virtual file sys. VFS

Unix
 FS

NFS
server

FS-Id i-node # i-node gen.#
File
Handle

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

FS-Id i-node # i-node gen.#File Handle

NFSv2: 32 Byte
NFSv3: 64 Byte
NFSv4: 128 Byte

File
server

unique in
the system

local
i-node

will be
re-used

sequence
number

ensures
uniqueness

NFS File Handle

The File Handle enables file access to any file in the distributed file system
without looking it up in the name server.

How to obtain a file handle in a remote file system subtree?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Recall (BS I): Modern Unix-Kernel (Vahalia 1996)

support
services

exec
switch

virtual
memory
mgmt.

block
devices

streams

vnode/
vfs-interface

scheduler
framework

a.out
coff

elf

NFS

FFS

RFS

s5fs

timesharing
processes

system
processes

tty-driversnetwork drivers

tape
drivers

disk
drivers

SVR4

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS mount service

server A server Bclient

vmunix usr

/

students staff admin
...

university

/

people

...

otto mechthildernst

nfs

/

users

...

fritz anna ulla

mount
externally

mount
externally

mount point

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS mount service

Hard-Mounted: requesting application-level service blocks until the request
is serviced. Server crashes and subsequent recovery is
transparent for the application process.

Soft-Mounted: if the request cannot be serviced, the NFS client module
signals an error condition to the application.

Soft-Mounting needs a meaningful reaction of the application process. In most
cases the transparency of the hard-mounting is preferred.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS mount service

Mount Service Process: executed on every server
Data Structures:

Server: etc/exports
contains names of local FS which may be mounted ext.
For every file system a list of names of (client) hosts is
associated which are allowed to mount the FS.

mount request remote mount service
(RPC) < host name, checks whether allowed

dir name remote,
path name local>

returns <IP addr., port #, file handle>VFS

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS Server Caching

Standard Unix FS mechanisms
- buffer cache
- read ahead
- delayed write
- sync (periods of 30 sec)

Additionally: Two options for write (NFS version 3)
1.) Data from clients is written to the buffer cache AND the disk

(write through). ⇒ Data is persistent when RPC returns.
2.) Data will be held in the cache only. Explicit commit-operation makes

data persistent. Default mode for Standard NFS clients. Commit
is issued when closing a file.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS Client Caching

server

clients

Mechanism only approximates
1-Copy-Consistency !

all reads in an interval of
Δt after chaching only go
to the cache. Reads occuring
after that time check the
validity of the copy with the
server. If still valid they may
use it another Δt.

WRITE:
cached locally until a snyc
of the client or if file is
closed.

READ:

disk block

(8kb)

+ <tm-serv er
>

"lease" concept
tc : timestamp last checked
tm : time stamp last modified
Δt : validity interval: 3-30 sec for files

 30-60 sec for dir

(t - tc < Δt) v (tm-client = tm-server)

Validity condition for cache entry at time t:

r/w

r/w

r/w

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Dealing with shared Files

Unix Semantics: Every operation is instantaneously visible to all processes.
Session Semantics: No changes are visible to other processes until the file is closed.
Immutable files: No updates possible. On update a new file is created.
Transactions: All changes are atomic

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Locking Files

Operation Description
Lock Create a lock for a range of bytes
Lockt Test whether a conflicting lock has been created
LockU Remove a lock from a range of bytes
Renew Renew the lease on a specified block

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

"Share reservations"

requested Current file denial state
access none read write both
read succeed fail succeed fail
write succeed succeed fail fail
both succeed fail fail fail

current Requested file denial state
access none read write both
read succeed fail succeed fail
write succeed succeed fail fail
both succeed fail fail fail

weak form of type-specific access request

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS Properties

Access Transparency ++
Location Transparency ++
Migration Transparency +-
Scalability +
File Replication +- only read replication
Heterogeneity ++ available for many platforms
Fault-Tolerance + stateless, restricted fault model
Consistency +- "almost" one copy
Security - needs additions (e.g. Cerberos)
Efficiency ++

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

http://www.ietf.org/rfc/rfc3530.txt

Network File System (NFS) version 4 Protocol

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

• NFSv4 introduces state. NFSv4 is a stateful protocol unlike
 NFSv2 or NFSv3.

• NFSv4 introduces file delegation. An NFSv4 server can enable
 an NFSv4 client to access and modify a file in its cache without
 sending any network requests to the server.

• NFSv4 uses compound remote procedure calls(RPCs) to reduce
 network traffic. An NFSv4 client can combine several traditional NFS
 operations (LOOKUP, OPEN, and READ) into a single compound RPC request
 to carry out a complex operation in one network round trip.

• NFSv4 specifies a number of sophisticated security mechanisms
 including Kerberos5 and Access Control Lists.

• NFSv4 can seamlessly coexist with NFSv3 and NFSv2 clients and servers.

New features of NFSv4

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Compound RPCs in NFS

NFS V3 NFS V4

lookup

client server client server

lookup

read

read

lookup
open
read

lookup

open

read

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS V4 Compound (mount) Request

mount request
header info

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

(mount) Reply

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS V4 setclientid Request

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS V4 setclientid Reply

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS V4 Open Request

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

NFS V4 Open Reply

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Operation v3 v4 Beschreibung

Schreiben von Daten in eine DateiJaJaWrite

Auslesen der in einer Datei enthaltenen DatenJaJaRead

Setzen eines oder mehrerer Attributwerte für eine DateiJaJaSetattr

Auslesen der Attributwerte einer DateiJaJaGetattr

Auslesen der in einer symbolischen Verknüpfung gespeicherten PfadangabeJaJaReadlink

Lesen der Einträge eines VerzeichnissesJaJaReaddir

Suchen einer Datei anhand ihrer BezeichnungJaJaLookup

Schließen einer DateiJaNeinClose

Öffnen einer DateiJaNeinOpen

Entfernen eines leeren Unterverzeichnisses aus einem VerzeichnisNeinJaRmdir

Entfernen einer Datei aus einem DateisystemJaJaRemove

Ändern einer DateibezeichnungJaJaRename

Erstellen einer SpezialdateiNeinJaMknod

Erstellen eines Unterverzeichnisses in einem gegebenen VerzeichnisNeinJaMkdir

Erstellen einer symbolischen Verknüpfung zu einer DateiNeinJaSymlink

Erstellen einer direkten Verknüpfung zu einer DateiJa JaLink

Erstellen einer irregulären DateiJaNeinCreate

Erstellen einer regulären DateiNeinJaCreate

Tanenbaum, Steen: Verteilte Systeme, Pearson >Studium 2008

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

AFS Andrew File System

Scalability as primary design goal.

As much as possible local accesses to files.

Any accessed file is completely transferred to the client.

Files stored persistently on local disc cache.

Large files are transfered in large chunks (64 kB).

Active notification mechanisms to approximate one-copy consistency.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

AFS Architecture

Files are organized in migratable "Volumes" (smaller entities compared to file systems in NFS).
Flat File Service, hierarchical view is established by the Venus Processes
Every File has a unique 96-Bit ID (fid). Path names are translated in fids by Venus processes.

local persistent
"file caches",
survive crashes
of local system.

Unix kernel traps FS
accesses and redirects
requests to remote files
to a Venus Process.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Consistency mechanism is based on "Callback Promises".

AFS relies on a notification concept. Callbacks are RPCs to the respective
remote Venus processes with a Callback Promise Token as parameter.

A Callback Promise Token may have the values:
- valid
- cancelled

The Server is responsible to invoke the respective remote Venus process when
a file was modified with the value "cancelled".

A subsequent local "read" or "open" on the client must request a new file copy.

AFS: Basis Consistency Mechanism

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

AFS: file system calls
User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,

Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback

promises on the file.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Addison-Wesley Publishers 2000

