
1 J. Kaiser, IVS-EOSEmbedded Networks 07

Order
in

Distributed Systems

2 J. Kaiser, IVS-EOSEmbedded Networks 07

Why Order?

Determine the potential order of events.

Determine the cause-effect relationship
(causality)in a distributed computation.

Enforce an ordering policy, i.e. am apriori specified
sequence of events-

Coordination of joint activities.

3 J. Kaiser, IVS-EOSEmbedded Networks 07

Control:
set point

A

C B

Comm. network

controller

controller controller

Control:
set point

Acontroller

Order is important!

4 J. Kaiser, IVS-EOSEmbedded Networks 07

I.

What can be ordered?

In what way order is established in a
distributed system?

5 J. Kaiser, IVS-EOSEmbedded Networks 07

cone of the future

cone of the past

time

What can be ordered?

space

space

e: event in
the presence

e only has an impact on events
in the future and only can be
caused by events from the past.

Can we (in principle)establish
a total temoral order in a
distributed system?

6 J. Kaiser, IVS-EOSEmbedded Networks 07

The Precedence Relation

Events in a system can be ordered according to their causal relation ship in a cause-effect chain
(happens before relation, Lamport 78)).

Def.: Precedence Relation →
1. for all ei

k , ei
l ∈ hi , k < l : ei

k → ei
l (hi is the "history" of process i) (local precedence)

2. If ei = send (m) and ej = receive (m) : ei → ej
3. If e → e‘ and e‘ → e‘‘ : e → e‘‘ (transitivity)

For concurrent events no causal relationship can be specified, i.e.
neither e → e‘ nor e‘ → e holds. Notation: e || e‘

A distributed computation can formally be seen as a partially ordered set defined
by the tupel (H, →) where H is the combined History of all processes.

7 J. Kaiser, IVS-EOSEmbedded Networks 07

Computational Model
A distributed computation is performed as the joint activity of local, sequential processes.

The activity of a local sequential process is modelled as a sequence of events.

P1

P2

e2
1

e1
1 e1

2 e1
3 e1

4

e2
2 e2

3

An event either is local to a process, i.e. it causes an internal, local state change, or

A computation includes the comminication with another process. This will be modelled by a send
and a receive event.

Messages are unambiguous single events, i.e. multiple messages with the same contents sent by
the same process will be modelled as multiple individual events.

All models of Data Sharing are abstracted as communication.

8 J. Kaiser, IVS-EOSEmbedded Networks 07

Def.:
The local history of proces pi is a (possibly infinite) sequence of events hi = ei

1 ei
2 ei

3 ei
n . . .

(canonical enumeration). It defines a total order of local events.

Def.:
The global history is the set H = h1 ∪ h2 ∪ h3 ∪. ∪ hn .

Note: The global history does not specify any relative time or order between the elements.

Computational Model

9 J. Kaiser, IVS-EOSEmbedded Networks 07

P1

P2

e2
1

e1
1 e1

2 e1
3 e1

4

e2
2 e2

3

P3

e3
1 e3

2 e3
3

e1
5 e1

6

e3
4 e3

5 e3
6

Time-Space Diagram

e3
1 || e1

2

e1
2 → e3

6

10 J. Kaiser, IVS-EOSEmbedded Networks 07

What is the meaning of consistency in a distributed system

?
A system state, that can be established by any possible execution of processes.
Causality must be preserved.

11 J. Kaiser, IVS-EOSEmbedded Networks 07

P1

P2

e2
1

e1
1 e1

2 e1
3 e1

4

e2
2 e2

3

P3

e3
1 e3

2 e3
3

e1
5 e1

6

e3
4 e3

5 e3
6

C = (5, 2, 4) C‘ = (3, 2, 6)

Runs, global states and cuts

12 J. Kaiser, IVS-EOSEmbedded Networks 07

Ordering messages
in Distributed Systems

13 J. Kaiser, IVS-EOSEmbedded Networks 07

Temporal messages are ordered in a way that the message m1 sent before
order: message m2 also will arrive before m2.

FIFO

CAUSAL

TOTAL

How to order messages ?

14 J. Kaiser, IVS-EOSEmbedded Networks 07

m1 m2 m3#3 #4 #5

m1 m2
m3

p1

p2

p3

local receive message queue

#3 #4 #5

FIFO-Receive order for pairs of processes

e2
1 e2

2 e2
3

15 J. Kaiser, IVS-EOSEmbedded Networks 07

Idea: Receive process reorders the messages.

Approach: Distinguish the receiption of the message at the node from the delivery to
an application process

FIFO-delivery : sendi(m) → sendi(m’) ⇒ deliverj(m) →deliverj(m’)

FIFO-order for pairs of processes

FIFO-D prevents a message from overtaking a message sent later.

16 J. Kaiser, IVS-EOSEmbedded Networks 07

FIFO-order for pairs of processes

Overhead: Process needs to add a sequence number

FIFO-D is sufficient to guarantee that an observation complies to some run
because FIFO-D maintains the order of local events.

BUT:

Because FIFO-D is defined between pairs of processes only it is not sufficient to
guarantee that the observation corresponds to a consistent run !

Properties:

17 J. Kaiser, IVS-EOSEmbedded Networks 07

m1

m2

m2 m1

p1

p2

p3

FIFO-D is insufficient

The order of events which p1 constructs based on the sequence of messages is inconsistent.

FIFO-D doesn't reflect causality for messages sent by different processes!

18 J. Kaiser, IVS-EOSEmbedded Networks 07

Causal Delivery

Causal Delivery:
For all messages m, m’ and all processes pi , pj (send-prozesses) and
pk (receive-prozess) holds:

Causal-D (CD): sendi(m) → sendj(m’) ⇒deliverk(m) → deliverk(m’)

CD maintains the global causal order of all messages in the system.

19 J. Kaiser, IVS-EOSEmbedded Networks 07

Events e und e’ may be causally dependent.

To realize causal delivery, we must be able to decide

Is there any event e’’ with the property:

e → e‘‘ → e‘

?

Causal Delivery

It is necessary to order the events along causal dependencies.
The temporal sequence of events only defines a potential causal relationship.
Note: Temporal order does not violate causal order.

20 J. Kaiser, IVS-EOSEmbedded Networks 07

Is causal order sufficient ?

m1

m2

s1

s2

s3

Every sensor prozess si maintains a variable W that represents a global state
e.g. the state of the environment. A new value is calculated from the old value and
the messages from the other sensors Wt = max (Wt-1 , sensor message) + 5

W=4

W=4

W=4

W= max(4,3) +5 =9

W= max(4, 6) +5 =11

W= max(9, 6) +5 =14

(3)

W= max(11, 3) +5 =16

(3)(6)

(3)

(6)

(6)

W= max(11, 3) +5 =16W= max(4, 6) +5 =11

21 J. Kaiser, IVS-EOSEmbedded Networks 07

Requirement:

All nodes have the same order of messages

The order should reflect the causal
relationships correctly.

1.

2.

How to realize?

Concurrent messages have an arbitrary order.3.

22 J. Kaiser, IVS-EOSEmbedded Networks 07

Goal: Observer, which orders all local events in a consisten global stream of events
⇒ produce a totally ordered event stream.

Intuitive solution:
Use global time.

Assumptions:
1. All processes have access to a global clock and can take timestamps from that.
2. Communication latencies can be bounded by d .

RC(e) is the value of the global clock when the event e occurs.
RC(e) is added as timestamp TS to the message.

Delivery rule:

DR 1 : At time t deliver all received messages in ascending order of the timestamps TS
with TS = t - d.

Total order

23 J. Kaiser, IVS-EOSEmbedded Networks 07

Why is global consistency ensured by DR 1?

Condition I:
The latency of messages is bound by d. Therefore, at time t all messages sent
before t-d have been received. No message sent earlier than t-d will ever be received after t.

Condition II:
The observation is consistent iff the clock condition : e → e’ ⇒ RC(e) < RC(e’) holds.
This condition is ensured by the global time.

Disadvantage: Availability of global time.
Question: Can consistency of ordering be achieved without physical time?

24 J. Kaiser, IVS-EOSEmbedded Networks 07

Basic Idea: To achieve a consistent order of messages, we only have to consider
the causal relationships. Concurrent messages can be ordered arbitrarily.

i.e.

The order based on ascending logical time must correspond to the
causal order.

Logic Clocks (Lamport 1978)

25 J. Kaiser, IVS-EOSEmbedded Networks 07

p1

p2

p3

Total Order

e1
1

e1
2 e1

3 e1
4

e2
1 e2

2

e2
3 e2

4

e3
1 e3

2 e3
3

24 25

8 9

67 68
69

70

70

71

(9)

(9)

26

(69)

(69)

26 J. Kaiser, IVS-EOSEmbedded Networks 07

W= max(4, 3) +5 = 9 W= max(9, 6) +5 =14

W= max(9, 6) +5 =14

W= max(9, 6) +5 =14

W= max(4,3) +5 = 9

m1: 12

m2: 27

s1

s2

s3

W=4

W=4

W=4

W= max(4, 3) +5 = 9

(3)

(3)
(6)

(3)

(6)

(6)

Total Order

12

27 J. Kaiser, IVS-EOSEmbedded Networks 07

Every process maintains a variable LC that represents the individual logical clock.
LC maps local events on positive intergers.

LC(ei): logical clock value of process pi, when event ei is generated.

Every message m that is sent carries the timestamp TS(m), which represents
the logical clock value of the sending process.

Initialization: Before any event is generated, all logical clocks will be reset to "0".

The following update rule defines the logical clock modification of process pi when
event ei occurs:

LC + 1 if ei is a local event or a send event
LC(ei) :=

max{LC, TS(m)} + 1 if ei is a receive event

Logic Clocks

28 J. Kaiser, IVS-EOSEmbedded Networks 07

Local clocks always produce increasing values

Logic clock values are increasing with respect to causal order

Logic clocks satisfy the condition : e → e’ ⇒ LC(e) < LC(e’).

This is called the weak Clock Condition because: LC(e) < LC(e’) ⇒ e → e’

Question: Are logic clocks sufficient to guarantee consistent observations?

Properties of Logic Clocks

29 J. Kaiser, IVS-EOSEmbedded Networks 07

p1

p2

p3

Total order is correctly established by logic clocks

e1
1

e1
2 e1

3 e1
4

e2
1 e2

2

e2
3 e2

4

e3
1 e3

2 e3
3

24 25

8 9

67 68
69

70

70

71

(9)

(9)

26

(69)

(69)

BUT: in an asynchronous system it is impossible to determine
when a message may be delivered.

safety property

lifeness property

30 J. Kaiser, IVS-EOSEmbedded Networks 07

Given the events e und e’ with clock values LC(e) and LC(e’).
The condition LC(e) < LC(e’) holds.

GDP denotes the ability to decide whether there exist an event e’’ which
satisfies LC(e) < LC(e’’) < LC(e’)

GDP is needed to guarantee lifeness.

Problem: Find an algorithm with the following properties:

1. All events are totally ordered
2. On the basis of receive events it can be decided when a message can be delivered

Note: Real-time clocks don't solve the problem!

Gap-Detection Property (GDP)

31 J. Kaiser, IVS-EOSEmbedded Networks 07

Gap-Detection Property (GDP)

Matrix Clocks
Vector Clocks have the GAP detection property

Synchronous protocols solve the GAP detection
problem.

32 J. Kaiser, IVS-EOSEmbedded Networks 07

What is ordered by logic order?

P2 P3

P4P1control computer

m1 m2

alarm-monitor

valve flow sensor

P1

P2

P3

P4

m1

m2

delay by fluid medium

valve
broken

The problem of hidden physical channels

33 J. Kaiser, IVS-EOSEmbedded Networks 07

Synchronous Systems

The communication system has a known and bounded maximal message delay d.

All processes have access to a global real-time clock (RC).

RC(e) is the value of the global clock when event e occurs.
RC(e) is added as timestamp TS to the message

Delivery rule:

At time t deliver all messages in ascending order with TS = t - d.

34 J. Kaiser, IVS-EOSEmbedded Networks 07

Problem # 1:
How big is the max. difference of message propagation of ONE message?

Problem #2:
How big is the max. difference of message propagation of DIFFERENT messages?

Synchrony Metrics

35 J. Kaiser, IVS-EOSEmbedded Networks 07

Definition: Delivery time of a message

ΔtD,p = t (deliver p(m))- t (send(m))

ΔtD,p : Interval between the send event of message m its delivery
at prozess p

p

s

q

ΔtD,p

ΔtD,s

Synchrony Metrics

36 J. Kaiser, IVS-EOSEmbedded Networks 07

Definition: Tightness

τ = maxm,r,q (tD,r – tD,q)

for every message m, τ is the maximal difference of transmission times that occurs
for arbitrary receivers p and q.

Tightness τ

Tightness is a measure for the difference of transmission times of ONE
message to DIFFERENT nodes.

Synchrony Metrics

37 J. Kaiser, IVS-EOSEmbedded Networks 07

Tightness τ

r

s

q
m2

m1

τ = maxm,r,q (tD,r – tD,q)

tD,r – tD,s

τ = tD,r – tD,q

tD,s tD,r

tD,q
tD,r

Synchrony Metrics

38 J. Kaiser, IVS-EOSEmbedded Networks 07

Definition: Steadyness

σ = maxp (tDmax – tDmin)

σ is the maximal difference that can be observed between the maximum tDmax and
the minimum tDmin delivery times of different message (at arbitrary processes).

steadyness σ

Steadyness measures the maximal difference of delivery times of DIFFERENT
mesages.

Synchrony Metrics

39 J. Kaiser, IVS-EOSEmbedded Networks 07

Steadyness σ

r

s

q
m2

m1

σ = maxp (tDmax – tDmin)

σ = tD,r – tD,q

tDmin
tDmax

tD,m1,q
tD,m2,r

tDmin

tDmax

Synchrony Metrics

40 J. Kaiser, IVS-EOSEmbedded Networks 07

Temporal order

A message m1 is temporally preceding a message m2
if m1 is send at least δ before m2 , i.e. :

t(send(m1)) - t(send(m2)) > δ

According to this definition, a protocol that delivers messages
in temporal order also guarantees causal order.

