
J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

File Systems

Operating Systems II

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

File Systems: Motivation

Why do we need another sort of memory

?
Persistence
Sharing
Protection
Size

?
?

?
?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

File System Issues
General structure of a file system

- organization of files
- organization of directories
- accessing files and directories

Organization of the disk
- block structure of the disk
- mapping files and directories on blocks
- sharing files

O
perating

System
s I

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

File System Issues
Managing the disk

- block size
- allocation of free blocks

Improving the performance of the file system
- caching
- block read ahead

File system robustness and reliability
- backups and recovery
- consistency

Journaling and log-based File Systems
RAID (improving the disk properties)
Examples of File Systems

O
perating

System
s II

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

managing the disk

data rate

disk space efficiency

da
ta

ra
te

 (K
B

/s
)

di
sk

sp
ac

e
ef

fic
ie

nc
y

(%
)

file size = 2 KB

block size

impact of block size on space efficiency and data rate

(Tanenbaum 2003)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

managing the disk

size of list and max. space requirements:
16 GB disk, block size 1k:
--> 16M entries by 32 bit
--> 1 block 255 (+1 to link the blocks) entries --> ~ 40 K blocks

1. Linked list of free blocks

size of list and max. space requirements:
16 GB disk, block size 1k:
--> 16M entries by 1 bit
--> 1 block 1k x 8 bits --> ~ 2K blocks

2. bit map of free blocks
changes over time when
more disk space is allocated

fixed over time

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

managing the disk

free list
in memory

pointer to free blocks

free list
in memory

3 blocks are
released

overflow of
free list
new list swapped
to memory

3 blocks are
allocated

not enough blocks
in free list
new list swapped
to memory

free list
in memory

problem with caching of free entries in main memory

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

managing the disk

disk quotas restrict disk space on a per user base.

Quota-table

soft block limit
hard block limit
number of blocks
block warning
soft file limit
hard file limit
number of files
file warning

attributes
..
User = 7
..
quota-pointer

table of open files

quota entry for
user 7

..

..
..
..

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

improving file system performance

caching

block read ahead

optimizing disk head movements

log-based file systems

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

R/W-head

sector

cylinder

track

arms

track

sector gap

header data (4096 Byte) ECC

R/W head

recall: the physical organization of a disk

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

the buffer cache

Problem: access to main memory is up to 6 orders of magnitute faster
than a disk access

map files to virtual memory.
under explicit progr. control

treat main memory as a cache for the disk.
transparent
similarities to virtual memory management.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

the buffer cache

hash table

head (LRU)

tail (LRU)

linked hash chain
linked LRU chain

Problem: block contents in memory and block contents on disk are not identical.
inconsistencies in case of crashes.
trade-off between frequent disk updates and loss of data.
explicit synchronization (sync).

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Disk Properties

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

optimizing disk access

i-nodes at the beginning of the disk.
distance between i-node and asociated
blocks: number of cylinders/2

i-nodes and asociated blocks are organized
in cylinder groups.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Robustness and Dependability of a File System

Loss of Data is the "Super GAU" in a computer system!

While the cost of a new computer is in the order of 5.000 €
the cost of lost date may easily be higher many orders of magnitudes !

File system must be protected against:
disk crashes
erroneous software
malicious accesses

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Robustness and Dependability of a File System

Impairment Countermeasures

defective blocks from manufacturing directory of bad blocks on medium
transient reading and writing errors code redundancy
physical destruction of disk backup on redundant medium, mirrored disk

(e.g. RAID 2), data replication
software faults user related access rights, least priviledge
system crashes fsck, scandisk, journaled file systems
malicious accesses access protection, encryption, fragmentation
erroneous deletion of files no physical deletion, backups

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Backup copies

physical backup: copies all blocks of the disk to the backup medium.
pro: simple
con: saves free blocks, problems with bad blocks,

complete backup only.

logical backup: based on the file system structure. Recursively saves
directories and files starting at user selected dir's.

pro: incremental algorithm only saves changes since last
backup.

con: more complicated implementation.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

1

2 8 10

3 4 11

13 14

unmodified directory

file: unmodified since last backup

modified since last backup

5 6

9 12

16 17 1815

7

Incremental backup:
exploits time and date to save modifications
since last backup

saves the entire path to the modified files
including directories even when they didn'd
change.

incremental backup

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. mark modified
files and all dir's

phase 1,2 : mark
phase 3,4 : save

incremental backup

i-node numbers

2. unmark dir's to
unmodified files

3. store marked
directories

4. store marked
files

.

• the scheme stores all needed directories on the backup record first.
• during recovery they will occur first on the sequential medium and restored first.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file backup

Issues to be considered:

1. List of free blocks is a data structure in volatile memory and has to be rebuilt.
2. Multiple links to a file. This file has to be restored only once but the link has to

be re-established in all directories.
3. Sparsely used files with holes.
4. Special files as pipes and device specific files should not be backed up.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file system consistency

Changes on files are made in volatile fast memory and
are not immediately stored on disk persistently.

file images
(some blocks of a file)

i-node images
(some blocks of the inode table)

free list images
(some blocks of the free list)

disk

memory

directory images
(some blocks of a directory)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

addresses
of first
10 blocks

single indir.

double indir.

triple indir.

pointers to
disk blocks

file
information

i-node

i-nodes in UNIX

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

i-nodes in UNIX
File Mode: 16-Bit Flag which stores access rights

0 .. 2 rights for "all" users <read, write, exec>
3 .. 5 rights for the "group" <read, write, exec>
6 .. 8 rights for "owner" <read, write, exec>
9 ..11 execution flag
12..14 file type (regular, char./block-oriented, FIFO pipe)

Link Counter number of directory references to this i-node
UID Owner ID
GID Group ID
Size in Bytes
File address 39 byte file address information
Last access date/time
Change of i-node date/time
Address info for blocks direct, single ind., double ind., triple ind.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file system consistency

First goal: maintain the consistency of the meta-data,
i.e. all data structures which are involved
in the management of the file system.
E.g. i-nodes, directories, free-lists.
Exploit redundancy in the file system organization.

Normally not considered: modifications on file data.
They are lost.

Journaled File Systems, Data Bases

after a crash...

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file system consistency

fsck: file system check
checks file system meta data on consistency.

1. missed or duplicated blocks
2. directory structure

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file system consistency

Missed or duplicated blocks: fsck
1. scans all inodes to build the list of used blocks
2. scans the free list or bit map to find the free blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 2 0 0 1

0 0 0 0 1 0 0 1 2 1 0 0 0 1 1 0

every field
counts hits

used

free

missed block: is not
present in either list

duplicated data blockduplicated block
in the free list

block
number

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file system consistency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1

0 0 0 0 1 0 0 1 2 1 0 0 1 1 1 0

used

free

block
number

Case 1: Missed Block

Problem: reduced disk capacity
Solution: Assign missed blocks to free list

1

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file system consistency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1

0 0 0 1 1 0 0 1 2 1 0 0 1 1 1 0

used

free

block
number

Case 2: Duplicated block in the free list

1

Solution: Rebuild free list and delete duplicated entry

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file system consistency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 2 0 0 1

0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0

used

free

block
number

Case 3: Duplicated data block, i.e. block occurs in two files.

Problem: simple deletion results in further inconsistencies.
Solution: copy one block to a free block and update the lists.

11

0

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

/

A B C

D F H

L M

N

E

J K

G I

O P Q

checking the directory system

i-node # A count=1
i-node # B count=1

i-node # C count=2

i-node # N count=3

i-node # E count=1

i-node # Q count=1

count too
high

count too
low

1. step: build a list indexed by i-node numbers and count the occurence of
every file in every directory.

2. step: compare the list count with the link counter in the i-node entries of files.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

checking the directory system

i-node # A count=1
i-node # B count=1

i-node # C count=2

i-node # N count=3

i-node # E count=1

i-node # Q count=1

link count in i-node
is higher than act. count in list

link count in i-node
is lower than act. count in list

critical: i-node will be deleted even if there
exists a link to the file in some directory. When
link counter goes to "0" the file system marks
i-node as free and releases associated blocks.

non-critical: i-node remains existent even
when all links to a file in the directories
are removed.
--> a space/efficiency problem

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

A consistent state of the file system has the following properties:

- The number of directory entries that point to an i-node exactly equals a link
count in the i-node.

- Each disk block belongs to, at most, one file (one pointer in an i-node or in an
indirect block).

- Each block is contained exactly once in either the list of free blocks or the
list of used blocks.

File system consistency

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Problems with recovery in large file systems

The system must scan all of the meta-data structures of the entire file
system on disk to restore a consistent state. Thus, recovery time is related to
file system size.

File systems grow dramatically and hence recovery time reaches the
order of hours (or even days).

Idea: Relate the recovery effort to the last few operations before the crash
which may have caused an inconsistent state.

Consequence: We have to know which operations occured before a crash.
Need a logging facility.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Journaling (logging) file system

- all changes on metadata are written to a serial log,
- a serial log is a persistent data structure which survives crashes,
- efficiency can be traded against data loss,
- usually only meta-data are written to the log,
- recovery effort is related to the amount of log data rather than to total
file system size.

Motivation: Long recovery times (log operations on meta-data)
Data loss (log operations on all data)

Journaling file systems use data base techniques to secure sequences of operations:

Examples: IBM JFS, Veritas, Sprite LFS, MAC OS X, XFS (Open Source, developed by Silicon Graphics)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

A. Tanenbaum: Moderne Betriebssysteme, Chapter 6.3.8

M. Rosenblum, J.K. Ousterhout: The Design and Implementation of a Log-
structured File System, in:Proc. 13th Symposium on Operating System
Principles, ACM, 1991

A. Chang, M.F. Mergen, R.K. Rader, J.A. Roberts, S.L. Porter: Evolution
of Storage Facilities in AIX Version 3 for RISC System/6000 Processors,
IBM Journal on Research and Development, Vol.34, No. 1, January 1990

http://www.backupbook.com/03Freezes_and_Crashes/02Journaling.html

References:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Steve Best
Linux Technology Center -
JFS for Linux
IBM Austin

http://www.perl.org/tpc/2002/sessions/best_steve.pdf

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Steve Best
Linux Technology Center -
JFS for Linux
IBM Austin

http://www.perl.org/tpc/2002/sessions/best_steve.pdf

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Steve Best
Linux Technology Center -
JFS for Linux
IBM Austin

http://www.perl.org/tpc/2002/sessions/best_steve.pdf

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log structured file systems

Motivation:

CPU performance
disk capacity
main memory capacity

grow rapidly

Problem: disk access time doesn't improve much (seek ~10ms, wait ~4ms, write 50µs).
read acceses can be optimized through caching.
write accesses will be the most frequent operation (to disk!).
write acces to disk becomes a substantial bottleneck.

idea: collect all changes to disk blocks and write them in a single segment to disk.
The resulting data structure is called a "log".

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log structured file systems

data

i-node

directory

F1

disk

F2creating:
/dir/F1 and
/dir/F2

FFS requires 10 non-sequential writes
preceeded by a seek. (I-nodes for new
files are written twice to ease recovery)

dir 1 dir 2

FFS:

Creating files in a conventional file system (FFS):

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log structured file systems

data

i-node

directory

i-node map

entries F1 entries F2 i-node mapcreating:
/dir/F1 and
/dir/F2 log disk

new data and metadata is written in
a single large write.

LFS:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log structured file systems
Problem: No infinite disk! Free space management is needed.
Free space management alternatives for log-structured file systems:

old log
end

new log
end

old log
end

new log
end

threaded log copy and compact log

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log structured file systems

Problems with "Threading":
Over time the log becomes fragmented and the benefits are lost

Problems with "Copy and Compact" in a circular log:
Long-lived files have to be copied in every pass of the log across the disk.

Combine threading and copying.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

.....

segment segment segment

segments: - large number of fixed size contiguous blocks (an extend)
- transfer time for read and write of the whole segment

is large compared to the cost of a seek to the beginning of
the segment. (LFS segment size 512k or 1M)

Log-structured File System (LFS)

All segment are written sequentially from the beginning to the end.
Before a segment can be rewritten all "live" data must be copied out
Long-lived data is collected together in segments which are skipped over.

Segmented structure allows a combination of threading and copying.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log-structured File System (LFS)

segments

clearer
thread

writer
thread

i-node
i-node map

indexed by
i-node number

appendrelease/compact

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

crash

time

log

recovery

find most recent operations
which may have left the file
system in an inconsistent state

Recovery in LFS

Problem: How far to go back?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

crash

time

log

Recovery in LFS

take
checkpoint

take
checkpoint

roll-forward

checkpoint regions are kept in special fixed positions on disk
checkpoint region contains:

addr. of all blocks in the i-node map
segment usage tables
current time and pointer to last segment written

two checkpoint regions are maintained to deal with crashes during checkpointing

checkpoint interval

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log-structured File System (LFS)

segments are written periodically or on demand

more overhead for finding information

much better performance than regular UNIX file system
on writing small amounts of data

better or similar as ordinary UNIX file system
for reads and writing large portions of data

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log-structured File System (LFS)

Mendel Rosenblum, John K. Ousterhout: The Design and Implementation of a
Log-Structured File System, ACM Transactions on Computer Systems, 1991

performance comparison: small file performance

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Log-structured File System (LFS)
performance comparison: large file performance

Mendel Rosenblum, John K. Ousterhout: The Design and Implementation of a
Log-Structured File System, ACM Transactions on Computer Systems, 1991

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Ext3 ReiserFS XFS JFS OSX
Largest block size supported 4 Kb 4 Kb 4 Kb 4 Kb 32 Kb
File size maximum 2 Tb 1 Eb 9 EB 4 Pb 16 Tb
Growing the file system size Patch Yes Yes Yes No
Access Control Lists Patch No Yes Yes* No
Dynamic disk inode allocation No Yes Yes Yes Yes
Data logging Yes No No No No
Place log on an external device Yes Yes Yes Yes No

Tb = Terabyte, or 1024 Gigabytes = 1012 bytes
Pb = Petabyte, or 1015 bytes,
Eb = Exabyte or 1018 bytes

Characteristics of Journaling File Systems

From: http://www.backupbook.com/03Freezes_and_Crashes/02Journaling.html

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

RAID: Reliable Array of Inexpensive Disks

D.A. Patterson, G.A. Gibson, R. Katz: A Case for Redundand Arrays of
Inexpensive Disks (RAID), Proc. ACM SIGMOD Intern. Conference on
Management of Data, 1988

Goals:

Performance Improvement: parallel disks can be accessed concurrently.

Reliability and availability: RAID exploits redundancy of disks.

Transparency: RAID looks like a single large, fast and reliable disk (SLED).

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

RAID-level 0

stripe 0 stripe 1 stripe 2 stripe 3

stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11

stripe 12 stripe 13 stripe 14 stripe 15

RAID-level 0

non-redundant
high transfer rates

RAID-level 1

mirrored disk
high transfer rates

stripe 0 stripe 1 stripe 2 stripe 3

stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11

stripe 12 stripe 13 stripe 14 stripe 15

1

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

RAID-level 2

b0 b1 b2 b3

RAID-level 2

word- or byte-oriented

f0(b) f1(b) f2(b)

Hamming code

Needs strictly synchronized disks!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

RAID-level 3

b0 b1 b2 b3

RAID-level 3

word- or byte-oriented

P(b)

Parity

Allows error correction in case of a defective disk because the positon of the
defective bit is known !

Needs strictly synchronized disks!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

RAID-level 4

Block parity

RAID-level 4

stripe 0 stripe 1 stripe 2 stripe 3

stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11

stripe 12 stripe 13 stripe 14 stripe 15

P(0-3)
P(4-7)
P(8-11)
P(12-14)

P0-3(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) starting point
P'0-3(i) = X3(i) ⊕ X'2(i) ⊕ X1(i) ⊕ X0(i) changing stripe 2
P'0-3(i) = X3(i) ⊕ X'2(i) ⊕ X1(i) ⊕ X0(i) ⊕ X2(i) ⊕ X2(i)
P'0-3(i) = P0-3(i) ⊕ X'2(i) ⊕ X2(i)

A write operation requires 2 reads and 2 writes

k bits k bits k bits k bits

X0(i) X1(i) X2(i) X3(i)

k bits

P0-3(i)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

RAID-level 5

Block parity

stripe 0

stripe 4
stripe 8

stripe 1

stripe 5
stripe 9

P(12-14)
stripe 16

stripe 2

stripe 6
P(8-11)
stripe 13

stripe 17

stripe 3

stripe 10

stripe 14

P(4-7)

stripe 18

stripe 7
stripe 11
stripe 15

P(0-3)

stripe 19
stripe 12
P(15-19)

RAID-level 5
Problem with RAID-4: Parity disk becomes a bottleneck.

Raid-level 6 tolerates two disk crashes and guarantees a very high availability
of data. Needs N+2 disks and has to write 2 Parity blocks on a write operation.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Examples of File Systems

Unix File System

NTFS (NT File System)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Example: Unix file system
Unix Files:
- File is a sequence of bytes.
- File extensions are conventions.
- Few file types are supported via file type.
- File names up to 255 characters (previously 14 chars.)

Unix supported file types:
- regular files
- directories contains a list of file names and the resp. i-nodes
- named pipes
- character oriented special files used to model serial I/O devices
- block-oriented special files used to model raw disk partitions

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Unix allows a transparent view on different file systems
of different storage devices via the mount concept.

Mounting file systems

/

A

D H

K

/

L M N

hard disk
floppy disk /

A

D H

K B

/

L M N

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Locking file regions

1. shared Locks
2. exclusive locks

Objective: Improving the granularity of locking down to the byte of a file.

process A

process B

process C process D wants
to acquire an
exclusive lock.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Unix system calls

fd = creat(name, mode) Create a file
fd = open(path, how, options...) Open a file for read or write
s = close(fd) Close open file
n = read(fd, buffer, nbytes) Read file data in a buffer
n = write(fd, buffer, nbytes) Write file data in a buffer
position = lseek(fd, offset, whence) Move file pointer
s = stat(name, &buf) Get file status
s = fstat(fd, &buf) Get file status
s = pipe(&fd[0]) create a pipe
s = fcntl(fd, cmd, . . .) file control, e.g. lock

File related system calls

device which holds the file
i-node number
mode
number of links
group
size in bytes
time of creation
time of last access
time of last modification

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Directory related system calls

Unix system calls

s = mkdir(path, mode) Create a directory
s = mkdir(path) delete directory
s = link(oldpath, newpath) create a link to an exicting file
s = unlink(path) delete link
s = chdir(path) change working directory

dir = opendir(path) open directory for read
s = closedir(dir) close directory
dirent = readdir(dir) read a directory entry
rewind(dir) = rewind und read again

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Unix file system management

super-
block

boot-
block

i-nodes data blocks

Classical Unix System

Berkeley Fast File :
- long names (255 charakters)
- structuring the disk in cylinder groups each with own super block,

i-nodes and data blocks
- 2 block sizes

Linux File System: very similar to Berkeley fast file system.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

i-nodes in UNIX
File Mode: 16-Bit Flag which stores access rights

0 .. 2 rights for "all" users <read, write, exec>
3 .. 5 rights for the "group" <read, write, exec>
6 .. 8 rights for "owner" <read, write, exec>
9 ..11 execution flag
12..14 file type (regular, char./block-oriented, FIFO pipe)

Link Counter number of directory references to this i-node
UID Owner ID
GID Group ID
Size in Bytes
File address 39 byte file address information
Last access date/time
Change of i-node date/time
Address info for blocks direct, single ind., double ind., triple ind.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

file allocation

addresses
of first
10 blocks

single indir.

double indir.

triple indir.

pointers to
disk blocks

file
information

i-nodefile descriptor
tables

father

child

open files
- act. file pos.
- R/W
- pointer to

i-node
- act. file pos.
- R/W
- pointer to

i-node

what
position
iside the

file
?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

capacity of UNIX file

direct 10 blocks 10 K
single indir. 256 blocks 256 K
double ind. 64K blocks 64 M
triple ind. 256x64K blocks 16 G

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Moderner Unix-Kern (Vahalia 1996)

gemeinsame
Unter-
stützungs-
dienste

exec
switch

virtuelle
Speicher
Verwaltung

Block
Geräte

Streams

vnode/
vfs-Schittst.

Scheduler
framework

a.out
coff

elf

NFS

FFS

RFS

s5fs

Netzw.-Treiber

Platten-Treiber
Timesharing
Prozesse

System
Prozesse

tty-Treiber

Band-Treiber

SVR4:

•Echtzeitverarbeitung
•Scheduling-Klassen
•Virt. Sp. Verw.
•Virt. Dateisystem
•verdängungsfägiger

Kern

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Windows 2k supports 3 File Systems for compatbility reasons:

FAT 16 (partitions ≤ 2G)
FAT 32
NTFS (NT File System)

Windows 2k File System

useful website: http://linux-ntfs.sourceforge.net/ntfs/index.html

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

main features of NTFS

Recoverability after system crashes (including fault-tolerance features)

Protection and security

Very large disks and very large files

Multiple datastreams (which can be addressed under a single file name)

General indexing possibilities (acc. to file attributes)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

- comprise multiple byte streams (compatibility with Apple Macintosh FS)
- structured by attributes
- attributes represented by byte streams
- max stream length: 264 bytes (18,4 Exabytes)

main features of NTFS files

- long (255 character) file names
- pathnames up to 32767 characters
- unicode representation

NTFS files are not simple byte streams, but..

NTFS supports sophisticated naming of files

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

W2K components supporting NTFS

disk driver

fault-tol.
disk driver

NTFS
disk driver

log file
service

cache
manager

VMM (virtual
memory manager)

log transaction

spanned /striped/mirrored volumes

r/w of a mirrored/
stripe-set device

r/w of a diskr/w
file

write to
cache

access file
or write out cache

write out
protocol
file

I/O manager

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

C:

D: C:

E:

C:

E:

Spanned Volumes:
Logical partitions span multiple physical disks.
--> Logical Volumes

Motivations:
Volume larger than a physical disk
Transparent extensibility
Concurrent access to multiple physical disks improves performance

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

1

4 5

2

6

3

Striped Volumes:
A physical disk drive includes multiple disks. Appears as a single disk
for the operating system with improved performance and reliability.

Motivations:
Concurrent access to multiple physical disks improves performance.
Redundant Array of (inexpensive) independent disks for FT.

(RAID-1, RAID-5)

n-1 nn-2

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Win32 API

Important API functions for files:

Win32 Unix
CreateFile open Create or open a file; Returns a handle
DeleteFile unlink Delete a file
CloseHandle close Close a file
ReadFile read Read data from file
WriteFile write Write data to file
SetFilePointer lseek position read pointer
GetFileAttributes stat Get File Attributes
LockFile fcntl Lock part of a file for multiple access
UnlockFile fcntl Release lock

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Win32 API

Important API functions for directories:

Win32 Unix
CreateDirectory mkdir Create a directory
RemoveDirectorY unlink Delete empty directory
FindFirstFile opendir Open directory and read entries
FindNextFile readdir Read next entry
MoveFile rename move file in another directory
SetCurrentDirectory chdir cange current working directory

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NTFS basic concepts

Volume and File structure
Volume: Logical disk partition

Sector: Smallest physical storage unit (most common size: 512 Byte)

Cluster: One or more consecutive sectors of the same track (corresp. to a block)

The Cluster is the basic unit of storage allocation in NTFS

Volume size sector/cluster cluster size
≤ 512 MB 1 512 Byte
512 MB - 1G 2 1 K
1-2 G 4 2 K
2-4 G 8 4 K
4-8 G 16 8 K

> 32 G 128 64K

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NTFS volume structure

PBS MFT data

PBS: Partition Boot Sector (up to 16 sectors)

MFT: Master File Table
is a file that can be placed freely
contains meta data: MFT2, Log file, Cluster bit map,

Attribute definition table, . . .
user file descriptors

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of NTFS

1. user file
reserved for future use
reserved for future use
reserved for future use
reserved for future use

$Extend
$Upcase
$Secure

$BadClus
$Boot

$Bitmap
$
$AttrDef
$Volume
$LogFile
$MftMirr

$MFT

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

1 kB

Extensions, Quotas etc.
Conversion table for uper/lower case letters
Security Information
List of bad blocks
Bootstrap Loader
Bitmap of used/free blocks
Root directory
Attribute specification
Volume file
Log file for recovery
Copy of MFT
Master File Table

Master
File
Table

files holding
meta-data

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of NTFS

Default Information Owner, protection info, time stamp, link counter, etc....
File name file name in unicode
Security descriptor (old) information now in $Extend and $Secure fields
Attribute list Place wher additional MFT entries are stored if required
Object-ID 64 Bit file ID for internal use (unique for a volume)
Reparse used for creating symbolic links
Volume name used in $volume only
Volume attribute used in $volume only
Index root used for directories (called index in Microsoft terminology)
Index allocation used for very large directories
Bitmaps used for very large directories
Logging-support system controls the logging in the log file
data data stream

Usual attributes in MFT entries:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of NTFS
The "data" attribute: obviously, not all data fit in a single entry.
Problem: How to find the associated blocks (clusters)?

MFT-
entry

start of
standard
info

header

standard
info

start of
file name

file name

start of
file data

header S #1 S #2 S #3

0 10 12 4 32 2 74 3

S #4

96 1

cluster 12-15 32-33 73-76 96-96

MFT-
entry

standard
info file name 0 10 12 21

unused

unused

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

108
107
106
105
104
103
102
101
100

MFT 105 MFT 107 series#1 series#k

series#k+1 series#m

series#m+1 series#n

Structure of NTFS
Storing file clusters in multiple MFT entries

base entry

extension 1

extension 2

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of NTFS
MFT entry for a small index (directory)

MFT-
entry

start of
standard
info

header

standard
info

start of
index

unused

MFT-index for file
length of file name
file name
...

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of NTFS

CreateFile("C:\bilbo\web.htm", ..)

\??-index \devices MFT for volume 1

C:
D:

harddisk volume 1

root index

bilbo

web.htm

13
12
11
10
9
8
7
6
5
4
3
2
1
0

handle

11

index to the
file in the
MFT of the
volume

created for every thread

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of NTFS

• Compression of Addresses (16 --> 4)

• Compression of files

• Encrypted files

• Security and Access control

More features:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

empty empty

0 15 16 31 32 47

compr. 50%

0 7

compr. 50%

23 24 31

uncompressed

8

30 37 40 55
85 92

disk addr.

MFT-
entry

standard
info file name

header

0 48 30 8 0 8 40 16 85 8 unused0 8

Compression of files

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Security and access protection

• secure login and antispoofing

• discretionary access control

• privileged access control

• process address space protection

• prevention of data leaks by zeroing all new pages before loading

• security auditing

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

overall NT security model
http://www.ciac.org/ciac/documents/CIAC-2317_Windows_NT_Managers_Guide.pdf

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NT logon process
Logon

LSA
Authentication
Package run

Verify Authentication
in SAM Database

SAM returns
SID(s)

LSA creates
Access Token

LSA
creates Subject

Windows NT logon processes provide mandatory logon
for user identification and cannot be disabled.

To protect against spoofing, the logon process begins
with a Welcome message box that requests the user to
press Ctrl, Alt and Del keys before activating the
actual logon screen.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

header expir. groups standard owner group restricted privileges
time DACL SID SID SIDs

the access token

Security ID (SID): The SID is a variable length unique name (alphanumeric character string)
that is used to identify an object, such as a user or a group of users in a network of
NT/2000 systems.
Expiration time: defines validity interval for the access token (currently not used)

Groups: defines to which group the process belongs (compatibility to Posix Standard)
Discretionary Access Control List (D ACL): Default ACL when they are created by a process
and no other ACL is specified.
Owner/group SID: indicates the user/group who owns the process.
Restricted SID: enables the cooperation of trusted and non-trusted processes by contraining
access for the latter.
Privileges: enable to define "admin rights" in a more fine-grained fashion and associate these
with user processes.

http://www.webopedia.com/TERM/S/character_string
http://www.webopedia.com/TERM/S/network.html

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

header
denied

sam
111111
allowed

bilbo
001100
allowed

frodo
111111
allowed

all
001000

the security descriptor
• is associated with every object
• defines who may access the object with which operation

header
audit

gandalf
111111

Access
Control
Element

Access
Control
Element

header
owner SID
group SID

DACL
SACL

file

System
Access
Control
List

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

SRM access
validation

SRM: Security
Reference
Monitor

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Summary

Files are protected by Access Control Lists.

A security descriptor is associated with every file object comprising the
security relevant information and references.

An access token is associated with every active entity (subject) comprising
authentication information and access control information.

Every access to a shared object is verified by the Security Reference Monitor.

