
J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Distributed Shared
Data Storage

Operating Systems II

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Distributed Shared Memory (DSM)

Consistency Models:
- From strong to weak
- Protocols

Structure:
- Orientation, Granularity

Distributed File Systems (DFS)
- General problems of distribution
- Examples:NFS, AFS

Distributed Shared Data Storage

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

No explicit communication by messages is needed.

Programs which run on a single computer will run on a distributed system.

Multiple computational resources increase the perfomance.

Goal: Keep the well known interface of a single computer system

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Principles of distributed computations
Function shipping initiates computations in a remote processing entity.
Example: Remote Procedure call.

comm.
network

call
proc.

call
proc. PP

P
P

memory

process
Distributed
Processes

Problem: computation bottlenecks, more complex programming model, references.

P

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Principles of distributed computations
Data shipping moves the data to allow local computations.
Example: DSM

comm.
network

read

write

read

write

read

write

read

write
PP

P
P

memory

process
Distributed
Shared
Memory

Problem: Performance-Consistency Trade-off
in the presence of concurrency and communcation delays

read

write
P

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of a DSM

Byte-oriented DSM:

closest to main memory model
- read and write variables

distributed demand paging
- locking of pages (exclusive /shared)
- problem: false sharing

needs sophisticated consistency models
- related to mutual exclusion in central storage systems

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of a DSM

Object-oriented DSM:

Operation on DSM have higher semantics than read/write

Access to state variables only via the Object interface

Semantics is exploited to define consistency rules
- Examples: Stacks, Double-ended Queues

Problem of false sharing is reduced

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Structure of a DSM

Immutable Data Storage:

no write operation

"out" always adds a data element to the storage

destructive "in" and non-destructive "read"

consistency is preserved by ordering accesses

examples: Linda, JavaSpaces

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

persist- replic. consist. example
ence cach.

main memory no no 1 RAM
distributed shared memory no yes yes Munin, Ivy, Midway,
file system yes no 1 Unix-FS, NTFS
distributed file system yes yes yes NFS, Andrew, Coda
remote objects no no 1 CORBA
persistent object memory yes no 1 CORBA Pers.Obj.Service
persistent distr. object mem. yes yes yes PerDiS, Khanzana, Clouds,

Profemo, SpeedOS

Properties of Storage Systems

Storage abstractions: array of bytes, volatile RAM
persistent file
object (volatile or persistent)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

physical
memory

physical
memory

physical
memory

process
accessing
DSM

DSM appears
in the address
space of a process

The abstraction of DSM

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

router/
firewall

LAN

to the Internet

LAN

LAN

?

From a Shared Memory Multiprocessor

to a DSM

can we expect the
same transparency?

what are the trade-offs
between ease of use
and efficiency?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

process 1

br:= b;
ar:= a
if (ar ≥ br) then

print ("OK");

valid value combinations:
ar=0, br=0
ar=1, br=0
ar=1, br=1

process 2

a = a + 1;
b = b + 1;

due to message delay
it could happen that : ar=0, br=1

Accessing shared variables in DSM

Is this considered consistent?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Consistency Models

The characterization of a Consistency Model is the answer of the question:

What result can you expect from a read operation on a DSM with respect to (previous)
write operation?

The most actual value which results from the last write operation on the time line.

very
weak

very
strong

problem-oriented shared memory
....
entry
release
sequential
atomic

co
ns

is
te

nc
y

m
od

el
s

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Consistency Models

P1
P2
P3
P4

wv1

rv2

wv2 wv3 wv4 wv5

rv3

rv3

rv4

rv4

Strong consistency models:
All write operations are totally ordered and read operations always
return the last value written into memory.

Atomic consistency: Write operations in real-time order. All readers see the write
operations in the order they were issued on the time-line.

Sequential consistency: Write operations in sequential order i.e. all readers
see the write operations (on all memory objects) in the same order.

rv5

P. Veríssimo, L. Rodrigues: Distributed Systems for System Architects, Kluwer 2001

rv4

Atomically
consistent

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Consistency Models

Atomic Consistency is not possible in a distributed system.

Sequential Consistency can be expressed as follows:

There is a virtual interleaving fo read- and write-operations of all processes
on a single virtual memory image. Sequentially consistency is given if:
1.) The program sequence of every individual processor is maintained

in the interleaving.
2.) Every process reads the value which was most recently written in the

interleaving of operations.
3.) The memory operations for the entire DSM have to be considered - not

only the operations on a single memory location.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

process 1

br:= b;
ar:= a
if (ar ≥ br) then

print ("OK");

process 2

a = a + 1;
b = b + 1;

valid value combinations:
ar=0, br=0
ar=1, br=0
ar=1, br=1

The case that : ar=0, br=1 is excluded
under the sequential consistency model.

Interleaving Accesses to shared variables in a DSM

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

P1
P2
P3
P4

wv1

rv1

wv2
wv3

rv3

rv3

rv2

rv1

rv1

rv2

P1
P2
P3
P4

wv1

rv1

wv2
wv3

rv3

rv1

rv1

rv2

rv2

P1
P2
P3
P4

wv1

rv1

wv2

rv3

rv1

rv2

rv2
wv3

rv3

sequentially
consistent

not
sequentially
consistent

Consistency Models

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

P1
P2
P3
P4

wv1

rv1

ws1 wv2

rv2

rv1

rv1

rs1

rs1

coherent
but not
consistent

rv2

rs2

rs2

ws2

P1
P2
P3
P4

wv1

rv1

ws1 wv2

rv2

rv1

rv1

rs1

rs1

neither coherent
nor consistent

rv2

rs2

rs2

ws2

Consistency Models

Coherency: Sequential consistency for a single memory location.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Implementation options

centralized function shipping

clients

data
access
request

so

so: storage object

client

data
access
request

so

so

so

centralized data shipping

old

act

page
migration

serverserver

so

actual so may be migrated between
clients (who provides location
information?)

so always is in one place --> no consistency problems for the price of low concurrency.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Update options

Assumption: Copies of DSM memory images are distributed over multiple
process address spaces on multiple nodes.

Concurrent reads: no problem

Concurrent writes:
write update: all copies are updated with the new value
write invalidate: all copies are invalidated. New reads require

to request a new copy of the data items.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

centralized SO replication (read-only)

clients

data
access
request

SO
server

distributed SO replication (read-write)

so-repl.

current

RSO

up-/invalidate upon write

writer only receives a copy of
SO iff all RSOs (Replicated Storage
objects) are invalidated.

RSO RSO clients

data
access
request

sequencer

RSO

up-/invalidate upon write

RSO RSO

Implementation options

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

time

time

a := 7;
b := 7;

if(b=8) then
 print("after");

if(a=7) then
 b := b+1;

...

if(b=a) then
 print("before");

time

updates

Update option: Write-update

Problems: Overhead of a totally ordered multicast protocol if sequential consistency
is required.

Conclusion: Read operations are cheap, write operations VERY expensive.

All changes are
multicasted to all
nodes which hold the
respective memory
items.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3

© Addison-Wesley Publishers 2000

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Update option: Write-invalidate

A data item can be either:
- be read by multiple processes
- be written by a single process

Before it can be written, an invalidate is multicasted to all readers.
When having received all invalidation acknowledges, the data is updated.

invalidate
write

P1

P2

P3
P4

invalidate
acknowledge

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Problems and trade-offs in DSM

Granularity affects:
- amount of data to tranfer
- interference beetween processes
- frequency of requests
- management overhead

False Sharing

Proc. A Proc. Baccess
conflict

page size

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Trashing:
- multiple processes access the same data object
- write invalidate
- may be because of real sharing
- may be because of false sharing

Problems and trade-offs in DSM

define minimum hold time for a data object - Mirage
define usage pattern with appropriate update options - Munin

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Implementation Issues: sequential consistency in Ivy

Kernel

Process accessing
paged DSM segment

Pages transferred over network

Kernel redirects
page faults to
user-level
handler

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3

© Addison-Wesley Publishers 2000

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Example: sequential consistency and write update
Problems with write-udate

Assumption: -system exploits hardware page protection,
- rights amy be set to none, read-only or read/write

Problem: next write does not generate a page fault! How to detect that a
multicast has to be performed?

Solution: put process into trace mode and generate a trace exception. Exception
puts page resets the write access rigth. VERY EXPENSIVE !

Algorithm: on write, 1. a page fault is generated, 2. passed to a page-fault
handling routine, 3. receives the page and sets appropriate rights,
4. multicasts the update and completes the write operation.

Optimization: Buffering of write operations and multiple write accesses to a page.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

write invalidate

uses page protection information to enforce consistency:

possible combinations of read and write rights
single writer - no other process will have access
multiple readers - no writer

owner of page (owner (p)) holds the most recent version of the page:
- the (single) writer
- one of the readers

the set of processes which hold a copy is called the "copy set" (copyset (p))

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Pread

1. page fault occurs

2.
page is copied
from owner

Powner

if Powner was writer it
retains a read right and
remains owner (because this
is the most recent copy). It
has to handle subsequent
requests.

3. copyset := copyset ∪ {Pread}

copyset and owner transfer during write invalidate

P reads a DSM page

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Pwrite

1. page fault occurs

Pold owner

4. new status Pwrite is owner
copyset := {Pwrite}

P writes a DSM page

copyset and owner transfer during write invalidate

.............

(old) copy set

2. copy set is invalidated
and set to "no access"

3.
recent copy is transfered
in case Pwrite has not yet
a valid copy.

5. DSM runtime system maps page in the address
space of Pwrite and resumes at the instruction causing the
page fault

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Issues to solve for implementing DSM

Problems:
1.) Finding the owner of a page
2. Determining the copy set and where it is stored

Solutions:
1.) Central Manager
2.) Multicast (totally ordered)
3.) Dynamically Distributed Manager

-build a chain of hints
-update the hints dynamically

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Page Owner
no.

Manager

Current ownerFaulting process

1. page no., access (R/W) 2. requestor, page no., access

3. Page

.........

Central manager approach

Finding the owner of a page

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

B C D

A

E

OwnerOwner

B C D

A

E

Owner

Owner

B C D

A

E

OwnerOwner

initial situation

situation after write
request

situation after read
request

Dynamic distributed manager approach

Finding the owner of a page

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Beyond sequential consistency

Approaches to increase efficiency and cost effectiveness of DSM:

- Exploit knowledge of what is shared data and what is not.
Accesses to shared data have to be synchronized

- Identify a priori known characteristic access pattern.
Classify data items accordingly and adapt consistency
overhead.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Release consistency

Observation:
accesses of two processes compete if
- they occur concurrently
- at least one is a write access

Conclusion:
- multiple read operations do not compete
- multiple synchronized operations do not compete because
concurrency is controlled by synchronization mechanisms.

Approach:
- divide competing accesses in synchronizing and non-synchronizing
accesses and let the programmer define critical sections.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Process 1:
acquireLock(); // enter critical section
a := a + 1;
b := b + 1;
releaseLock(); // leave critical section

Process 2:
acquireLock(); // enter critical section
print ("The values of a and b are: ", a, b);
releaseLock(); // leave critical section

Release consistency

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Release consistency

Definition:

RC1: before a read or write operation can be executed all
preceding acquire-operations have to be performed.

RC2: before a release-operation can be performed for another
process, alls read and write operations have to be finished.

RC3: acquire and release operations are sequentially consistent
to each other.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Release consistency

By knowing the synchronization constraints when accessing
shared variables, a better efficiency can be obtained without
sacrificing application consistency.

A correctly instrumented program is unable to distinguish between
a release consistent and a sequentially consistent DSM.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Munin - a flexible and adaptable DSM

- allows parameterization of protocols
- distinguishes data types according to synchronization constraints

some Data types:
- read-only
- write shared
- producer-consumer
- migratory
- result
- convntional

some protocol options:
- write update
- write invalidate
- eager or lazy variants
- data element can be modified by multiple writers

> needs more semantics
- data item is used by a fixed set of processes

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Distributed
File Systems

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Requirements for Distributed File Systems

Transparencies (access, location, mobilty, performance, scalability)
Concurrent File Update
Replication of Files
Openess (Heterogeneity of OS and Hardware)
Fault-Tolerance
Consistency
Security
Efficiency

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

First Approaches: The Newcastle Connection

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

First Approaches: The Newcastle Connection

Principles:
- Extending the hierachical Unix Naming Scheme by a "Super Root",
- Using RPC to perform remote file access

unix 1 unix 2

/.

EE CS ME

unix 1 unix 2

OvGM

D

/.

F UK

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Distributed File Systems

Newcastle connection provides a single name space for files.

Problems with the Newcastle Connection:
No Location transparency
No Replication or Chaching
No Mobility Transparency

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

B. Walker, G. Propek, R. English, C. Kline, and G. Thiel (UCLA)
The LOCUS Distributed Operating System
Proceedings of the Ninth ACM Symposium on Operating Systems
Principles, October 10-13, 1983, pages. 49-70

R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh
The Design and Implementation of the SUN Network File System
Proceedings Usenix Conference, Portland, Oregon 1985

J. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S. Rosenthal, F.D. Smith
Andrew: A distributed personal computing environment
Comm. of the ACM, Vol.29, No. 3, 1986

first
commercial
system

Early milestones in distributed file systems

AFS inspired the development of the "Distributed Computing Environment (DCE)"

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NFS: File Service Architecture

Client Computer Server Computer

flat file service

directory service

client module
(NFS client)

app.
progr.

app.
progr.

network
conv. file sys.interface

DS interface

flat FS interface

Client-Server architecture using SUN RPC
Flat FS uses File UIDs instead of hierarchical path names
DS associates file text names with file UIDs (FUID)

DS retrieves
FUID

2.

client accesses files
via their FUID

4.

3.

DS provides
FUID

client requests FUID
presenting the text name

1.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Flat File Service Operations

Read (FileId, i,n) → Data If l≤ i ≤ Length(File): Reads a sequence of up to n items
- throws BadPosition from a file starting at item i and returns it in Data

Write (FileId, i,n) → Data If l≤ i ≤ Length(File)+1: Writes a sequence of Data to a
- throws BadPosition file starting at item i, extending the file if necessary

Create() → FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes a file from the file store.

GetAttributes(FileId)→ Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes for the file (except owner, type and ACL).

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Differences to the Unix File System API

Stateless File Server:
no state information about open file
no information about the number and state of clients

every request must be self-contained.

Benefit: A client or a server crash does not
require extensive recovery activities.

- no open or close
- operations are idempotent except "create"

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Recall: file allocation in Unix

addresses
of first
10 blocks

single indir.

double indir.

triple indir.

file
information

i-nodeopen files
file descriptor
tables

father

child

- act. file pos.
- R/W
- pointer to

i-node
- act. file pos.
- R/W
- pointer to

i-node

Unix file system remembers which
files are open and the position of
the last file access!

→ read and write NOT idempotent!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Directory Service Operations

Lookup (Dir, Name) → FileId Locates the text name in the directory and returns the respective
- throws NotFound UFID. If Name is not found, an exception is raised.

AddName (Dir, Name, File) If Name is not in the directory, adds (Name, File) to the directory
- throws NameDuplicate and updates the file's attribute record. Throws and exception if

Name is already in the directory.

UnName (Dir, Name) If Name is in the directory it is removed.
- throws NotFound If Name is not in the directory an exception is raised.

GetNames (Dir, Pattern) → NameSeq Return all the text names in the directory that match the regular
expresssion Pattern.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Recall (BS I): Modern Unix-Kernel (Vahalia 1996)

support
services

exec
switch

virtual
memory
mgmt.

block
devices

streams

vnode/
vfs-interface

scheduler
framework

a.out
coff

elf

NFS

FFS

RFS

s5fs

timesharing
processes

system
processes

tty-driversnetwork drivers

tape
drivers

disk
drivers

SVR4

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

SUN NFS Architecture
Client Computer Server Computer

app.
progr.

app.
progr.

network

virtual file sys. VFS

Unix
FS

other
FS

NFS
client

local remote

Unix sys calls

NFS protocol (RPC)

virtual file sys. VFS

Unix
FS

NFS
server

FS-Id i-node # i-node gen.#
File
Handle

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NFS mount service

server A server Bclient

vmunix usr

/

students staff admin
...

university

/

people

...

otto mechthildernst

nfs

/

users

...

fritz anna ulla

mount
externally

mount
externally

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NFS mount service

Hard-Mounted: requesting application-level service blocks until the request
is serviced. Server crashes and subsequent recovery is
transparent for the application process.

Soft-Mounted: if the request cannot be serviced, the NFS client module
signals an error condition to the application.

Soft-Mounting needs a meaningful reaction of the application process. In most
cases the transparency of the hard-mounting is preferred.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NFS mount service

Mount Service Process: executed on every server
Data Structures:

Server: etc/exports
contains names of local FS which may be mounted ext.

Client: for every file system a list of names of hosts is
associated which are allowed to mount the FS.

mount request remote mount service
(RPC) < host name, checks whether allowed

dir name remote,
path name local>

returns <IP addr., port #, file handle>VFS

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NFS Server Caching

Standard Unix FS mechanisms
- buffer cache
- read ahead
- delayed write
- sync (periods of 30 sec)

Additionally: Two options for write (NFS version 3)
1.) Data from clients is written to the buffer cache AND the disk

(write through). ⇒ Data is persistent when RPC returns.
2.) Data will only held in the cache. Explicit commit-operation makes

data persistent. Default mode for Standard NFS clients. Commit
is issued when closing a file.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NFS Client Caching

server

Mechanism only approximates
1-Copy-Consistency !

all reads in an interval of
Δt after chaching only go
to the cache. Reads occuring
after that time check the
validity of the copy with the
server. If still valid they may
use it another Δt.

WRITE:
cached locally until a snyc
of the client or if file is
closed.

READ:

disk block

(8kb)

+ <tc, tm>

clients

"lease" concept
tc : timestamp last checked
tm : time stamp last modified
Δt : validity interval: 3-30 sec for files

30-60 sec for dir

(t - tc < Δt) v (tm-client = tm-server)

Validity condition for cache entry at time t:

r/w

r/w

r/w

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

NFS Properties

Access Transparency ++
Location Transparency ++
Migration Transparency +-
Scalability +
File Replication +- only read replication
Heterogeneity ++ available for many platforms
Fault-Tolerance + stateless, restricted fault model
Consistency +- "almost" one copy
Security - needs additions (e.g. Cerberos)
Efficiency ++

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

AFS Andrew File System

Scalability as primary design goal.

As much as possible local accesses to files.

Any accessed file is completely transfered to the client.

Files stored persistently on local disc cache.

Large files are transfered in large chunks (64 kB).

Active notification mechanisms to approximate one-copy consistency.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

AFS Architecture

Files are organized in migratable "Volumes" (smaller entities compared to file systems in NFS).
Flat File Service, hierarchical view is established by the Venus Processes
Every File has a unique 96-Bit ID (fid). Path names are translated in fids by Venus processes.

local persistent
"file caches",
survive crashes
of local system.

Unix kernel traps FS
accesses and redirects
requests to remote files
to a Venus Process.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3

© Addison-Wesley Publishers 2000

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

Consistency mechanism is based on "Callback Promises".

AFS relies on a notification concept. Callbacks are RPCs to the respective
remote Venus processes with a Callback Promise Token as parameter.

A Callback Promise Token may have the values:
- valid
- cancelled

The Server is responsible to invoke the respective remote Venus process when
a file was modified with the value "cancelled".

A subsequent local "read" or "open" on the client must request a new file copy.

AFS: Basis Consistency Mechanism

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

AFS: file system calls
User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 © Addison-Wesley Publishers 2000

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2006

The
End

