
J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

IPC
Inter Process Communication

Operating Systems II

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Principles of distributed computations
Explicit communication via send and receive: Message passing.

comm.
network

send

PP

P
P

queue

process
Distributed
Processes

Problem: very low level, very general, poorly defined semantics of communication

P

send.

receive receive

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Principles of distributed computations

Data shipping brings the data to the processing entity

comm.
network

read

write

read

write

read

write

read

write
PP

P
P

memory

process
Distributed
Shared
Memory

Problem: Consistency in the presence of concurrency and communcation delays

read

write
P

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Principles of distributed computations
Function shipping initiates computations in a remote processing entity

comm.
network

call
proc.

call
proc. PP

P
P

memory

process
Distributed
Processes

Problem: computation bottlenecks, more complex programming model, references.

P

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

abstractions for communication

Distributed shared memory

Message passing

Remote Procedure Call

Remote Object Invocation

Notifications

Publish Subscribe

Shared data spaces

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Types of interaction

Message-oriented interaction

Distributed shared memory

Client-Server oriented interaction

Peer-to-Peer interaction

explicit

implicit

request/reply

producer/consumer

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

abstractions for communication

Flow coupling: Control transfer with communication
Defines whether there is a control transfer coupled with a message transfer.
E.g. if the sender blocks until a message is correctly received.

Space Coupling: References nust be known
Explicit specification of the destination, i.e. producer must know where to send
the message. Message contains an ID specifying an address or name.

Coupling in time: Both sides must be active
Communication can only take place if all partners are up and active.

Dimensions of Dependencies:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Message passing

producer abstraction consumer interface thread

logical channel

Notation acc. P. Eugster: Type-Based
Publish Subscribe, PhD-thesis, EPFL,
Nr. 2503, 2001

*

*

primitives: send (), receive ()

Coupling: time, space, flow

Connected socket, e.g. TCP

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Message passing

primitives: send (), receive ()

Coupling: time, space, (flow? unsuccessful if flow is not coordinated)

Unconnected socket, e.g. UDP

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Remote Procedure Call (RPC)

proxy, stub skeleton

Coupling:
Space: destination is explicitely specified
Flow: blocks until message is delivered
Time: both sides must be active

Relation: one-to-one

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Asynchronous RPC with pull-style features

Variations of RPC

Asynchronous RPC with call-back futures

Coupling:
Space: destination is

explicitely specified
Flow: no flow coupling
Time: both sides must be active

Example: Concurrent Smalltalk

Example: Eiffel

Relation: one-to-one

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Examles:
Java

Relation: one-to-many

Coupling:
Space: Yes (Observable/Observer pattern (delegation))
Flow: none
Time: both sides must be active (notification performed by RMI)

Notification

Observer/
listener

observable

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

logical
container

Relation: many-to-many

Coupling:
Space: none
Flow: consumer side
Time: none

Examples:
Linda tuple Space
Java Spaces
ADS Data field

Shared Data Spaces

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

logical
channel

Publish/Subscribe

Relation: many-to-many

Coupling:
Space: none/indirect
Flow: none
Time: none

Examples:
Information Bus
NDDS
Real-Time P/S
COSMIC
....
....

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Abstraction Space Coupling Time Coupling Flow Coupling

• Connected Sockets Yes Yes Yes
• Unconnected Sockets Yes Yes Consumer
• RPC Yes Yes Consumer
• Oneway RPC Yes Yes No
• Explicit Future (Pull) Yes Yes No
• Explicit FutureCallback) Yes Yes No
• Implicit Future Yes Yes No
• Notications Yes Yes No

(Observer Design Pattern)
• Tuple Spaces (Pull) No No Consumer
• Message Queues (Pull) No No Consumer
• Subject-Based P/S No No No
• Content-Based P/S No No No

Overview

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

transport layer (TCP, UDP), IP

Basic request-reply protocol
marshalling and data representation

RMI and RPC

middleware
layers

applications, services
Programming model+
language
integration

basic OS
support
protocol
layer

device
layer Ethernet,Token-Bus, . . .

Building IPC from bottom-up

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

transport layer (TCP, UDP)

UDP: unconnected sockets, single messages
datagramm coomunication

TCP: conn. sockets, two-way message streams
between process pairs.

stream communication

abstractions of the transport layer

receive send

OS-abstraction: socket
Protocols: TCP, UDP

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

sockets and ports

process process

How to route a message to a process?
- IP-Adress addresses a computer.
- Port: is associated with a process

Internet-addr.: 144.44.25.222 Internet-addr.: 144.44.25.223

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

sockets and ports

What is needed to send/receive a message through a socket?

Socket address.

2. Local port (every computer has a large number (216) of possible port numbers).

1. Internet-address of the local node.

IP-address Port Number

3. A binding mechanism.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Example: datagram sockets in Unix

s = socket(AF_INET, SOCK_DGRAM, 0)
.
.
bind (s, client_address)
.
.
.
sento(s, message, server_address)

s = socket(AF_INET, SOCK_DGRAM, 0)
.
.
bind (s, server_address)
.
.
.
amount = recvfrom(s, buffer, from)

socket: system call to create a socket data structure and obtain the resp. descriptor
AF_INET: communication domain as Internet domain
SOCK-DGRAM: type of communication: datagram communication
0: optional specification of the protocol. If “0“ is specified, the protocol is automatically

selected. Default: UDP for datagram comm., TCP for stream comm.
bind: system call to asociate the socket “s“ with a socket address <IP address, port number>.

sento: system call to send a message via socket “s“ to the specified server socket "server_address".

recfrom: system call to receive a message from socket “s“ and put it at memory location “buffer“. “from“
specifies the pointer to the data structure which contains the sending socket‘s address.
recvfrom takes the first elemet from a queue and blocks if the queue is empty.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Example: stream sockets in Unix

s = socket(AF_INET, SOCK_STREAM, 0)
.
.
connect (s, server_address)
.
.
.
write(s, message, msg_length)

s = socket(AF_INET, SOCK_STREAM, 0)
.
bind(s, server_address);
listen(s,5);
.
sNew = accept(s, client_address);
.
n = read(sNew, buffer, amount)

SOCK_STREAM: type of communication: datagram communication

listen: server waits for a connection request of a client. "5" specifies the max. number of requested connections
waiting for acceptance.

acccept: system call to accept a new connection and create a new dedicated socketfor this connection.

connect: requests a connection with the specified server via the previously specified socket.

read/write: after the connection is established, write and read calls on the sockets can be used to send and receive
byte streams.
write forwards the byte stream to the underlying protocol and returns number of bytes sent successfully.
read receives a byte stream in the respective buffer and returns the number of received bytes.

Differences to the datagram communication interface:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Archtitecture: defines layers and interfaces between layers

Organization: defines components, behaviour and interaction

Remote Procedure Call (RPC)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Remote Procedure Call (RPC)

client
program

client
stub

comm.
module

server
stub

comm.
module

server
proceduredispatcher

Interface-definition-language (e.g.XDR)
Binding (Server - Portnr.)
Authentication

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Inter-Process-Communication (IPC)
multiple processes cooperate

Advantages: performance by concurent activities
structuring of application

Message oriented communication
Explicit message exchange between processes

Shared memory
Access to a set of memory cells

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Classification of message-oriented IPC:

Abstractions:
channels (Pipes)
Communication end points (Sockets, Ports)
Mailboxes, Queues
Signals

Channel classification
unidirektional
bidirektional (full-duplex, half-duplex)

