
Operating Systems II

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

File Systems

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

File Systems: Motivation

Why do we need another sort of memory

?
Persistence
Sharing
Protection
Size

?
?

?
?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

File Systems: System-oriented view

Files as general abstraction for long-lived system entities:

user documents: regular files
programs: executable file
information to organize data: directories
abstractions for storage devices: block files
abstractions to model I/O-devices: special files

captured in the file type

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

File Systems: User-oriented view

User-oriented way of organizing data:
• user readable names
• different file types reflecting the kind of data
• functions to organize data
• functions to search data

desktop paradigm:
document, folder, waste basket, etc.

What is the difference to a database system?
Why is a file system part of an OS and a DBS not?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Naming
Examples

name.extension Meaning
name.txt Text file
name.c C source file
name.o Object file (machine code ut not linked)
name.bak backup file
name. jpg file coded in the JPEG standard
name.mp3 file coded in the MPEG 3 standard
name.pdf pdf file (portbale document format)

gif, tiff, as, ps, zip, tex, hlp, html, doc, exe, xls......

Issues: Characters: upper/lower case, unicode,. .
Extensions: conventions vs. interpreted by the OS

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

information structure
field: basic data element
record: set of related fields
file: set of similar records

example information structure: <first name>, <family name>, <origin>, <home address>

frodo

baggins

hobbit

bag end

gandalf

grand grey

wizzard

homeless

.........

.........

.........

.........

data fields

......

records

file

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file organization
sequence
of bytes

sequence
of records

linked (tree)
structure

galadriel arwen

frodo sam

aragorn gimli boromir

pipin merry

gandalfelrond

legolas

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file organization and access

How to find a record? Alternatives in file organization:

key
sequential:
fixed length records
sequential order
according to the
key field

collection:
variable length records
chronological order

key addr.
fully indexed:
Index for multiple fields.
Index for each record.
No sequential search.

sequ.
searchindex sequential:

sequ. search in
the respective
section

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file type

header

object module

header

object module

header

object module

module name

date

owner

protection (AC)

size

an archive of object modules
(e.g. library procedures)

different approaches
to enforce appropriate
file usage

magic number
size of text segm.
size of data segm.

BSS-Size
size of symbol table

entry point

flags

text

data

relocation bits

symbol table

an executable file in UNIX

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file attributes

basic info: file name, file type, (file organization)

address info: device, phys. start address, act. size, max size

access control info: owner, access authorization, access rights

file info: creation data, creator ID, last read access,
ID of last reader, date of last modification,
ID of last writer, data of backup, actual use info.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file attributes
acces control who is allowed to do what with the file
passwd passwd for the file access
creator ID of the file creator
owner current owner
read-only-flag 0: R/W, 1:read only
hidden flag 0: default, 1: invisible
system flag 0: normal file, 1: system file
archive flag 0: changes saved, 1: not yet saved
ASCII/binary flag 0: ASCII file, 1: binary file
random access flag 0: sequential file, 1: random access
temporary flag 0: normal, 1: delete file on process termination
lock flags 0: not locked, ≠ 0: file locked
record length number of bytes in a record
key position offset to the key in the record
key length number of bytes in the key
time of last access date and time of last access to this file
time of last modification data and time of last change
actual (max) size number of (max) bytes in file

examples of
file attributes

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

accessing a file: operations

create delete
open close

read write
append

seek

set attributes get attributes

rename

explicit preparation
for file acccess

normal file acccess

search &
management

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

/* program to copy file abc to file xyz. Error handling and report are minimal. */

#include <sys/types.h> /* header files */
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main (int argc, char *argv[]); /* ANSI prototype */

#define BUF_SIZE 4096 /* buffer of 4096 Byte */
#define OUTPUT_MODE 0700 /* access rights of the new file */

int main (int argc, char * argv[])
{
int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF_SIZE];

if (argc != 3) exit (1); /* if not exactly 3 arguments: syntax error */

/*open input file and create output file */
in_fd = open (argv[1], O_RDONLY); /* open source file (abc) */
if (in_fd < 0) exit (2); /* if not possible: quit */
out_fd = creat (argv[2], OUTPUT_MODE); /* create target file */
if (out_fd < 0) exit (3); /* if not possible:quit */

/* copy loop */
while (TRUE) {

rd_count = read (in_fd, buffer, BUF_SIZE); /* read data block */
if (rd_count <= 0) break; /* end of file or error */
wt_count = write (out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit (4); /* wLcount <= 0 : error */

}

Copy file abc to
file xyz.
(Tanenbaum)

continue

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Copy file abc to
file xyz.
(Tanenbaum)

continued /* close file */
close (in_fd);
close (out_fd);
if (rd_count == 0)
/* no error at last read */

exit (0);
else

exit (5);
/* error at last read */

}

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Memory mapped files
Idea: Map files to virtual memory. Exploit paging mechanism to

swap data between disk and physical memory.
Benefit: file can be accessed by normal (memory) read and write

operations.

System calls:
map (virtual address): maps file to virtual address space starting at

virtual address.
unmap: remove file from virtual address space.

Problems: exact size of output file, sharing of memory mapped files,
file may not fit into virtual address space.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

organizing files: directories or folders

Single level directory: organized along users, simple and easy to implement

Hierarchical directory structure:

root directory

sub-directories

file file
file

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

hierarchical directories and pathnames

root

characters

bilbo frodo pipin

food clothes weapons

overcoat armour shoes

chapters places

...........

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

UNIX directory tree
bin
etc
lib
usr
tmp

/

bilbo
frodo
pipin
sam
merry

arch
ash
awk
bash
cat
....
....
zcat book

root directory

/usr/pipin/book

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

hierarchical directories and pathnames
example dialogue in Unix: typed commands, response

cd /
pwd
/
ls
bin boot dev etc home lib lost+found tmp usr var
cd
pwd
/usr/kaiser
ls -all
drwxr-xr-x 14 kaiser root 4096 March 22 18:17 .
drwxr-xr-x 3 root root 4096 Dec 11 2003 ..
-rw------- 1 kaiser usr 742068 Nov 13 2004 pubsub-12112003.tar.gz
....
....
cd ..
pwd
/usr

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

operations on directories

• creat(e)
• delete
• opendir
• closedir
• readdir
• rename
• link
• unlink

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

File system implementation

Issues:
how to map files to disk blocks
how to find the respective disk blocks
how to realize directories
how to share files

recall: the physical organization of a disk

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

R/W-head

sector

cylinder

track

arms

track

sector gap

header data (4096 Byte) ECC

R/W head

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system layout

PartitionsMaster
Boot
Record

Partition
Table

boot block super block mngt.of free blocks i-nodes root dir. files and directories

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Variations in organizing the files system

continuous allocation of disk blocks

...

file A file B file C file D file E

...

6 free blocks 4 free blocks

con: file size must be known in advance
identification and reuse of free parts

pro: simple implementation
good read performance

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Variations in organizing the files system
linked list

log.
block

0

log.
block

1

log.
block

2

log.
block

3

log.
block

4

file A

physical block 5 3 7 12 9

log.
block

0

log.
block

1

log.
block

2

file B

con: - random access to blocks is slow
- usable bytes in block ≠ 2n

pro: no (external) fragmentation

physical block 14 13 2

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Variations in organizing the files system
linked list implemented by a File Allocation Table (FAT) in memory

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

7

3

11

9

file A starts in
physical block 5

file B starts in
physical block 14

13
2

-1

-1 con: size is proportional to
disk size.

pro: omits random access
problems of linked listphysical

block no.

-1: file termination symbol

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Variations in organizing the files system
i-node, inode, index node

address block 0
address block 1

address block 2
address block 3

address block 4

address block 5

address block 6

address block 7
pointer to block
with further addr. block with

further addr.

file attributes
file attributes are e.g.:

owner
file type
access permissions
access time
number of links to the file
file size

pro: - Only the inodes of open
files need main memory.
No relation to disk size.

- Allows to store attributes
and file data separately.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

implementing directories

what information is needed in a directory entry?

information about the file type
how to find a file on the disk
additional information

file attributes

album
mail
papers
courses

inode

inode

inode

inode

directory structure
exploiting inodes

inode-no.

inode-no.

inode-no.

inode-no.

simple directory with fixed
length entries

album
mail
papers
courses

attributes
attributes
attributes
attributes

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

handling long file names
file names may be
variable length
1-255 characters.

in-line

file 1 total length
file 1 attributes

file 2 total length

file 2 attributes

file 3 total length

file 3 attributes

p r o j
e c t -
b u d g
e t ⌧ c
o n s u
m a b l
e s ⌧ a
o b ⌧

on a heap

⌧: termination symbol

.

.

.

file 1 total length

file 2 total length

file 3 total length

file 1 attributes

file 2 attributes

file 3 attributes

c o n s
u m a b
l e s ⌧

a o b ⌧

p r o j
e c t -
b u d g
e t ⌧

problem:
linear serach

improvements:
hashing
caching

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

sharing files

/

A B C

A A C

C C

?

?

directory

file

shared file

A,B,C : owner

A A

B C

C C C

problems:
- who is the owner of a shared file?
- how to ensure visibility of changes?

Directed Acyclic Graph

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

sharing files

directory of C

owner C
count=1

directory of B

owner C
count=2

B creates a link

owner C
count=1

C deletes file

inode

C

problem:
B is the only user of
a file of owner C.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

sharing files by symbolic links

directory of C directory of B

owner has full control over file

problem:overhead
- analyzing and following the
path requires additional disk
accesses.

- additional inode for every
symbolic link.

symbolic
link

/d1/d2/d3

pathname
of shared file

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

managing the disk

issues:
managing the physical disk space

block size
allocating free blocks
disk quotas

reliability
backups and recovery
consistency

file system performance
caching
block ahead read

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

managing the disk

impact of block size on space efficiency and data rate

data rate

disk space efficiency

da
ta

ra
te

 (K
B

/s
)

di
sk

sp
ac

e
ef

fic
ie

nc
y

(%
)

file size = 2 KB

block size
(Tanenbaum 2003)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

managing the disk

size of list and max. space requirements:
16 GB disk, block size 1k:
--> 16M entries by 32 bit
--> 1 block 255 (+1 to link the blocks) entries --> ~ 40 K blocks

1. Linked list of free blocks

size of list and max. space requirements:
16 GB disk, block size 1k:
--> 16M entries by 1 bit
--> 1 block 1k x 8 bits --> ~ 2K blocks

2. bit map of free blocks
changes over time when
more disk space is allocated

fixed over time

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

managing the disk
problem with caching of free entries in main memory

free list
in memory

free list
in memory

free list
in memory

3 blocks are
allocated

3 blocks are
released

not enough blocks
in free list
new list swapped
to memory

overflow of
free list
new list swapped
to memory

pointer to free blocks

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

managing the disk

disk quotas restrict disk space on a per user base.

Quota-tabletable of open files

soft block limit
hard block limit
number of blocks
block warning
soft file limit
hard file limit
number of files
file warning

attributes
..
User = 7
..
quota-pointer

quota entry for
user 7

..

..
..
..

Robustness and Dependability of a File System

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Loss of Data is the "Super GAU" in a computer system!

While the cost of a new computer is in the order of 5.000 €
the cost of lost date may easily be higher many orders of magnitudes !

File system must be protected against:
disk crashes
erroneous software
malicious accesses

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Robustness and Dependability of a File System

Impairment Countermeasures

defective blocks from manufacturing directory of bad blocks on medium
transient reading and writing errors code redundancy
physical destruction of disk backup on redundant medium, mirrored disk

(e.g. RAID 2), data replication,
software faults user related access rights, least priviledge
system crashes fsck, scandisk, journaled file systems
malicious accesses access protection, encryption, fragmentation
erroneous deletion of files no physical deletion, backups

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Backup copies

physical backup: copies all blocks of the disk to the backup medium.
pro: simple
con: saves free blocks, problems with bad blocks,

complete backup only.

logical backup: based on the file system structure. Recursively saves
directories and files starting at user selected dir's.

pro: incremental algorithm only saves changes since last
backup.

con: more complicated implementation.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

incremental backup

1

2 8 10

3 4 11

13 14

unmodified directory

file: unmodified since last backup

modified since last backup

5 6

9 12

16 17 18

Incremental backup:
exploits time and date to save modifications
since last backup

saves the entire path to the modified files
including directories even when they didn'd
change.

15

7

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1. mark modified
files and all dir's

phase 1,2 : mark
phase 3,4 : save

incremental backup

i-node numbers
.

2. unmark dir's to
unmodified files

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3. store marked
directories

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4. store marked
files 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

• the scheme stores all needed directories on the backup record first.
• during recovery they will occur first on the sequential medium and restored first.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file backup

Issues to be considered:

1. List of free blocks is a data structure in volatile memory and has to be rebuilt.
2. Multiple links to a file. This file has to be restored only once but the link has to

be re-established in all directories.
3. Sparsely used files with holes.
4. Special files as pipes and device specific files should not be backed up.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system consistency

Changes on files are made in volatile fast memory and
are not immediately stored on disk persistently.

memory
file images
(some blocks of a file) disk

directory images
(some blocks of a directory)

i-node images
(some blocks of the inode table)

free list images
(some blocks of the free list)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system consistency

after a crash...

First goal: maintain the consistency of the meta-data,
i.e. all data structures which are involved
in the management of the file system.
E.g. i-nodes, directories, free-lists.
Exploit redundancy in the file system organization.

Normally not considered: modifications on file data.
They are lost.

Journaled File Systems, Data Bases

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system consistency

fsck: file system check
checks file system meta data on consistency.

1. missed or duplicated blocks
2. directory structure

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system consistency

Missed or duplicated blocks: fsck
1. scans all inodes to build the list of used blocks
2. scans the free list or bit map to find the free blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 2 0 0 1

0 0 0 0 1 0 0 1 2 1 0 0 0 1 1 0

every field
counts hits

used

free

missed block: is not
present in either list

duplicated data blockduplicated block
in the free list

block
number

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system consistency

Case 1: Missed Block

block
number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1

0 0 0 0 1 0 0 1 2 1 0 0 1 1 1 0

used

free 1

Problem: reduced disk capacity
Solution: Assign missed blocks to free list

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system consistency

Case 2: Duplicated block in the free list

block
number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1

0 0 0 1 1 0 0 1 2 1 0 0 1 1 1 0

used

free 1

Solution: Rebuild free list and delete duplicated entry

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file system consistency

Case 3: Duplicated data block, i.e. block occurs in two files.

block
number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 0 1 1 0 0 0 1 1 2 0 0 1

0 0 0 0 1 0 0 1 2 1 0 0 0 1 1 0

11used

free

Problem: simple deletion results in further inconsistencies
Solution: copy one block to a free block and update the lists.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

checking the directory system
/

A B C

D F H

L M

N

E

J K

G I

O P Q

i-node # A count=1
i-node # B count=1

i-node # E count=2

i-node # N count=1

i-node # E count=3

i-node # Q count=1

count too
low

count too
high

1. step: build a list indexed by i-node numbers and count the occurence of
every file in every directory.

2. step: compare the list count with the link counter in the i-node entries of files.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

checking the directory system

i-node # A count=1
i-node # B count=1

i-node # E count=2

i-node # N count=1

i-node # E count=3

i-node # Q count=1

link count in i-node
is higher than act. count in list

link count in i-node
is lower than act. count in list

non-critical: i-node remains existent even
when all links to a file in the directories
are removed.
--> a space/efficiency problem

critical: i-node will be deleted even if there
exists a link to the file in some directory. When
link counter goes to "0" the file system marks
i-node as free and releases associated blocks.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

improving file system performance

caching

block read ahead

optimizing disk head movements

log-based file systems

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

the buffer cache

Problem: access to main memory is up to 6 orders of magnitute faster
than a disk access

map files to virtual memory.
under explicit progr. control

treat main memory as a cache for the disk.
transparent
similarities to virtual memory management.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

the buffer cache

hash table

head (LRU)

tail (LRU)

linked hash chain
linked LRU chain

Problem: block contents in memory and block contents on disk are not identical.
inconsistencies in case of crashes.
trade-off between frequent disk updates and loss of data.
explicit synchronization (sync).

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

optimizing disk access

i-nodes and asociated blocks are organized
in cylinder groups.

i-nodes at the beginning of the disk.
distance between i-node and asociated
blocks: number of cylinders/2

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Log structured file systems

Motivation:

CPU performance
disk capacity
main memory capacity

grow rapidly

Problem: disk access time doesn't improve much (seek ~10ms, wait ~4ms, write 50µs).
read acceses can be optimized through caching.
write accesses will be the most frequent operation.
write acces to disk becomes a substantial bottleneck.

idea: collect all changes to disk blocks and write them in a single segment to disk.
The resulting data structure is called a "log".

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Log File System (LFS) structure

segments

clearer
thread

writer
thread

segment
contents:
- i-nodes
- directory blocks
- data blocks

i-node
i-node map

indexed by
i-node number

appendrelease

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Log File System (LFS) structure

segments are written periodically or on demand

more overhead for finding information

much better performance than regular UNIX file system
on writing small amounts of data

better or similar as ordinary UNIX file system
for reads and writing large portions of data

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Example: Unix file system

Unix supports file names up to 255 characters (previously 14 chars.)
- Files is a sequence of bytes.
- File extensions are conventions.
- Few file types are supported via file type.

Unix supported file types:
- regular files
- directories contains a list of file names and the resp. i-nodes
- named pipes
- character oriented special files used to model serial I/O devices
- block-oriented special files used to model raw disk partitions

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Unix file system: navigating in directories
example dialogue in Unix: typed commands, response

cd /
pwd
/
ls
bin boot dev etc home lib lost+found tmp usr var
cd
pwd
/usr/kaiser
ls -all
drwxr-xr-x 14 kaiser root 4096 March 22 18:17 .
drwxr-xr-x 3 root root 4096 Dec 11 2003 ..
-rw------- 1 kaiser usr 742068 Nov 13 2004 pubsub-12112003.tar.gz
....
....
cd ..
pwd
/usr

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Mounting file systems
hard disk

/

A

D H

K B

floppy disk
/

A

D H

K

/

L M N

/

L M N

Unix allows a transparent view on different file systems
of different storage devices via the mount concept.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Locking file regions

1. shared Locks
2. exclusive locks

Objective: Improving the granularity of locking down to the byte of a file.

process A

process B

process B process D wants
to acquire an
exclusive lock.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Unix system calls

File related system calls

fd = creat(name, mode) Create a file
fd = open(path, how, options...) Open a file for read or write
s = close(fd) Close open file
n = read(fd, buffer, nbytes) Read file data in a buffer
n = write(fd, buffer, nbytes) Write file data in a buffer
position = lseek(Fd, offset, whence) Move file pointer
s = stat(name, &buf) Get file status
s = fstat(fd, &buf) Get file status
s = pipe(&fd[0]) create a pipe
s = fcntl(fd, cmd, . . .) file control, e.g. lock

device which holds the file
i-node number
mode
number of links
group
size in bytes
time of creation
time of last access
time of last modification

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Unix system calls

Directory related system calls

s = mkdir(path, mode) Create a directory
s = mkdir(path) delete directory
s = link(oldpath, newpath) create a link to an exicting file
s = unlink(path) delete link
s = chdir(path) change working directory

dir = opendir(path) open directory for read
s = closedir(dir) close directory
dirent = readdir(dir) read a directory entry
rewind(dir) = rewind und read again

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Unix file system management
Classical Unix System

super-
block

boot-
block

i-nodes data blocks

Berkeley Fast File :
- long names (255 charakters)
- structuring the disk in cylinder groups each with own super block,

i-nodes and data blocks
- 2 block sizes

Linux File System: very similar to Berkeley fast file system.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

i-nodes in UNIX
File Mode: 16-Bit Flag which stores access rights

0 .. 2 rights for "all" users <read, write, exec>
3 .. 5 rights for the "group" <read, write, exec>
6 .. 8 rights for "owner" <read, write, exec>
9 ..11 execution flag
12..14 file type (regular, char./block-oriented, FIFO pipe)

Link Counter number of directory references to this i-node
UID Owner ID
GID Group ID
Size in Bytes
File address 39 byte file address information
Last access date/time
Change of i-node date/time
Address info for blocks direct, single ind., double ind., triple ind.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

file allocation

addresses
of first
10 blocks

single indir.

double indir.

triple indir.

pointers to
disk blocks

file
information

i-nodeopen files
file descriptor
tables

- act. file pos.
- R/W
- pointer to

i-node
- act. file pos.
- R/W
- pointer to

i-node

father

child

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

capacity of UNIX file

direct 10 blocks 10 K
single indir. 256 blocks 256 K
double ind. 64K blocks 64 M
triple ind. 256x64K blocks 16 G

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Windows 2k File System

Windows 2k supports 3 File Systems for compatbility reasons:

FAT 16 (partitions ≤ 2G)
FAT 32
NTFS (NT File System)

useful website: http://linux-ntfs.sourceforge.net/ntfs/index.html

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

main features of NTFS

Recoverability after system crashes (including fault-tolerance features)

Protection and security

Very large disks and very large files

Multiple datastreams (which can be addressed under a single file name)

General indexing possibilities (acc. to file attributes)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

main features of NTFS files

NTFS supports sophisticated naming of files

- long (255 character) file names
- pathnames up to 32767 characters
- unicode representation

NTFS files are not simple byte streams, but..

- comprise multiple byte streams (compatibility with Apple Macintosh FS)
- structured by attributes
- attributes represented by byte streams
- max stream length: 264 bytes (18,4 Exabytes)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

W2K components supporting NTFS
I/O manager

disk driver

fault-tol.
disk driver

NTFS
disk driver

log file
service

cache
manager

VMM (virtual
memory manager)

log transaction

spanned /striped/mirrored volumes

r/w of a mirrored/
stripe-set devicewrite out

protocol
file

r/w
file

write to
cache

access file
or write out cache

r/w of a disk

load
request:
disk to
memory

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Spanned Volumes:
Logical partitions span multiple physical disks.

Motivations:
Transparent extensibility
Concurrent access to multiple physical disks improves performance

C:

E:

C:

E:C:

D:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Striped Volumes:
A physical disk drive includes multiple disks. Appears as a single disk
for the operating system with improved performance and reliability.

Motivations:
Concurrent access to multiple physical disks improves performance.
Redundant Array of (inexpensive) independent disks for FT.

(RAID-1, RAID-5)

6

3

5

21

4

nn-1n-2

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Win32 API

Important API functions for files:

Win32 Unix
CreateFile open Create or open a file; Return a handle
DeleteFile unlink Delete a file
CloseHandle close Close a file
ReadFile read Read data from file
WriteFile write Write data to file
SetFilePointer lseek position read pointer
GetFileAttributes stat Get File Attributes
LockFile fcntl Lock part of a file for multiple access
UnlockFile fcntl Release lock

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Win32 API

Important API functions for directories:

Win32 Unix
CreateDirectory mkdir Create a directory
RemoveDirectorY unlink Delete empty directory
FindFirstFile opendir Open directory and read entries
FindNextFile readdir Read next entry
MoveFile rename move file in another directory
SetCurrentDirectory chdir cange current working directory

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

NTFS basic concepts

Volume and File structure
Volume: Logical disk partition

Sector: Smallest physical storage unit (most common size: 512 Byte)

Cluster: One or more consecutive sectors of the same track (corresp. to a block)

The Cluster is the basic unit of storage allocation in NTFS

Volume size sector/cluster cluster size
≤ 512 MB 1 512 Byte
512 MB - 1G 2 1 K
1-2 G 4 2 K
2-4 G 8 4 K
4-8 G 16 8 K

> 32 G 128 64K

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

NTFS volume structure

PBS MFT data

PBS: Partition Boot Sector (up to 16 sectors)

MFT: Master File Table
is a file that can be placed freely
contains meta data: MFT2, Log file, Cluster bit map,

Attribute definition table, . . .
+ user file descriptors

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Structure of NTFS Master
File
Table

1. user file
reserved for future use
reserved for future use
reserved for future use
reserved for future use

$Extend
$Upcase
$Secure

$BadClus
$Boot

$Bitmap
$
$AttrDef
$Volume
$LogFile
$MftMirr

$MFT

1 kB

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Extensions, Quotas etc.
Conversion table for uper/lower case letters
Security Information
List of bad blocks
Bootstrap Loader
Bitmap of used/free blocks
Root directory
Attribute specification
Volume file
Log file for recovery
Copy of MFT
Master File Table

files holding
meta-data

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Structure of NTFS
Usual attributes in MFT entries:
Default Information Owner, protection info, time stamp, link counter, etc....
File name file name in unicode
Security descriptor (old) information now in $Extend and $Secure fields
Attribute list Place wher additional MFT entries are stored if required
Object-ID 64 Bit file ID for internal use (unique for a volume)
Reparse used for creating symbolic links
Volume name used in $volume only
Volume attribute used in $volume only
Index root used for directories (called index in Microsoft terminology)
Index allocation used for very large directories
Bitmaps used for very large directories
Logging-support system controls the logging in the log file
data data stream

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Structure of NTFS
The "data" attribute: obviously, not all data fit in a single entry.
Problem: How to find the associated blocks (clusters)?

MFT-
entry

start of
standard
info

header

standard
info

start of
file data

start of
file name

file name

header S #4S #2 S #3S #1

0 10 12 4 32 2 74 3 96 1 unused

cluster 12-15 32-33 73-76 96-96

0 10 12 21
MFT-
entry

standard
info file name unused

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Structure of NTFS
Storing file clusters in multiple MFT entries

108
107
106
105
104
103
102
101
100

MFT 105 MFT 107 series#1 series#k

series#k+1 series#m

series#m+1 series#n extension 2

extension 1

base entry

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Structure of NTFS
MFT entry for a small index (directory)

MFT-
entry

start of
standard
info

header

standard
info

start of
index

unused

MFT-index for file
length of file name
file name
...

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Structure of NTFS

CreateFile("C:\bilbo\web.htm", ..) created for every thread

\devices\??-index MFT for volume 1

C:
D:

harddisk volume 1

root index

bilbo

web.htm

13
12
11
10
9
8
7
6
5
4
3
2
1
0

handle

11

index to the
file in the
MFT of the
volume

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Structure of NTFS

More features:
• Compression of Addresses (16 --> 4)

• Compression of files

• Encrypted files

• Security and Access control

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Compression of files

0 15 16 31 32 47

compr. 50%

0 7

compr. 50%

23 24 318

85 924030 uncompressed37 55
disk addr.

MFT-
entry header

empty empty

0 48 30 8 0 8 40 16 85 8 unused0 8standard
info file name

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

Security and access protection

• secure login and antispoofing

• discretionary access control

• privileged access control

• process address space protection

• prevention of data leaks by zeroing all new pages before loading

• security auditing

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

overall NT security model
http://www.ciac.org/ciac/documents/CIAC-2317_Windows_NT_Managers_Guide.pdf

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

NT logon process
Logon

LSA
Authentication
Package run

Verify Authentication
in SAM Database

SAM returns
SID(s)

LSA creates
Access Token

LSA
creates Subject

Windows NT logon processes provide mandatory logon
for user identification and cannot be disabled.

To protect against spoofing, the logon process begins
with a Welcome message box that requests the user to
press Ctrl, Alt and Del keys before activating the
actual logon screen.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

the access token

header expir. groups standard owner group restricted privileges
time DACL SID SID SIDs

Security ID (SID): The SID is a variable length unique name (alphanumeric character string)
that is used to identify an object, such as a user or a group of users in a network of
NT/2000 systems.
Expiration time: defines validity interval for the access token (currently not used)
Discretionary Access Control List (D ACL): Default ACL when they are created by a process
and no other ACL is specified.
Owner/group SID: indicates the user/group who owns the process.
Restricted SID: enables the cooperation of trusted and non-trusted processes by contraining
access for the latter.
Privileges: enable to define "admin rights" in a more fine-grained fashion and associate these
with user processes.

http://www.webopedia.com/TERM/S/character_string
http://www.webopedia.com/TERM/S/network.html

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

the security descriptor
• is associated with every object
• defines who may access the object with which operation

header
denied

sam
111111
allowed

bilbo
001100
allowed

frodo
111111
allowed

all
001000

header
audit

gandalf
111111

header
owner SID
group SID

DACL
SACL

file

System
Access
Control
List

Access
Control
Element

Access
Control
Element

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2005

SRM access
validation

