
Programming abstractions and middleware for building control systems as
networks of smart sensors and actuators

Sebastian Zug, Michael Schulze, André Dietrich, Jörg Kaiser
Universität Magdeburg

Department for Distributed Systems
Universitätsplatz 2, 39106 Magdeburg, Germany

{zug, schulze, dietrich, kaiser}@ivs.cs.uni-magdeburg.de

Abstract

Developing complex sensor/actuator systems, like ro-
bot applications, is challenged by a multitude of different
hardware platforms, networks, programming languages,
data formats, etc. In this paper, we present our architec-
ture that copes with this heterogeneity and allows for a
flexible composition of smart sensors and actuators. The
main focus lies on a two layered approach combining the
communication middleware FAMOUSO and the program-
ming abstraction MOSAIC. FAMOUSO enables the infor-
mation exchange between networked systems, hides the
high degree of heterogeneity on hardware and network
level, and is usable from different programming environ-
ments. MOSAIC uses FAMOUSO and provides a generic
access to the exchanged information. Furthermore, it of-
fers a way to abstract from different sensor and actuator
hardware and provides a framework for application de-
velopment with predefined components, enabling compre-
hensive fault detection. The paper concludes with a case
study that shows how the middleware and programming
abstractions are used to build a distributed modular sys-
tem for a robot manipulator.

1 Introduction

Networked components like smart sensors, actuators
and special computational devices emerge as the hardware
building blocks for large scale automation systems. They
offer the potential to build such control systems in a modu-
lar and incremental way or even allow dynamic extension
of the system when mobile units connect to fixed environ-
mental sensors spontaneously. Unfortunately, many prob-
lems have to be solved on the way to a reliable, seamlessly
integrated system that is easy to program, easy to extend
and easy to maintain.

One problem originates in the high degree of hetero-
geneity on all system levels that adversely affects inte-
gration. The diversity appears not only on the lower sys-
tem levels, i.e. different controllers, field-busses, proto-

cols and operating systems, but also on the level of pro-
gramming languages and domain specific tools to pro-
gram, monitor and maintain these systems. Changes of
the system configuration (e.g. replacement of a compo-
nent) or low level changes in one component (e.g., a net-
work address) may involve a chain of dependent changes
in other components which may require specific tools and
tedious reprogramming of flash memory. This kind of het-
erogeneity problem can be tackled by an adequate com-
munication model and middleware that hides the network
addressing schemes and offers a content- or subject-based
routing scheme. We assume that the individual smart com-
ponents have substantial resource constraints. Many smart
components in the automotive and also automation indus-
try are based on 8 or 16-Bit CPUs and the communication
networks have limited bandwidth. Thus, the middleware
must be able to work on these systems.

A second problem is the diversity of sensors with many
different modalities and data formats. This can be solved
by a standard that must cover a wide range of possible
sensors from simple temperature sensors to cameras. The
usual way to achieve this is defining a standard descrip-
tion of a sensor in the form of electronic data sheets, like
in [11, 17], but modifications and extensions are needed,
as we describe later. Moreover, defining a structured pro-
gramming model and a general interface simplifies the im-
plementation of sensor components, greatly.

The third problem is related to the structure of a sensor
and addresses reliability issues. Assuming a decentral-
ized system of sensors and actuators connected by wired
and wireless networks, an indication of correctness of in-
formation is important. Firstly, the compatibility of in-
formation like physical units and the temporal settings
during the system integration and configuration phases
must ensured. We tackle this problem with expressive
descriptions of components and endowing the compiler
and integration tools with the respective checking capa-
bilities [28]. The second aspect is related to the assess-
ment of the quality of individual sensor measurements
during run-time. This requires self-checking capabilities
of the components. The proposed sensor structure exploits



model-based analytic redundancy and comprises building
blocks for the detection of outliers and other typical sensor
faults [9].

This paper gives an overview of our architecture, de-
scribes the middleware and the sensor structure, and
presents a case study of a robot application that includes
many sensors, actuators, networks, and monitoring and vi-
sualization components. The contribution of the paper is
to show the problems when integrating such a system and
how the developed concepts and mechanisms ease pro-
gramming of such systems and system integration. In
the next section we survey related work in the relevant
areas. Then we sketch the main properties of the mid-
dleware FAMOUSO and briefly present the sensor model
MOSAIC. Section 4 introduces the case study and high-
lights the benefits of the proposed architecture. A sum-
mary and outlook on ongoing work concludes the paper.

2 Related Work

The related work section examines two main fields that
are challenging when integrating networks of smart com-
ponents. Firstly, we need appropriate middleware that en-
ables communication across different kinds of networks,
covering the field-bus level and energy-efficient wireless
protocols. This middleware must run on different hard-
ware platforms down to small micro-controllers. Sec-
ondly, we require a programming abstraction that offers
a uniform access to the exchanged information and a pre-
defined processing structure, utilizing this common inter-
face. In the following section we examine existing ap-
proaches with respect to our general requirements.

2.1 Communication Approaches
Internet Scale Middleware SIENA [6], HERMES [25]
or READY [12] are publish/subscribe systems, based on a
static broker overlay network with reliable TCP/IP con-
nections. Thus, these systems support information ex-
change for distributed application, but they demand a stan-
dard operating system like Linux or Windows, requiring
powerful devices.

The Network Data Distribution Service NDDS [24] or
the ACE ORB (TAO [13]) are publish/subscribe systems,
which support many platforms and also offer soft real-
time features. However, the communication is based on
UDP/IP, having also requiring powerful devices.

In general, traditional middleware systems such as
DCOM (Distributed Component Object Model [10]), JMS
(Java Messaging Service [31]) or CORBA-DDS (Com-
mon Object Request Broker Architecture-Data Distribu-
tion Service [23]) are normally heavyweight in terms of
memory and computation and therefore not suitable for
the use on resource-constrained embedded systems.

Robotic Middleware In the robotic field, middleware
systems have been developed that try to ease the de-
velopment by composing the robot’s control system at

the software level with components or services. Sys-
tems like OROCOS (Open RObot Control Software www.
orocos.org), OCERA (Open Components for Em-
bedded Real-time Applications www.ocera.org) or
Microsoft RoboticStudio [21] fall into this category.
OROCOS and OCERA are component systems, using
a CORBA-DDS implementation for the information ex-
change of distributed applications. However, integrating
low-level components connected via an industrial field-
bus the communication model is different, and applica-
tions have to know where information are located and real-
ize the access to such a bus by itself to get the required in-
formation, which makes the development uncomfortable.

In contrast to the component approach, the Microsoft
RoboticStudio uses a service-oriented architecture, which
supports the simulation of robot behavior in a virtual en-
vironment, based on realistic physical models that repro-
duce the mechanical behavior and offers the simulation of
most common sensors and actuators. Furthermore, it al-
lows applying the same control schemes to real hardware.
However, the disadvantage is the high resource require-
ments, because it uses TCP/IP for the communication and
needs a whole .NET framework to be worked.

Sensor Network Middleware For Wireless Sensor Net-
works (WSNs) only few middleware systems are avail-
able, like MIRES [30] supporting publish/subscribe com-
munication or TinyLIME [7] providing a tuple space. Us-
ing these middleware systems means to be tied to the com-
ponent model of TinyOS [16], because both are developed
on top of this. Furthermore, applications have to be pro-
grammed in NesC, the programming language of TinyOS,
which means on the one hand the developer can not use
its preferred tools and on the other hand it needs to learn a
new language. However, the main drawback of using the
mentioned systems is the lack of support of TinyOS for
different platforms, because at the moment of this writing
only three different CPUs are supported.

2.2 Programming Abstraction Approaches
Instrumented Logical Sensor Henderson et al. pro-
posed hierarchically applicable fusion/filter units, called
Logical Sensors or Instrumented Logical Sensors [14] and
developed a complete toolchain with a sensor descrip-
tion, configuration, and code generation. Henderson’s ap-
proach focuses on an adaptability of each Logical Sen-
sor to a varying number of incoming data. A sensor se-
lection mechanism manages the data acquisition for this
purpose and tries to compensate missing individual sen-
sor measurements or network inputs. The Logical Sensor
integrates network interfaces only. Real transducers and
their drivers are executed separately in a special gateway
instance of a Logical Sensor. The characteristic output
vector, defined for each Logical Sensor, does not consider
several aspects of sensor applications like perception un-
certainties, units of measurement, etc. necessary for a tai-
lored processing or fusion.

2



Fusion Channels The fundamental abstraction of the
architecture described by Agarwalla et al. in [26] is called
a Fusion Channel (FC). A FC abstracts a set of inputs and
encapsulates a programmer defined fusion function. The
inputs are obtained from a distinct address space or from
a remote host. The behavior of the fusion process is con-
trollable by requests to the FC or triggered in case of new
input data. Applications access the FC result in two ways:
as a single value with a timestamps or the whole FC out-
put buffer. Requests specify a minimum number of inputs
and a timeout to get a result. Further, FC may be orga-
nized in hierarchical structures. The FC approach does
not consider an abstract description of the exchanged in-
formation. The developer, who prepares a fusion applica-
tion running inside a FC, has to have an explicit knowl-
edge of the memory usage. An implementation of the FC
concept in the Dfuse framework [19] requires a complex
predefined infrastructure and uses Ethernet based proto-
cols only.

Virtual Sensors The traditional Virtual Sensor merges
several measurements into a joint estimation, quite often
based on a physical model as presented in [2] . In contrast,
Bose et al. [4] describe a programming abstraction for dis-
tributed applications and defines a number of subclasses
for different purposes of hierarchical ordering. The first
level, the Singleton Virtual Sensor (SVS), accepts only in-
dividual measurements and assigns sensor position, sensor
ID, etc. A Basic Virtual Sensor (BVS) combines multiple
SVSs of the same type and provides a better reliability. A
Derived Virtual Sensor integrates different BVSs and pro-
vides abstract SQL queries to raw and joint data. In case of
crashed Virtual Sensors the network structure is reconfig-
ured automatically. The reconfiguration mechanism lim-
its the Virtual Sensors to simple sensor assumption about
sensor specifications i. e., equal measurement noise, equal
range, etc. for all sensors. Additionally, Virtual Sensor
applications are limited to a hierarchical depth of three
nodes, according to the definition of the three subclasses.

Smart Transducer Interface (STI) The OMG Smart
Transducer Interface Specification [22] provides an access
to sensor measurements via the CORBA real-time service
interface. The standardization of the different interfaces
is mapped on an interface file system (IFS) typically in
the memory of each Smart Transducer. For an interpreta-
tion of the outputs an additional metadata for each IFS are
stored on a central node with higher performance. The in-
tegration of CORBA limits the implementation of the STI
approach to powerful CPUs. The authors of [11] enhanced
the STI concept and developed an XML description of
the functionality for simple fusion tasks, also offering a
TTP/A network support.

IEEE 1451 The Smart Transducer Interface represents
a family of standards for connecting smart devices [17].

IEEE 1451.2 defines an electronic data sheet and a dig-
ital sensor interface to access sensor measurements, set
actuators, control maintenance functions, or to obtain the
data sheet of the sensor/actuator system. Hence, the
standard establishes the communication between a Net-
work Capable Application Processor (NCAP) and an ac-
tual sensor node called Smart Transducer Interface Mod-
ules (STIM). The combination enables a flexible access
to different networks via special NCAP gateways. The
standards 1451.3 to 1451.5 enhance the interaction be-
tween STIMs and NCAPs to various protocols and inter-
faces. The description of the sensors, stored at each node,
contains a detailed specification of the sensor’s vendor,
firmware, and physics in a compressed Transducer Elec-
tronic Data Sheets (TEDs). TEDs do not support complex
sensor information like characteristic curves for lineariza-
tion or probability functions of sensor’s noise. The use in
realistic sensor scenarios without this information is quite
limited. Compared to other mentioned approaches IEEE
1451 represents an abstract description of the sensors in-
terfaces only, which have to be mapped to a predefined
number of sensor types. In [18] the authors use some
concepts of the standard to develop a more common pro-
gramming abstraction with middleware interactions but
restricted to simple sensor models.

2.3 Conclusion
The described middleware implementations are usable

in their specific contexts. They support special types of
networks and protocols and are either limited in scope
and functionality when supporting small devices or they
require very powerful nodes. None of the enumerated ab-
stractions, standards, etc. fully meets our expectations for
a unified programming abstraction for sensors and actua-
tors that considers varying configurations with a common
interface access and are executable on performance lim-
ited devices. Moreover, the related schemes do not pro-
vide integrated fault-tolerance mechanisms.

3 Architecture

We propose an architecture, providing the flexibility to
integrate and segregate components during run-time, dy-
namically. For this purpose we combine a communication
middleware and a programming abstraction for distributed
applications. The middleware organizes the transmission
of all necessary information, while the programming ab-
straction is responsible for an adequate filtering, selection,
fusion, and validation.

3.1 Communication – FAMOUSO
Our middleware FAMOUSO (Family of Adaptive

Middleware for autonomOUs Sentient Objects [15, 27,
29]) provides an event-based communication over differ-
ent network types, according to the publisher/subscriber
paradigm. In contrast to an address-based communica-
tion, an anonymous content-based communication is used,

3



where events are exchanged between communication end-
points. Publishers as well as subscribers are roles that
applications have during the communication. Related to
its characteristic as publisher, subscriber, or both, applica-
tions specify the kind of events they produce or consume.
On that simple scheme, FAMOUSO provides spontaneous
and dynamic many-to-many communication without any
assumptions about synchrony of events. The communi-
cation is always asynchronous, avoiding control flow de-
pendencies and enabling the autonomy of communication
participants.

The exchanged information – FAMOUSO events –
consists of three parts: a subject, optional attributes, and
content. Optional attributes could be context attributes,
which deliver additional information about the origin of
the event like location or timestamp. Subjects are defined
by the applications, and they build a global address space,
spanning across all networks. This feature is exploited
by gateways that enable and manage communication be-
tween different networks. The uniqueness of subjects is
used firstly to filter the information flow on network bor-
ders if a subject is only required within a specific subnet,
and secondly to perform forwarding if the subject is sub-
scribed outside.

From the perspective of most applications, the defi-
nition of events and its use should be sufficient. How-
ever, in the embedded field, applications have often qual-
ity of service (QoS) demands regarding real-time or de-
pendability issues. These demands have repercussions to
the underlying support system, because the system has
to ensure and enforce given guarantees. To tackle that
challenge, FAMOUSO has the notion of event channel,
which is used firstly as an abstraction for event dissem-
inations, secondly for the specification of dissemination
requirements like deadline, jitter, omission degree, etc.,
and thirdly for reserving the needed local as well as net-
work resources to enforce the given guarantees if possi-
ble. Further, FAMOUSO supports with its Multi-Level
Composability Check Architecture (MLCCA [28]) an in-
tegrated component that detects a misconfiguration or an
unrealizable application demand as early as possible. If
an event channel is correctly setup, events can be trans-
ferred through this event channel to its destinations, if the
subject of the event corresponds to that from the channel.

FAMOUSO is realized as a layered architecture. The
number of layers depends on the selected middleware con-
figuration, but FAMOUSO has usually three layers, as de-
picted schematically in Figure 1. The number of layers
grows in case of complex configurations for e. g., gate-
ways due to the need to integrate the respective functional-
ity into the infrastructure. On each layer certain function-
ality is implemented, and the abstraction level increases
from the concrete network layer up to the event layer,
which provides the publisher/subscriber interface. Appli-
cations get and use, independently of the actual configu-
ration of the middleware, only this interface.

The different layers offer special functionalities. On

Concrete Network Layer

Abstract Network Layer

Event Layer

Application Layer

Publish/Subscribe Interface

HRT-ECHFragmentation
Protocol

ECH
Resource

Management

Configuration
Protocol

Binding
Protocol

event

message

network
specific
packet

CAN WirelessEthernet

MATLAB/Simulink Python

C/C++ LabVIEW
Java

.NET

Figure 1. Schematic view on the layered ar-
chitecture of FAMOUSO

the Event Layer level, the event channels are managed by
the Event Channel Handler (ECH). The ECH takes care
about necessary resources, and observes the guaranteed
QoS parameters at run-time. For example, if an appli-
cation specifies a period of 50ms for incoming events
on an event channel, and within the last 50ms no event
arises, leading to a specification violation, the middleware
calls an error-handler callback for this event channel. The
callback mechanism of the middleware permits indicating
specification violations, enabling applications to be aware
of violations, and thus reacting accordingly for example
with a fail-safe state or with adaptation.

The following layer, which is the Abstract Network
Layer, is responsible for functionality that can be realized
independently of specific network characteristics and thus
made available for several networks. One example is the
adaptive fragmentation protocol, which enables transfer-
ring large events over networks that are not able to send
such events as a whole. Furthermore, the layer provides
the real-time communication mechanisms for events that
are termed as messages here.

The Concrete Network Layer (CNL), the lowest layer,
encapsulates all this functionality that is absolutely spe-
cific for the respective network, because networks differ
in a lot of ways (e. g., address scheme and message for-
mat) and a generalization of all functionality is not possi-
ble. Firstly, the CNL contains the binding protocol, which
is responsible for binding the subject to a specific network
representation, because this totally differs between CAN
or Ethernet, and secondly, the configuration protocol con-
figures the node to give it a unique network name. To
ensure the compliance of the network protocol character-

4



istics, the protocols exist in specialized versions for each
supported network and they are part of the respective net-
work layer realization, which supports the upper layers
with functionality for the communication.

FAMOUSO supports a broad variety of different
hardware platforms ranging from low-end 8-Bit micro-
controllers up to high-end 64-Bit server systems and en-
ables interaction over different communication media like
the CANfield-bus, Wireless Sensor Networks (WSN) like
IEEE 802.15.4,Wireless Mesh Networks like AWDS [3],
and Ethernet like UDP broad- and multicast (Figure 1).
FAMOUSO can be used from different programming lan-
guages (C/C++, Python, Java, .NET) as well as from engi-
neering tools (LabVIEW, MATLAB/Simulink) simultane-
ously. Thus, the middleware enables the developers to in-
dividually choose their preferred combination of tools and
languages. Objectives of FAMOUSO are configurability,
adaptability, portability, and efficient resource usage to al-
low also the deployment on small resource-constrained
embedded devices.

3.2 MOSAIC
A programming abstraction for distributed applications

should offer three core elements: firstly, it needs a generic
access to the exchanged information and an abstract in-
terface to sensors/actuators. Secondly, it should provide a
modular structure for applications, because such a prede-
fined modular structure allows a flexible replaceability of
inner components and enables a comprehensive fault de-
tection and classification as the third important property.

Based on these requirements we developed our fraMe-
work for fault-tOlerant Sensor dAta processIng in dy-
namiC environments (MOSAIC) that defines an appropri-
ate programming abstraction – the “Smart Abstract En-
tity”. This approach extends and combines the concept of
preprocessed and self describing measurements done by
Smart Sensors in combination with the Abstract Sensor
concept of Marzullo [20].

Due to the flexible composability and in relation to
the different purposes of Smart Abstract Entities, we dis-
tinguish between three variants that can be combined in
distributed applications: the first one, the Smart Abstract
Sensor, visible in Figure 2, uses one or more real trans-
ducers to perceive the environment and communicates the
measurements after filtering and validation tasks. In con-
trast to this variant, the second one is the Smart Abstract
Actuator, which controls a mechatronic device based on
the information obtained form the communication inter-
face. The Smart Abstract Fusion Node does neither in-
clude sensors nor actuators and uses the communication
interface only. Such entities are used for measurement fu-
sion and processing, simulated sensors, etc.

In Figure 2 we depict the basic building blocks of a
Smart Abstract Sensor. Except for the actuator output
interface, Smart Abstract Actuators are structured very
similarly to Smart Abstract Sensors. From the applica-
tion point of view we have to cope with two interface

FAMOUSO

Sensor(s)

Abstract Sensor Interface

Application

Outlier
Detection

Fault
Detection

Statistical
Check

Validity
Calculation

Abstract Network Interface

Pub/Sub

Fa
ul

tD
et

ec
tio

n

Figure 2. Smart Abstract Sensor Structure

types in general. The first one organizes the access to
data contained in FAMOUSO events, arranges and buffers
the data according to application requirements and col-
lects fault notifications from FAMOUSO (for instance due
to the absence of periodic events). The knowledge about
the data format of events is located within an XML elec-
tronic data sheet for each FAMOUSO event channel. This
XML-document contains all information that are neces-
sary to interpret an incoming event correctly (data types,
attributes, units, uncertainties, etc.) and to supervise the
channel (deadlines, periods, and omissions).

The second interface of a Smart Abstract Entity de-
picted in the upper part of Figure 2 is responsible for
the communication with sensor and actuator hardware,
and furthermore linearizes and transforms sensor mea-
surements (e. g., voltage from ADC into degree Celsius
for temperature sensors). We used the same approach
again and developed an XML description that contains
sensor and hardware specific properties and embed them
into a toolchain for Abstract Entities based on MAT-
LAB/Simulink [5]. In combination with the FAMOUSO
event channel descriptions, the developer obtains an ap-
plication framework that includes both abstract interfaces.
The specific configuration of sensor interfaces is encap-
sulated in the model generation process. Thus, the en-
gineer focuses on the application development, uses do-
main specific development tools, and does not need not to
cope with communication mechanisms nor hardware im-
plementation.

A predefined application structure is important to en-
able fault detection mechanisms in all components, be-
cause it is a cross cutting concern. We enhanced the exist-
ing idea of Smart Sensors with the fault-tolerance aspect.
Each component of the application framework calculates
a fault probability that is merged in a fault detection com-
ponent and assigned to each generated event at the end.
Therefore, we analyzed the faults of distributed sensor
and actuator applications and discussed possible detec-
tion methods and derived a modular structure for Smart
Abstract Sensors in [9]. Besides, the flexible communi-

5



CAN

CAN

Ethernet

FAMOUSO

AVR
(C++)

Distance
Sensor

PowerPC
(C++)

Robot
Control

PC
(Python)

Virtual
Sensor

PC
(MATLAB)

Path
Calc

PC
(C++)

Visuali-
sation

Basic System Safety Extension

Enhanced System

Figure 3. Scenario structure combining FAMOUSO and MOSAIC

cation infrastructure enables new fault-tolerance methods
for Smart Abstract Sensors. Each Smart Abstract Sensor
is subscribed to the fusion result that is potentially avail-
able. This feedback offers redundant information and en-
ables an efficient validation of the current measurement.

As shown in this section, we continued the layered ar-
chitecture of FAMOUSO in our programming abstraction,
reduced the integration effort for sensors and communica-
tion interfaces, and presented a comprehensive program-
ming abstraction for distributed applications.

4 Scenario

Using our layered FAMOUSO/MOSAIC architecture
throughout the system allows to setup distributed applica-
tions easily. Furthermore, applications may be enhanced
by adding components dynamically and without any need
to change application code of other running system com-
ponents. In industrial environments for example, a high
level plant asset management system subscribes to in-
formation of different production lines for monitoring or
even control purposes. On a lower system level, additional
sensors can be integrated to extend the sensor-based per-
ception area of the environment.

We present a scenario that serves as a typical exam-
ple to emphasize the benefits of our approach by show-
ing aspects like modularity and dynamic composability.
As a physical actuator, we use a robot manipulator that is
equipped with a limited number of real distance sensors,
observing the near environment. The manipulator follows
a pre-calculated trajectory and stops in case of a detected
obstacle. Next, we integrate a safety extension, which al-
lows for adding e. g. virtual walls dynamically, in order to
restrict the manipulator’s working area for safety reasons.
Furthermore, we use this example setup in the develop-
ment phase of reliable and maintainable robot applications
as well as when exploring extended human-robot interac-
tion schemes.

Figure 3 presents the schematic structure of the sce-

nario and illustrates the diversity of components, pro-
gramming languages, and underlying communication net-
works. Due to the FAMOUSO middleware and MO-
SAIC all components can be easily integrated or segre-
gated without much effort. Implementing the scenario
without the support of FAMOUSO and MOSAIC is possi-
ble, however, it means implementing the low-level access
to a CAN network “Basic System” and accessing a UDP
network from three different programming languages.
The data exchange between the CAN and UDP network
is also in the responsibility of the developer, but using
FAMOUSO gateways (not depicted in Figure 3) are an
integral part of the infrastructure. In the same way an im-
plementation may be done without fault-tolerance mech-
anisms and individual data formats instead of generalized
definitions in electronic data sheets. However, the effort to
establish a dynamic configurable and maintainable appli-
cation increases significantly and error-proneness grows.

4.1 Basic System
The basic robot application consists of two elements

that are connected via CAN. These are a PowerPC, in
the role of a Smart Abstract Actuator, and a Smart Ab-
stract Distance Sensor that is controlled by an AVR
AT90CAN128, both programmed in C++. The AVR pub-
lishes events, periodically. Events contain a distance mea-
surement, the related validity value, and respective sensor
failure/error modes. The PowerPC is responsible for con-
trolling the Katanta robot, a five degrees of freedom ma-
nipulator. This Robot Control publishes status data (e. g.,
angles of robot’s axes, different modes, and present cur-
rent) and subscribes to control commands for movement,
speed, and emergency stop.

4.2 Safety System
The basic system may be enhanced by a safety system

without changing anything at the base system. As shown
in Figure 3, we integrate a safety system consisting of
two additional PCs that are connected to the Ethernet. A

6



FAMOUSO gateway connects both networks and ensures
that events are routed to the interested participants. One
of the additional components, a Virtual Sensor, is imple-
mented in Python, and it publishes distance values. These
distance values are calculated from the robot’s distance to
some virtual walls. In this way it is possible to define vir-
tual safety areas the robot is not allowed to leave. The
only data that is required by the Virtual Sensor here are
the angles of robot’s axes.

The second component, the Path Calculation is real-
ized on a separate PC and is implemented in MATLAB.
The manipulator’s trajectory is calculated depending on
all available sensor distance data – real or virtual – as well
as to the values and states of the robot’s axes. A path is
composed by multiple stages that are published sequen-
tially in form of axes values. A new stage is transmitted
when the robot reaches a target position. If the robot is un-
able to reach its target position due to a detected obstacle,
another path will be calculated and published.

4.3 Visualization
As a third part of our scenario, we add a Visualization,

again without any adaptation of other components of the
original system at all. This application is for supporting
factory workers, developers, and maintenance workers by
using the technique of Augmented Reality, which presents
an enhanced visual representation of a work space. The
realization of the Visualization uses ARToolKit [1] and
OpenGL to overlay real world camera images with addi-
tional information. A detailed description of the benefits
of using Augmented Reality to support different kinds of
users in industrial application is beyond the scope of this
paper and can be found in [8].

The Visualization component subscribes to different
information (e. g., axes positions, sensor measurements,
stages of path calculation) according to user require-
ments and presents the information in an appropriate man-
ner. For visualizing the information perspectively correct,
Augmented Reality needs to match the real and virtual im-
ages. The ARToolKit uses marker-based object identifica-
tion, and information is relatively drawn to the detected
markers.

The screenshot taken from an ordinary monitor in Fig-
ure 4 shows such an Augmented Reality in operation. It
depicts for example a view for a developer, which dif-
fers completely from the view that a factory worker would
need to interact with the robot. For these scenarios and ap-
plications head-mounted displays will be more appropri-
ate than monitors, however the application can be adapted
very easily to these more advanced devices.

A factory worker requires a proper graphical represen-
tation of safety areas (subscription to Virtual Sensor), ro-
bot’s future trajectories (subscription to Path Calculation),
or a graphical representation of robot’s states (subscrip-
tion to Robot Control).

The visualization for developers like in our scenario
can be more complex to enable playing around with the

Figure 4. Visualization for engineers, pre-
senting the current sensor output

experimental system to acquire experience. This includes
for example sensor data (subscription to Virtual Sensor
and Distance Sensor), robot’s states and position of axes
(subscription to Robot Control). While in this case it is
also appropriate to use colors, color transitions or trans-
parency to visualize additional information like uncertain-
ties, ranges, or the age of sensor data. Additional informa-
tion like diagrams or robot’s contour can be placed onto
display as well.

5 Conclusions and Outlook

MOSAIC and FAMOUSO ease the development of
extensible, distributed and modular applications across
different platforms and networks. We demonstrated the
benefits in a robotic scenario. The communication mid-
dleware enables a dynamic composition during develop-
ment process, configuration and even on run-time for sys-
tem upgrades. FAMOUSO supports domain specific lan-
guages and flexible and seamless integration of distributed
hardware and software modules. This opens an easy way
for Hardware-/Software-in-the-Loop test scenarios. To
address the specific problems of correct sensor informa-
tion in a decentralized and dynamic scenario, MOSAIC
establishes a generic smart component structure and inter-
face.

Next steps will include improvement of the code gen-
eration process for constrained platforms, integration of
multilevel compliance checks based on our XML descrip-
tions and extended detection mechanisms for faults, typi-
cal for smart distributed sensors.

Acknowledgement

This work is partly founded by the Ministry of Educa-
tion and Science (BMBF) within the project “Virtual and
Augmented Reality for Highly Safety and Reliable Em-
bedded Systems” (ViERforES - no. 01IM08003C).

7



References

[1] Artoolkit. http://www.hitl.washington.edu/
artoolkit/, 2007. [(online), as at: 25.02. 2010].

[2] P. Albertos and G. Goodwin. Virtual sensors for control
applications. Annual Reviews in Control, 26(1):101–112,
2002.

[3] AWDS project. http://awds.berlios.de, 2009.
[4] R. Bose, A. Helal, V. Sivakumar, and S. Lim. Virtual sen-

sors for service oriented intelligent environments. In Pro-
ceedings of the third conference on IASTED International
Conference: Advances in Computer Science and Technol-
ogy, pages 165–170, Phuket, Thailand, 2007. ACTA Press.

[5] T. Brade, M. Schulze, S. Zug, and J. Kaiser. Model-Driven
development of embedded systems. In 12th Brazilian
Workshop on Real-Time and Embedded Systems (WTR),
Gramado, Brazil, 24 May 2010. Brazilian Computer Soci-
ety.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and Evaluation of a Wide-Area Event Notification Service.
ACM Trans. Comput. Syst., 19(3):332–383, 2001.

[7] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy,
and G. Picco. TinyLIME: Bridging Mobile and Sensor
Networks through Middleware. In Third IEEE Interna-
tional Conference on Pervasive Computing and Commu-
nications, pages 61–72, Kauai Island, HI, USA, March
2005.

[8] A. Dietrich, M. Schulze, S. Zug, and J. Kaiser. Visu-
alization of Robot’s Awareness and Perception. In First
International Workshop on Digital Engineering (IWDE),
Magdeburg, Germany, 14 June 2010.

[9] A. Dietrich, S. Zug, and J. Kaiser. Detecting external
measurement disturbances based on statistical analysis for
smart sensors. In Procedings of the IEEE International
Symposium on Industrial Electronics (ISIE), 2010.

[10] G. Eddon and H. Eddon. Inside Distributed COM. Mi-
crosoft Press, 1998. ISBN 1-57231-849-x.

[11] W. Elmenreich, S. Pitzek, and M. Schlager. Model-
ing Distributed Embedded Applications on an Interface
File System. In Proceedings of the Seventh IEEE Inter-
national Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC’04), pages 175–182, Vienna,
Austria, 2004.

[12] R. Gruber, B. Krishnamurthy, and E. Panagos. The Ar-
chitecture of the READY Event Notification Service. In
Proceedings of the 19th IEEE International Conference
on Distributed Computing Systems Middleware Workshop,
pages 01–08, 1999.

[13] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The De-
sign and Performance of a Real-time CORBA Event Ser-
vice. ACM SIGPLAN Notices, 32(10):184–200, October
1997.

[14] T. C. Henderson and M. Dekhil. Instrumented Sensor Sys-
tem Architecture. The International Journal of Robotics
Research, 17(4):402–417, 1998.

[15] A. Herms, M. Schulze, J. Kaiser, and E. Nett. Exploiting
Publish/Subscribe Communication in Wireless Mesh Net-
works for Industrial Scenarios. In Proceedings of Emerg-
ing Technologies in Factory Automation (ETFA ’08), pages
648–655, Hamburg, Germany, September 2008.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Networked
Sensors. ACM SIGPLAN Notices, 35(11):93–104, Novem-
ber 2000.

[17] IEEE Standards Association. IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators (IEEE
1451.2), 1997.

[18] J. Kaiser and H. Piontek. CODES: Supporting the devel-
opment process in a publish/subscribe system. In Proceed-
ings of the fourth Workshop on Intelligent Solutions in Em-
bedded Systems WISES 06, pages 1–12, Vienna, 30. June
2006. ISBN: 3-902463-06-6.

[19] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto,
A. Paul, and U. Ramachandran. Dfuse: a framework
for distributed data fusion. In Proceedings of the 1st
international conference on Embedded networked sensor
systems, pages 114–125, Los Angeles, California, USA,
2003. ACM.

[20] K. Marzullo. Tolerating Failures of Continuous-Valued
Sensors. ACM Transactions on Computer Systems
(TOCS), 8(4):284–304, November 1990.

[21] Microsoft Corporation . Microsoft robotics stu-
dio. online, http://msdn.microsoft.com/
en-gb/library/bb881626.aspx.

[22] Object Managment Group (OMG). Smart Transducer IN-
terface Specification, 2003.

[23] OMG. Data Distribution Service for Real-time Systems
Version 1.2. Object Managment Group, 1. January 2007.

[24] G. Pardo-Castellote and S. A. Schneider. The Network
Data Delivery Service: Real-Time Data Connectivity for
Distributed Control Applications. In Proceedings of the
ICRA, volume 4, pages 2870–2876, San Diego, CA, USA,
May 1994. IEEE Computer Society Press.

[25] P. R. Pietzuch and J. Bacon. Hermes: A Distributed Event-
Based Middleware Architecture. In ICDCSW ’02: Pro-
ceedings of the 22nd International Conference on Dis-
tributed Computing Systems, pages 611–618, Washington,
DC, USA, 2002. IEEE Computer Society.

[26] U. Ramachandran, R. Kumar, M. Wolenetz, B. Cooper,
B. Agarwalla, J. Shin, P. Hutto, and A. Paul. Dynamic
Data Fusion for Future Sensor Networks. ACM Transac-
tions on Sensor Networks (TOSN), 2(3):404–443, 2006.

[27] M. Schulze. FAMOUSO – Eine adaptierbare Publish/ Sub-
scribe Middleware für ressourcenbeschränkte Systeme.
Electronic Communications of the EASST (ISSN: 1863-
2122), 17, 2009.

[28] M. Schulze and G. Lukas. MLCCA – Multi-Level Com-
posability Check Architecture for Dependable Communi-
cation over Heterogeneous Networks. In Procedings of
14th International Conference on Emerging Technologies
and Factory Automation, Mallorca, Spain, 22-26 Sept-
meber 2009. IEEE.

[29] M. Schulze and S. Zug. Exploiting the FA-
MOUSO Middleware in Multi-Robot Application Devel-
opment with Matlab/Simulink. In Proceedings of the
ACM/IFIP/USENIX Middleware ’08 Conference Compan-
ion, pages 74–77, Leuven, Belgium, 1-5 December 2008.
ACM.

[30] E. Souto, a. Germano Guimar G. Vasconcelos, M. Vieira,
N. Rosa, and C. Ferraz. A Message-Oriented Middle-
ware for Sensor Networks. In MPAC ’04: Proceedings
of the 2nd workshop on Middleware for pervasive and ad-
hoc computing, volume 77 of ACM International Confer-
ence Proceeding Series, pages 127–134, Toronto, Ontario,
Canada, 2004. ACM.

[31] Sun Microsystems, Inc. Java Message Service (JMS)
Specification 1.0.2, 1999.

8


