
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.:

Michael Schulze und Jörg Diederich

Arbeitsgruppe Eingebettete Systeme und Betriebssysteme

FIN-008-2010

Reducing time and effort by concurrent firmware
update processes on micro-controllers

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-008-2010

Reducing time and effort by concurrent firmware
update processes on micro-controllers

Michael Schulze und Jörg Diederich

Arbeitsgruppe Eingebettete Systeme und Betriebssysteme

Technical report (Internet)
Elektronische Zeitschriftenreihe
der Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg
ISSN 1869-5078

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html
Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

Michael Schulze

mschulze@cs.ivs.ovgu.de

24.11.2010

Reducing time and effort by concurrent firmware
update processes on micro-controllers

Michael Schulze and Jörg Diederich

Institute for Distributed Systems
University of Magdeburg, Germany

mschulze@ivs.cs.ovgu.de

Abstract. Maintenance is a part of the software development process.
In distributed systems, update actions require special attention in order
to limit the effort. Several developments exist for sensor networks already.
However, for less dynamic networks of micro-controllers the constraints
are more simple. We exploit this to reduce the time necessary for an
update and to reduce the resource consumption, which is essential in
embedded systems. This paper presents our approach to update several
micro-controllers simultaneously using the existing CAN communication
properties. An evaluation of the developed prototype shows the benefits
of our approach.

1 Introduction

Working with software for embedded devices is often a laborious job. During the
whole software life cycle, a developer is confronted with hard constraints, limited
resources and debugging possibilities. High efforts in time, material, money and
so on are direct consequences.

These characteristics affect the replacement of a running program. Similar
to other areas of software application, software developed for embedded sys-
tems often is under constant change. Functionality has to be corrected, added
or removed due to new requirements, or simply because of fixing errors. With
the availibility of rewritable program memory, update processes may take place
during the whole life cycle of an embedded system. Every update may be even
more simplified by using In-System-Programming (ISP). To move new program
code via existing communication interfaces is a concept as well as a common fea-
ture of ISP. No additional interfaces have to be established for update purposes
only. Accordingly, a removal of an embedded system from its environment can
be avoided.

Today, ISP is established in single systems. Using embedded systems in a
distributed system challenges the update procedure again. Most existing ISP
approaches require to establish and release an individual connection to each
participant. More advanced approaches connect to a distributed system itself.
Afterwards, all steps of ISP are applied to each participant individually. In our
opinion, it is insufficient to adhere at existing procedures or only apply them. We

claim that even for a small numbers of participants, the steps to update multiple
embedded systems at a time have to be more customized and comfortable. By
using broadcast capabilities of a communication infrastructure, multiple partic-
ipants may be updated in parallel. It would be a waste of time to deal with each
embedded system individually. In case a physical connection needs to be estab-
lished and released individually, stress of material and humans make matters
even worse.

A limitation is that all contacted participants update simultaneously to the
same software. However, it can be expected that several embedded systems work-
ing together are intended to run identical software. To reuse development results
whenever possible reduces effort and eases maintenance. In large sensor networks
it is almost impossible to provide each sensor with individual software. However,
for small numbers of affected systems, running identical code is sufficient. In or-
der to illustrate this, consider our example of a mobile robot system (see Fig. 1).
It consists of several motors and sensors, controlled by some micro-controllers
forming a distributed system. Acceleration and driving algorithms are identi-
cal for all wheels. Different outputs at each wheel of the robot only occur if
the inputs differ. The same applies to sensor control algorithms. While being at-
tached to different micro-controllers, equivalent sensors, like for instance distance
sensors, will preferable being controled by equal algorithms. Assuming all con-
trollers communicate with each other via a field bus like CAN (Controller Area
Network) [14], an update could be run in parallel. Like software development
and enhancement, all reprogramming steps have to be done only once.

Fig. 1. The Q transport platform – at each corner a micro-controller controls a driving
and a steering motor.

We believe all features a network of embedded system provides have to be
used in order to support the update process as much as possible. Broadcast capa-
bilities of already existing communication infrastructures enables us to connect
to multiple embedded systems at a time and work in parallel. We present our

approach of using the CAN field bus communication for an update process of
embedded systems. Instead of the sequential order in other approaches, we make
full usage of the CAN possibilities to perform a simultaneous distribution of new
program code.

The rest of the paper is structured as follows. Existing procedures and tech-
nologies in firmware updates are described in section 2. Our approach is explained
in detail in section 3. The results of a performed evaluation are content of section
4, together with a description of the used environment. Section 5 summarises
our work and describes reasonable improvements and therefore gives an outlook
to future research.

2 Related work

The usage of micro-controllers gives embedded systems a high degree of flexi-
bility. The same kind of controller may be used for different purposes, simply
by running different software on it. Sometimes, it controls a number of sensors
and sometimes it is responsible of relaying messages. Once in operation, the ISP
allows to perform maintenance functions easily.

The update or programming process is a cooperation of at least two par-
ties. One participant, commonly called the host, distributes the changes. Micro-
controllers who use the changes to modify their installed software could be called
clients. The host is typically presented by a commonly used personal computer.
As software development for embedded systems is done on such systems, it is
obviously to use them for update purposes too.

Existing aproaches of the ISP rely on a simple relation between the host and
a client. At any time, the programming software used at the host communicates
with exactly one client. A communication with another client requires releasing
an existing connection first, either physically or logically. Figure 2 illustrates this
relationship with one host and four clients. Present developments differ in the
used algorithms on the client sides and the applied communication connection
only.

Fig. 2. One-to-one relation between a host and four clients

In order to ensure an always exisiting possibility to update, manufacturers
of micro-controllers often provide hard-wired algorithms. For each architecture,
the details depend on the manufacturer. The algorithms widely included in the
AVR micro-controllers of Atmel [4] give an example. Connected via the Serial
Peripheral Interface (SPI), the host commands the micro-controller in the update
process. A selection of a dedicated client is not intended. The connection between
host and client is a straight cable, and any intention to select another client re-
sults in a release and new attachement of the wires. This is similar to another
example of hard-wired algorithms, the monitor mode of HC08 micro-controllers
made by Freescale [10]. Besides its use for debugging processes, selected monitor
commands allow to update the persistent flash memory. As in the AVR example,
the communication is done using a serial interface. However, the kind of com-
munication follows no standardization. A single pin is used in the connection
between host and micro-controller. Again, a selection of a certain client is not
intended, even with multiple clients connected to the wire. Due to the lack of
an appropriate flow control, a communication with multiple participants is not
possible at all.

Hardware solutions allow to program micro-controllers even in case of a blank
flash. Software algorithms have to be present in flash instead. By using small
programs that are able to write into persistent memory, restrictions given by
hard-wired algorithms can be avoided. Out of the available communication in-
terfaces, a selective support is possible. Individual protocols may be designed for
the intended purpose, too. Additionally, the update algorithms themselves can
be extended, corrected or globally changed during the life of a micro-controller.
In order to resolve its task, an update software is the first application start-
ing right after the reset. It decides about booting in terms of starting another
application, or to prepare an update process. Therefore, programming software
situated on micro-controllers fulfills the criteria of bootloaders.

The number of available bootloaders for micro-controllers is vast. Hardware
manufacturers support developments for their products with own proposals.
Again, Atmel gives an example with their implementation using a serial UART
interface [2]. There are a number of open-source developments with this function-
ality, too [11, 15, 1]. As already explained, any bootloader using strict end-to-end
connections like UART or SPI is not suitable for programming multiple recipi-
ents in parallel by design. Developments making use of bus interfaces promise to
be more adequate instead. In [3] Atmel proposes an bootloader, both for CAN
and UART interfaces. By using the connections already existing, clients attached
to the CAN bus do not need to be additionally connected to the host anymore.
However, the protocol used in communication does not support a simultaneous
update. Request and response data use equal identifiers. The relation between
message identifier and content, as recommended in the CAN standard, has not
been paid attention. In direct consequence, the correct course of an update is
likely to get lost. Clients may interpret answers originated by other clients as
requests given by the host. Due to this fact, only a sequential processing of
attached clients is provided.

For ethernet as the most popular bus standard, the Ethernut project [6]
provides a bootloader. Performing in opposite directions, each booting client may
request an update via the TFTP protocol. The decision for an update is given by
the DHCP request made before. A simultaneous boot of micro-controllers may
result in multiple update processes running in parallel. In direct comparision with
CAN, the used ethernet interface is less common to small micro-controllers. It
requires more resources and therefore more components need to be included on
the board. Additionally, each update process results in a new transmission of
data and is not parallel at all. Other, most likely equivalent transmissions will
be ignored. Finally, the active behaviour of the micro-controllers does not allow
any verification operations by default. Only in case an update was successful,
the host is able to request a single client for its flash memory content.

Our vision is to take advantage of a simultaneous update process with a
minimum effort of additional resources. A connection between host and clients
via the CAN bus requires little additional equipment at each client. In case
CAN is already used in communication, even no additional effort is necessary
at all. The field bus feature enables to distribute an update to all recepients
simultaneously, which leads to a reduction of time and effort, as desired. By
adapting a programming software used in traditional approaches, exisiting work
flow may be continued.

3 Our approach

Connecting host and micro-controllers through the CAN bus supports our in-
tention of a simultaneous update. Typical for the CAN field bus, sent data reach
either all nodes attached to the bus or none of them. Each communication is a
broadcast by definition. There is no need to perform any additional or special
steps to communicate with all nodes. Figure 3 presents the structure of the con-
nection between all participants. Like in common proceedings, the host triggers
the update process. It is connected to all micro-controllers through the wires
of the CAN bus. Each micro-controller is able to communicate with any other
participant via the bus as well.

Fig. 3. Connection between host and micro-controllers via CAN

Besides the connection, the programming algorithms running at the host and
all receiving nodes need to work together. The classical collaboration of program-
ming software and bootloader appears to be well suited even in case of multiple
active bootloader instances. Any requirements to identify single micro-controllers
may be still left open, either for the programming software or the bootloaders.
Having programming software, bootloader and communication messages, three
logical elements exists in our update scheme. Each of them is illustrated in Fig-
ure 4. At any time, only one programming software is active. It is running at
a dedicated node, the host. Communication to connected micro-controllers will
be done by sending CAN protocol messages. Bootloaders running at the micro-
controllers process received messages and react accordingly.

Programming−

software

CAN−

messages

HostClient

CAN CAN

Identify

Bootloader

Identify

Fig. 4. Logical elements in the simultaneous update process

In theory, the simple task for the programming software is to transmit the
new program code within CAN messages. At reception, each bootloader performs
appropriate write operations to the persistant flash memory of its node. How-
ever, a feedback by the receivers is necessary in order to detect difficulties which
may have occured. For instance, a requested write operation may have failed
due to flash difficulties. The possibility of feedback requires a clear distinction
between receiver feedback and host command messages. It can be achieved by a
mapping between feedback messages and receivers. Knowing the choosen mech-
anism, one can easily associate a message to its originator. This enables fault
node identification and, even more important, prevents a misinterpretation of
feedback messages as host command messages at once. In section 2 we presented
the difficulties with feedback messages of ATMELs proposed solution. Here the
overall procedure was limited to perform only sequential updates.

For a mapping of messages, we assume that each node has an identifier – the
’node Id’. At runtime, a node id could be obtained by using election algorithms.
With hard resource constraints even in update processes, a more simple pro-
ceeding is preferable. To either process hardware switches or to use data stored
in other persistant memories is both efficient and sufficient.

The node Id is transmitted in the header of each CAN message. No other
content is placed inside the header. Since they are independent systems, multiple

nodes may start to transmit messages at any time. Without any constraint to all
node Ids, if two or more nodes begin transmissions at the same time, equivalent
headers could be sent in case of equivalent node Ids, leading to CAN specification
violations. A uniqueness of each node Id will ensure conformance. During the
assignment of each node Id, this additional constraint has to be met as well.
Being a container for the node Id, the message header determines the sending
node. A command associated with a message is also necessary, as for message
interpretation and processing purposes. Leaving the header to the node Id, there
are eight data bytes left to choose from. In our approach, each command will be
described by an identifier in the first byte of the message content.

The described data placement - a node Id in the header, message command
and data in the message payload - is advantageous in using existing filter mech-
anisms. A common CAN controller provides a hardware filter, which enables
to ignore messages already by their header. This allows any receiver to reject
irrelevant messages sent from other receivers. During the update dissemination,
the host and all clients are message receivers. While knowing the host identifier,
the micro-controller of clients will only be interrupted or waken up from power
save modes by messages sent by the host. The latter can easily set up a filter for
his expected clients, too.

In summary, the host filter is a collection of the inverted filters of all con-
nected clients. Unlike client filters, which can be set up with a connect message
immediatly, a host filter can not be set up that simple. Being connected to the
CAN bus, not every message received during update initialization may be of
interest. These messages of normal bus traffic have to be detected by comparing
their content with the template of expected answers. The host filter mechanism
requires two more facts to take care during initialization. First, in case command
and reply content are equal, there is no possibility to distinguish commands sent
from other hosts from expected replies of clients. From the host’s point of view,
such an initial message of another host is a reply of a client ready for an update.
Second, responses of clients to initialization requests of other hosts should not be
processed either. All possibilities described before will, if not taken into account,
add node Ids to the filter which are invalid. Messages using these node Ids will
not be dropped and thus disturb the update process, if disseminated. There-
fore, we assume at most one host activating clients at any time. Requests and
responses of other starting update processes will not occure and take influence.
For the rare event of bus messages which accidently look like update messages,
there is no such simple solution. The update proceeding has to handle the wrong
filter setting by itself.

Looking at CAN, a message header should describe the message content it
goes ahead. It should not act as an identification of the sender or the designated
receiver. In the way described before, the data placement does not follow this
intention. However, going the strict way and ignoring existing possibilities re-
sults into additional effort and caution. Only by selecting well-designed, disjoint
command sets in requests and replies, receiving nodes are able to make usage of
hardware filter possibilities. A filter can not be set up and reject host or client

messages otherwise. In case multiple hosts are available, all command sets have
to be different as well. Furthermore, if the message header is already reserved
by a command, a sender identification has to be placed in the message content.
As in CAN, at most only eight bytes are available here. In order to use most
of these bytes for payload data, identifiers should without a doubt be as short
as possible. Nevertheless, the performance of the data transport decrease. Ad-
ditionally, the performance of message processing decreases, too. Each receiver
has to process the message content to identify the sender. Under the constraints
of limited resources, ignoring the given disadvantages can not be explained with
a recommended data placement. Placing identification data in message headers
is more advantageous. Message processing is simple, fast and straightforward.
In protocol development, the placement offers more flexibility. Node identifiers
reasonably may be expected to be stable, due to storage in e.g. EEPROM. In
contrast, command identifiers will very likely change during development. Using
them for filter purposes requires to check the whole command set during changes
again.

The described message structure allows to perform the update procedure
known from existing approaches with only small modifications. The following
steps have to be taken:

1. Connection to nodes
2. Selection of memory to work on
3. Erase of memory content
4. Transmission of code update
5. Verification of updated memory content
6. Release of nodes

During step 1, the host activates all pending bootloaders. It sends a connect
message using its identifier. All receivers will reply using their unique identi-
fiers as well. More important, after processing a connect message, the respective
bootloaders will only accept messages with an identifier of the activating host.
During the following update process, any other messages having a different iden-
tifier will be ignored. This includes replies for the connecting message or other
connecting messages, too. From now on, the programming software running at
the host can safely command its associated nodes. As already mentioned be-
fore, each message sent contains a byte of command data. Originated from the
host, a command may be followed by more data describing the command argu-
ments. The selection of memory type during step 2, the address selection or the
transmission of code during step 4 are examples of command arguments. In the
other direction, each reply of a bootloader contains, in addition to the command
byte, a return state of the process the command released. Consequently, it could
be considered as a kind of RPC. However, there is one exception. During the
verification process listed in step 5, each bootloader transmits selected memory
contents to the host. This usually includes more data than one message is able to
carry within. Hence, data fragmentation is necessary. Each node independently
transmits the selected memory content with multiple messages, each using seven
bytes of payload. Only the last byte of the last message identifies the return state

of the executed read operation. Having one more byte for data in all previous
messages reduces transmission overhead by one seventh. Of course, in case the
memory content fills the last message exactly, one additional message has to
be sent. For all verification transmissions, the unique message identfiers ensure
the CAN protocol will not be violated. Finally, at step 6, the host finishes the
update process by releasing the connected bootloaders. Each of them clears its
identifier filter, therefore presenting a clean state to the following operations.

Working with multiple recepients requires the programming software to per-
form additional managing tasks. Instead of reacting to a simple reply, several and
possibly different answers have to be respected. The identification of the origina-
tor with the message header, already described, is helpful again. On connection
to micro-controllers, the programming software collects the identfiers sent with
reply messages. A missing reply of one or more receivers can easily be detected
during further steps. For this, every node replying is removed from a list of ex-
pected answers. In case the list is empty at last, the received answers need to
be processed further. If the connected clients unanimously report success, the
update process may proceed. In return, missing or diverging answers interrupt
an update. All still connected nodes are released and the update process is fi-
nalized. To manage all clients, a solution is needed that handles invalid clients
also. If the host message filter has changed unnecessarily due to bus messages
that have been misinterpreted, the managing process expects more clients then
exists. However, those ghost clients will not response appropriately to further
host requests. Consequently, the update process will fail with first requests. The
list of expected answers still contains Ids of nodes, which have not answered
in time. With a host stopped at this step, one or more clients were probably
already left activated. They will wait for a new update process advertised under
the same node Id. If one host finally starts this process, they will act like new
activated clients.

4 Evaluation and Results

Keeping the use case and the evaluation scenario close together allows to directly
deduce terms of everyday usage. Figure 1 presents our Q-Robot use case, a
transport platform controlled by four AT90CAN128 micro-controllers. Each of
them is embedded in a single board. Connected via CAN, all micro-controllers
are able to communicate with an attached personal computer. Of course they
are able to communicate with each other, too.

Besides of missing actuators and sensors, our evaluation scenario is identi-
cal to the use case. With models from PEAK-System Technik [12], both use
the same adapters necessary to connect a personal computer to the CAN bus.
The choosen transmission rate of 250 kBit/s is also equivalent. From available
adapters, the PCI adapter slot card has been selected. At the opposite end,
Crumb128-CAN boards made by chip45 [5] represent the nodes. The trans-
port platform is equipped with boards of the same model. For evaluation, a
self-designed motherboard is additionally used. It integrates all nodes at once.

Fig. 5. Motherboard equipped with four Crumb128-CAN boards

Figure 5 shows our evaluation board. The plugged Crumb128-CAN boards are
wired directly. Each of them may be reset or disconnected from power individ-
ually. Without having several wires and switches, evaluation is more easy and
flexible.

On the side of software, the evalution environment corresponds to our use
case. At the host, the server process is represented by a programming software,
which communicates to the CAN bus via the PEAK CAN hardware adapter.
All low-level accesses to the adapter are handled by software provided by the
adapter manufacturer. Using the Linux operating system, the software consists
of the libpcan library and the hardware driver. During evaluation, both were
available with version 6.7 of the driver package [13]. As mentioned in section 3,
the programming software has to connect to the CAN library, as well as to
manage multiple clients. There is no existing software known which fulfils this
requirements. Due to this, we extended ’Avrdude’ [7], an already established
programming software available in revision 5.3. In the terminology of Avrdude,
a new programmer has been added by the implementation of our communication
protocol. Thus, a simultaneous update is supported by Avrdude for the first
time. Implementing an additional programmer is advantageous for evaluation
purposes. Since other programmers are still available, a direct comparision of
different approaches will be possible.

The communication partners of the host are bootloaders running at con-
nected micro-controllers. Having C++ available for their implementation, our
development could include object-oriented elements and low-level instructions
at once. For the default Linux compiler GCC [9], a port called ’avr-gcc’ exists.
It provides cross-compiler possibilities to the AVR architecture for both C and
C++. Closely related to the compiler, a pendant of the default C library ex-
ists, too. The avr-libc [8] contains standard routines and, in being designed for
an embedded system, several special constructs, for example in order to service
interrupts or to perform register accesses. As a result of design and implemen-
tation processes, a prototype of a bootloader became available. It supports the

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64

T
im

e
in

s

Program size in kBytes

Programming variant

Hardware ISP

Serial Bootloader

CAN Bootloader

Fig. 6. Micro-controller programming times of different programming methods for an
update on one client

requested update functionality for flash and eeprom memory. The version 4.1.1
of the avr-gcc cross-compiler and version 1.4.5 of the avr-libc library were used
for the development of the prototype. The bootloader prototype requires eight
kilobytes of flash memory at the bootloader section on the micro-controller.

This bootloader prototype is used in the evaluation process. For users, time
necessary for an update is probably the value of most interest. Avrdude it-
self prints out time values during programming progress visualization. Although
progress could be indicated individually by any programmer, known program-
mers act comparable. This allows using the final time value presented for speed
estimations. Update time is measured for our approach with one, two and four
clients programmed in parallel. For comparison purposes, measurements where
done for two already existing approaches. The selected boards provide an inter-
face to hard-wired programming algorithms (ISP) of the micro-controller. Having
an adapter for the parallel port of the host, update time is also measured for
this processing. In order to complete evaluation, time measurement is done for
another software solution, a bootloader for serial communication [11]. The soft-
ware is a traditional bootloader using a serial RS-232 connection in order to
communicate with the host. Figure 6 illustrates the update times for different
code sizes for the described variants and updating of one client only.

The values obtained give an impression of the benefit of our approach. In a
one-to-one relation between host and client, our prototype requires less time than
both concurrent approaches. The programming time with hardware algorithms is
almost equal to our approach. Since flash circuit programming time is invariant,

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64

T
im

e
in

s

Program size in kBytes

Programming variant

Hardware ISP

Serial Bootloader

CAN Bootloader

Fig. 7. Micro-controller programming times of different programming methods for an
update on four clients

similar transmission and management qualities can be assumed. Time savings in
comparision to the serial bootloader can be explained with a higher transmission
rate of the used CAN bus.

Looking at the values for four clients shown in Figure 7, the advantage of
our prototype becomes obvious.

The updating times for the hardware ISP and for the serial bootloader are
calculated. We multiplied the needed time for one client update with four. That
estimation is very optimistic at all. We do not take into account the needed time
for changing the physical connection and restarting the updating tool again for
each client. The really required times are probably a magnitude higher. Certainly,
with our approach updating multiple clients requires additional effort too and it
leads to higher update times in comparison to updating one client only. However,
the increase in case of a parallel update is only a fraction of the time of one client
and is very small in relation to the other methods.

The evaluation results illustrate the benefits of our prototype environment.
Although developed for networks with multiple attached micro-controllers, no
loss in comfort and usage exists even in an unicast scenario. Time savings in-
crease linear with more and more micro-controllers becoming targets of the same
program code.

5 Conclusions

Environments using multiple micro-controllers are different to the single and
isolated approach. Supporting individual programs becomes more unhandy and
more expensive with each additional controller. This can be avoided by an iden-
tical program running anywhere if possible, depending on the use case.

The need to update the program is faced with changed conditions, too. A tra-
ditional approach to update all micro-controllers program memory sequentally is
inappropriate. Program memory access has to be created for the same program
over and over again, which is difficult, if not impossible at all. This changes with
network interfaces that became available. Attaching a micro-controller to a net-
work establishes a persistent connection to updates. It also opens possibilities
to use more advanced programing proceedings.

We presented our solution of a simultaneous update throughout a network
of micro-controllers. Simplicity and retention of known workflows were main ob-
jectives in development. As usual, new program code is disseminated by a single
node of the network. For update processing, we extended an existing and well
proven programming software. The existing user interface was left unchanged at
default level. Therefore, the existence of multiple update receivers is transparent
to the user. Update processing is still possible for one attached micro-controller.

Update data transportation is done via CAN, a field bus which has its ori-
gins in the embedded world. The choice of this established and widely accepted
bus prevents any needs of additional equipement from bigger worlds. Receiving
micro-controllers are programmed in parallel due to broadcast properties of mes-
sages in CAN. As shown in the evaluation, our prototypical implementation is
already comparable to the update time of single micorocontrollers. Considerably
more important, update time increases only by a fraction with each additional
receiver. The time savings can be confirmed by our experiences in everydays
usage of the prototype. Also with the comfort of using an unchangeable pro-
gramming process, the development presented met our expectations already at
the first try.

Having a prototype running, future development can focus on improvements
and optimizations. Perhaps the most significant problem existing is flash con-
sumption. For the kind of micro-controllers intended, bootloader program size
is limited to eight kilobytes. The current implementation takes almost this size.
With only a few bytes reserved, the usage of the prototype will most likely de-
pend on compiler optimization processes. Further development work is necessary
to reduce the code size while preserving current functionality as well. The review
should include speed issues, too. Besides of pure implementation improvements,
update time could be reduced by using more payload in transfered messages. One
precious byte of message data is currently used for specifying a message com-
mand. Describing the command within the message header increases payload
by more than ten percent. Currently, a message header is used for identifica-
tion purposes only. Most of the 29 bits of the included extended identifier are
unused in case of commonly choosen low node identifiers. Therefore, reducing

the allowed identification numbers by some bits provides room for the message
command without a restriction in usage.

Adding more content to a message identifier requires an adaptation of fil-
ter algorithms. At the host, changes in all implemented CAN adapters of the
programming software are necessary. As soon as different interfaces have to be
used, a more general approach is advantageous. For CAN only, a first step could
include a CAN controller abstraction inside of the programming software. Being
more general often means to be more challenging, but provides independance of
hardware and software interfaces, too. Our development FAMOUSO [16, 17] al-
ready separates application interfaces from interfaces of transport mechanisms.
In further developments of the middleware, we intend to make this possibility
available to update processes for the reasons described. We expect additional
benefits by using the publish-subscribe paradigma FAMOUSO follows, which
will enable different update publications with different receivers as well. In be-
tween, we look forward to include the presented solution in the regular Avrdude
development branch.

References

1. Alexander Neumann. foodloader (Atmel Bootloader). Website: http://www.

lochraster.org/foodloader/. revision 2008-05-11.

2. Atmel Corporation. AVR109: Self Programming, Rev. 1644G-AVR-06/04 edition.

3. Atmel Corporation. AVR914: CAN & UART based Bootloader for AT90CAN32,
AT90CAN64, & AT90CAN128, 7592b-avr-01/06 edition.

4. Atmel Corporation. AVR 8-Bit RISC. Website: http://www.atmel.com/products/
avr/default.asp, 2008. revision 2008-03-11.

5. chip45 GmbH & Co. KG. Mikrocontroller module ”crumb128-can”. Website:
http://www.chip45.com, 2008. revision 2008-04-01.

6. egnite Software GmbH. Ethernet Boot Loader. Website: http://www.ethernut.
de/en/eboot/index.html. revision 2008-03-11.

7. Free Software Foundation. Avr downloader/uploader. Website: http://www.

nongnu.org/avrdude/, 2006. revision Fri Sep 23 23:21:06 MET DST 2005.

8. Free Software Foundation. Avr c runtime library. Website: http://www.nongnu.
org/avr-libc/, 2008. revision 2008/04/20.

9. Free Software Foundation. Gcc, the gnu compiler collection. Website: http://

gcc.gnu.org/, 2008. revision 2008-05-03.

10. Freescale Semiconductor, Inc. HC08. Website: http://www.freescale.com/

webapp/sps/site/overview.jsp?nodeId=01624684497663, 2008. revision 2008-
03-11.

11. Martin Thomas. AVRPROG compatible bootloader for ATMEL ATmega Con-
trollers. Website: http://www.siwawi.arubi.uni-kl.de/avr_projects/index.

html#avrprog_boot. revision 2008-05-10.

12. PEAK-System Technik GmbH. Pcan hardware. Website: http://www.

peak-system.com, 2008. revision 2008-04-01.

13. PEAK-System Technik GmbH. PCAN Hardware – Linux Driver Page. http:

//www.peak-system.com/linux/index.htm, 2008. revision 2008-04-01.

14. Robert Bosch GmbH. CAN Specification Version 2.0, September 1991.

15. Roland Riegel. boofa: bootloader for Atmel AVR microcontrollers. Website: http:
//www.roland-riegel.de/boofa/. revision 2008-05-11.

16. Michael Schulze. FAMOUSO project website. http://famouso.sourceforge.net,
2008.

17. Michael Schulze. FAMOUSO – Eine adaptierbare Publish/ Subscribe Middleware
für ressourcenbeschränkte Systeme. Electronic Communications of the EASST
(ISSN: 1863-2122), 17:12, 2009. Workshops der Wissenschaftlichen Konferenz
Kommunikation in Verteilten Systemen 2009 (WowKiVS 2009).

