An Analysis of the Variability in Forty Preprocessor-Based
Software Product Lines

Jorg Liebig, Sven Apel,
and Christian Lengauer
University of Passau

{joliebig,apel,lengauer}@fim.uni-
passau.de

ABSTRACT

Over 30 years ago, the preprocessor cpp was developed to
extend the programming language C by lightweight metapro-
gramming capabilities. Despite its error-proneness and low
abstraction level, the preprocessor is still widely used in
present-day software projects to implement variable software.
However, not much is known about how cpp is employed
to implement variability. To address this issue, we have
analyzed forty open-source software projects written in C.
Specifically, we answer the following questions: How does
program size influence variability? How complex are exten-
sions made via cpp’s variability mechanisms? At which level
of granularity are extensions applied? Which types of ex-
tension occur? These questions revive earlier discussions on
program comprehension and refactoring in the context of the
preprocessor. To provide answers, we introduce several met-
rics measuring the variability, complexity, granularity, and
types of extension applied by preprocessor directives. Based
on the collected data, we suggest alternative implementa-
tion techniques. Our data set is a rich source for rethinking
language design and tool support.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.8 [Software Engineering]: Metrics; D.3.4 [Pro-
gramming Languages|: Processors—Preprocessors

General Terms
Empirical Study

Keywords

Software Product Lines, C Preprocessor

1. INTRODUCTION

The C preprocessor (cpp) is a popular tool for implement-
ing variable software. It has been developed to enhance C by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

Christian Kastner and Michael Schulze
University of Magdeburg

{ckaestne,mschulze}@ovgu.de

lightweight metaprogramming capabilities and is commonly
used to merge files, make arbitrary textual substitutions, and
define conditional code fragments (a.k.a. conditional inclu-
sion) [21]. As the cpp tool is line-based, it can be used with
any text artifact including other programming languages
such as Java or C#. In the past, it has been observed that
the use of cpp causes various problems: (1) the occurrence
of syntactic and semantic errors during the generation of
software products [23]; (2) code pollution due to scattered
and tangled #ifdefs (a.k.a. #ifdef hell) [32]; (3) a decrease in
maintainability and in ability to evolve [13].

The implementation of variable software is also a major
goal of software product line engineering. A software product
line (SPL) is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that
have been developed from a common set of core assets in a
prescribed way [8]. Software product line engineering aims at
managing variability among the different software products
(a.k.a. variants) of a product line and facilitating reuse in that
the products of the product line share as many common core
assets as possible, such as source code artifacts [8, 11, 27].

It is widely assumed that the variability mechanism of the
cpp tool is used quite frequently in the implementation of
SPLs [1, 12, 18, 33]. We believe this assumption to be true
and contribute to the discussions on the connection between
preprocessors and SPLs started in prior work with a substan-
tial set of case studies. We answer the following questions:
How does program size influence variability of SPLs? How
complex are the extensions applied by features via cpp’s
variability mechanisms? At which level of granularity are
extensions applied? Which types of extension occur? We
argue that insights into the implementation problems of fea-
tures solved with cpp help to judge whether cpp usage causes
problems with regard to code pollution, error-proneness, and
reduced maintainability and ability to evolve. An analysis of
cpp usage also allows developers to estimate the effort and
benefits of migrating to other, more well-founded implemen-
tation techniques for SPL engineering, such as aspects [17,
24] or various flavors of feature modules [5, 6].

To answer the questions above, we analyzed forty open-
source software systems of different sizes (thousands to mil-
lions lines of code) taken from different domains including
operating systems, database systems, and compilers. We
propose a set of metrics that allow us to infer and classify
cpp usage patterns and to map the patterns to common SPL
implementation concepts. Our analysis reveals that cpp is
used to a large extent to implement and control variability

in SPL code bases (on the average 23 % of each case study’s
code base is variable). In general, the preprocessor can be
used at every level of granularity, but we found that most
extensions occur at a high level of granularity (e.g., adding a
whole function). The patterns of cpp usage, which we have
identified, indicate that alternative, more systematic SPL
implementation techniques are feasible and can improve code
quality and reduce error-proneness. The degree of detail
of the usage patterns even enables us to suggest specific
techniques (e.g., aspects and feature modules) that match
the properties of the implementation problems found in the
software projects analyzed.

Our greater goal is to raise the awareness of the problems
of implementing variability with ad-hoc mechanisms like
preprocessor directives and to initiate a discussion on the
feasibility of well-founded SPL implementation techniques.

To summarize, we make the following contributions:

e We discuss patterns for implementing variability using
cpp.

e We propose a set of metrics for identifying and clas-
sifying cpp usage patterns that map to well-known
concepts in SPL engineering.

e We present data collected with our tool suite cppstats
on forty open-source software systems of different sizes
and from different domains.

e Based on the data obtained, we analyze correlations
between the size of a software system and the variability
issues stated earlier.

e We discuss the feasibility and benefits of using alterna-
tive SPL implementation techniques.

2. BACKGROUND

Before we begin with the variability analysis and the evalu-
ation of the collected data, we introduce SPLs, the prepro-
cessor cpp, and cpp’s role in SPL development.

2.1 Software Product Lines

An important concept in SPL engineering is that of a
feature. A feature represents an optional or incremental
unit of functionality [6, 11, 16]. Different programs, called
variants, can be generated by selecting different features. For
example, features can be optional or can form a group of
alternative features.

Usually, a feature’s implementation extends a program in
one or more places, called extension points. If a feature ex-
tends multiple points and is not modular, its code is scattered
across the software system (code scattering). The code of
features is often tangled with the base code and possibly with
code of other features (code tangling). Extensions made by a
feature can be classified into homogeneous and heterogeneous
extensions [5, 10]. A homogeneous extension adds the same
piece of code at different extension points and a heterogeneous
extension adds different pieces of code at different extension
points. Previous studies indicate that scattered and tan-
gled feature code as well as homogeneous and heterogeneous
extensions occur frequently in SPLs [4, 9, 17].

2.2 The C Preprocessor (cpp)

The preprocessor cpp is a stand-alone tool for text pro-
cessing, which enhances C by lightweight metaprogramming
capabilities [21]. Although initially invented for C, the pre-
processor is not limited to a specific language and can be

used for arbitrary text and source code transformations [13].*
The cpp tool works on the basis of directives (a.k.a. macros),
that control syntactic program transformations.

The directives supported by the cpp tool can be divided
into four classes: file inclusion, macro definition, macro
substitution, and conditional inclusion. In cpp-based SPL
development, macro definitions (#define) and conditional
inclusions (#ifdef?) are most important.

2.3 SPL Development with cpp

In order to illustrate how to implement variability with cpp,
we use a simple example of a list data structure with different
features, such as SORTALGO (sorting algorithms), SORTORDER
(ascending or descending order), and DLINKED (doubly linked
list), shown in Figure 1. Common source code of the SPL
is represented, using the capabilities of the programming
language C, in terms of data abstraction (data types; e.g.,
struct T_node on Line 11) and procedural abstraction (func-
tions; e.g., insert on Line 24). To implement variable source
code using the cpp tool, two things are necessary: (1) the
definition of a feature constant that can be referred to in the
source code and (2) the inclusion of additional source code
representing the incremental functionality (feature code).

A programmer uses the macro #define to set a feature con-
stant (e.g., DLINKED on Line 4). Feature constants can also
be defined externally in makefiles, in configuration files, or
during the compiler invocation. The cpp tool provides logical
operators (e.g., &&) and bit operators (e.g., &) to combine
multiple feature constants to complex feature expressions.’
A feature expression represents the condition that controls
the inclusion or exclusion of feature code. That is, based on
the evaluation of a feature expression, all subsequent lines of
source code up to the next #ifdef are included or excluded de-
pending on whether the expression evaluates to true or false
(e.g., Line 15 is included if feature DLINKED is selected). We
call the use of #ifdef also source code annotation. Based on
the definition of feature constants, the programmer is able to
influence the evaluation of the feature expression and, conse-
quently, the presence or absence of feature code. Furthermore,
#ifdef macros can be nested, and the evaluation of a nested
#ifdef depends on the evaluation of the enclosing #ifdefs.

Technically, every source code fragment that is enclosed
by #ifdef is an optional feature. The specification of al-
ternative features relies either on (1) multiple #ifdefs (e.g.,
feature SORTALGO on Line 5 with the mutually exclusive op-
tions NOSORT, INSERTIONSORT, and BUBBLESORT) or (2) the
#if-#elif-#else combination for specifying alternative source
code (e.g., feature SORTORDER on Lines 40, 42, and 44).

The code which implements a feature is often scattered
across the SPL’s code base. Examples are the implemen-
tations of the features DLINKED (e.g., Line 14 and 20) and
SORTALGO (e.g., Line 25, 29, 36, and 46). Since the introduc-
tion of their feature constants and the annotation of their
feature code are simple, both features are easy to implement.
Source code tangling arises from the mix of source code of

Lepp works on lines of text and is oblivious to the underlying
language. cpp directives may break existing tool support for
languages such as Java or C# but can be used nonetheless
for conditional compilation.

2For simplicity, we refer to the various conditional inclusion
macros, such as #ifdef, #ifndef, and #if, summarily as #ifdef.
3Beside feature constants, feature expressions may also con-
tain numbers.

© 00Uk WN -

#define NOSORT O

#define INSERTIONSORT 1
#define BUBBLESORT 2
#define DLINKED 1

#+define SORTALGO BUBBLESORT
#£if SORTALGO != NOSORT
#define SORTORDER 1
#endif

typedef struct T_node {

int item;

struct T_node *next;
#if DLINKED

struct T_node *prev;
#endif

} node;

node *first = NULL;
#£if DLINKED

node *last = NULL;
F#endif

void insert(node *elem) {

#£if SORTALGO == BUBBLESORT || SORTALGO == INSERTIONSORT
node *a = NULL;
node *b = NULL;

#endif
#if SORTALGO == BUBBLESORT
node *c = NULL;
node *e = NULL;
node *tmp = NULL;
#endif
if (NULL == first) first = elem;
else {
#£if SORTALGO == INSERTIONSORT
a = first;

b = first->next;
if (first->item
#if SORTORDER ==
>
#else
<
#endif
#if SORTALGO == BUBBLESORT

#endif
}

Figure 1: A variable list implementation with cpp

several features at one extension point. A programmer speci-
fies this mixture using the operator && or nested #ifdefs.
One example of tangling is feature SORTORDER on Line 40
that tangles with feature SORTORDER from Line 36.

3. METHODOLOGY

Before we present and discuss the results of our analysis, let
us have a closer look at the questions stated in the introduc-
tion regarding variability. Let us explain why these questions
are important and describe how we obtain answers to them.

3.1 Research Questions

Our analysis lays the ground for answering a wide spectrum
of questions regarding several areas in SPL engineering. We
concentrate on four questions covering two areas: (1) program
comprehension and (2) refactoring. The first area contributes
to discussions on program understanding, whereas the latter
refers to the applicability of alternative SPL implementation
techniques. Prior case studies on the preprocessor with re-
spect to comprehension and refactoring either focused on

cpp’s variability mechanisms at a theoretical level [18, 19] or
aimed already at refactorings of individual applications [1]. In
contrast to these case studies, we are interested in the general
picture of the practical use of cpp’s variability mechanisms.

Comprehension

1. How does program size influence variability? Usu-
ally, a large software system provides more features than
a small software system. A large code base increases the
potential of variability. We are interested in how many fea-
ture constants occur in the source code because they mark
possible configuration parameters and define the configura-
tion space of an SPL. Furthermore, we are interested in the
amount of feature code because it represents variability at the
source code level at which the programmer operates. A high
variability increases significantly the chances that the prob-
lems stated previously (e.g., syntactic and semantic errors
or code pollution) occur. We argue that ad-hoc variability
mechanisms are only manageable up to a certain scale.

2. How complex are extensions made via cpp’s varia-
bility mechanisms? This question addresses the presence
of scattered and tangled feature code. We are interested in
whether a higher number of features increases the degrees of
scattering and tangling. Furthermore, we are interested in
the number of nested #ifdefs, a special case of source code
tangling. It is reasonable to expect that a high degree of scat-
tering, tangling, and nested #ifdefs impair comprehension.

Refactoring

3. At which level of granularity are extensions ap-
plied? This question is motivated directly by prior dis-
cussions on the granularity of extensions in SPLs [18, 19].
These discussions address the necessity of modularization
techniques applied at a fine grain, such as statement and ex-
pression extensions or function signature changes. Although
the cpp tool allows a programmer to annotate code even at
the finest level of granularity [18], not much is known about
the necessity to make such fine-grained extensions. Further
discussions on the modularization of features also motivate
this question [17, 26, 34], because most modular SPL im-
plementation techniques either lack the ability to make fine-
grained extensions [18, 26] or require workarounds [17, 30].
To this end, we are interested in the level of and extent to
which features cause fine-grained extensions. A high number
of fine-grained extensions incur the necessity of modulariza-
tion techniques, whereas a small number may not.

4. Which types of extension occur? This question tar-
gets the strengths and weaknesses of alternative SPL imple-
mentation techniques. For example, homogeneous extensions
can be implemented easily with aspect-oriented language
extensions of C because they provide a quantification mecha-
nism for extending multiple places in the source code at a
time. Heterogeneous extensions can be specified by simpler
mechanisms such as mixins or feature modules [5, 6]. Fur-
thermore, this question is motivated by a prior case study
on the use of AspectJ [4], in which it has been observed that
most extensions in AspectJ source code are heterogeneous;
we want to find out, whether this observation also applies to
cpp-based SPL implementations.

3.2 Metrics

We cannot measure cpp usage in terms of comprehension
and refactoring directly. Hence, we introduce a set of metrics

that represent these objectives. We measure each metric
after normalizing the source code of each software system
(i.e., removing comments and so on). Next, we explain each
metric, how we measure it, and why it is useful for our evalu-
ation and for subsequent discussions.

Lines of Code (LOC). The LOC metric represents the
size of a software system. We measure it by counting the
number of newlines of every normalized source code file and
use it later to discuss the influence of program size on the
remaining metrics.

Comprehension

Number of Features Constants (NOFC). The NOFC
metric reflects directly the configuration dimension of an SPL
and, to this end, provides insights into the variability and
complexity of the SPL. We measure this metric by extracting
feature constants from feature expressions in the source code
and sum them per project. Our list SPL (Figure 1) con-
tains six feature constants (INSERTIONSORT, BUBBLESORT,
DLINKED, SORTALGO, and SORTORDER)."

Lines of Feature Code (LOF). The LOF metric is the
number lines of feature code that are linked to feature ex-
pressions. It tells us whether a small or a large fraction of
the code base is variable. We extract this metric by counting
the number of lines between two #ifdefs in source code files
and sum them per project.®

Scattering Degree (SD) and Tangling Degree (TD).
The SD metric is the number of the occurrences of feature
constants in different feature expressions. We measure this
metric by extracting feature constants from feature expres-
sions and calculate the average and standard deviation per
project of all occuring feature constants. This metrics tells us
about the complexity of feature implementations. A widely
scattered feature that extends a software system in several
files and at multiple extension points is more complex (e.g.,
for maintenance tasks) than a feature that makes only a few
extensions in a single file.

The TD metric is the number of different feature constants
that occur in a feature expression. A low TD is preferable,
because a high number of tangled feature constants in feature
expressions may impair program comprehension.®
Average Nesting Depth of #ifdefs (AND). The AND
metric reflects the average nesting depth of #ifdefs. We
calculate the average and the standard deviation of all #ifdefs
in a file and compute, based on these values, the average and
standard deviation for a project. Since nested #ifdefs form
feature expressions, this metric is useful for discussions on
program comprehension.

4We do not count all macros as feature constants. For
example, feature NOSORT is not a feature constant in our
example because it is not used by an #ifdef.

5We omit lines of code that are enclosed by include guards.
An include guard is a common preprocessor pattern that
frames the entire content of a file with #ifdef to avoid dupli-
cate definitions due to the multiple inclusion of files [1]. It
does not represent an increment in functionality.

5The term tangling has a non-standard meaning here. Usu-
ally, tangling refers to the mixture of several features with
each other (side by side) and/or with the base code.

Refactoring

Granularity (GRAN). Since cpp can be used with differ-
ent host languages, arbitrary changes such as coarse- and fine-
grained extensions are possible. Coarse-grained extensions
add new functions or data structures, whereas fine-grained
extensions add source code pieces, such as statement and
expression extensions or function signature changes [18]. To
this end, we introduce the GRAN metric, which is the number
of #ifdefs that occur at particular levels in the source code.
Based on prior work [18] and on the capabilities of alterna-
tive SPL implementation techniques, we measure the GRAN
metric at six granularity levels of interest: the global level
(GL; e.g., adding a structure or function; Figure 1, Line 20),
function or type level (FL; e.g., adding an if-block or state-
ment inside a function or a field to a structure; Figure 1,
Line 25), block level (BL; e.g., adding a block; Figure 1,
Line 36), statement level (SL; e.g. varying the type of a
local variable), expression level (EL; e.g., changing an ex-
pression; Figure 1, Line 40), or function signature level (ML;
e.g., adding a parameter to a function). The metric provides
insight into the granularity of cpp-based SPLs and is used in
the discussion section to evaluate alternative SPL implemen-
tation techniques. We measure the metric by counting the
number of occurrences of #ifdefs at each GRAN level and
sum them up for each project.
Type (TYPE). The programmer labels several parts in
the source code as feature code either with distinct exten-
sions (heterogeneous) or with the same extension using code
duplicates (homogeneous). The TYPE metric is the num-
ber of occurrences of particular extensions in the source
code. We distinguish three types, homogeneous extension
(HOM), heterogeneous extension (HET), and their combina-
tion (HEHO) by comparing subsequent lines of source code
that belong to the same feature expression using exact string
comparison; we discuss this threat to validity later). We use
this metric to discuss possible refactorings.

4. ANALYSIS

We analyzed forty different open-source software systems
written in C. We limited our analysis to C, because it is
used widely in software development and the range of public
available open-source projects varies from small (~ 10 KLOC)
to very large (> 1,000 KLOC). This section describes the
selected software systems, the setup of our analysis, and the
collected data.

We list the selected software systems in Table 1. Our
selection covers a variety of different domains, such as oper-
ating systems and application software, to give as complete
an overview of cpp usage as possible. We consider these
software systems SPLs, because all of them contain several
optional and alternative features, such as support for different
platforms and application-specific configuration options.

To make the data of the different software systems compa-
rable, we applied first some syntactic source code adjustments
to the system’s code base: we deleted blank lines and com-
ments and formatted the code uniformly. Furthermore, we
used the tool src2sreml” to generate an XML representation
of the source code [25] for measuring the granularity of ex-
tensions made with cpp. The XML representation has all
information of the basic language C in the form of an abstract
syntaz tree (AST) with additional information on the pre-

"http://www.sdml.info/projects/srcml/

software system [version

| domain

apache! 2.2.11 Web server

berkeley dbl 4.7.25 database system
cherokee! 0.99.11 Web server

clamav?! 0.94.2 antivirus program
dial 0.96.1 diagramming software
emacs’ 22.3 text editor

freebsd! 7.1 operating system

geel 4.3.3 compiler framework
ghostscript! 8.62.0 postscript interpreter
gimp! 2.6.4 graphics editor

glibct 2.9 programming library
gnumeric! 1.9.5 spreadsheet appl.
gnuplot?® 4.2.5 plotting tool

irssil 0.8.13 IRC client

libxm] 2T 2.7.3 XML library
lighttpd?® 1.4.22 Web server

linux! 2.6.28.7 operating system
lynx?! 2.8.6 Web browser

minix? 3.1.1 operating system
mplayer! 1.0rc2 media player
mpsolve? 2.2 mathematical software
openldap! 2.4.16 LDAP directory service
opensolaris® (2009-05-08) | operating system
openvpn' 2.0.9 security application
parrot! 0.9.1 virtual machine

php! 5.2.8 program interpreter
pidgin?® 2.4.0 instant messenger
postgresql® (2009-05-08) | database system
privoxy! 3.0.12 proxy server

pythonT! 2.6.1 program interpreter
sendmail’ 8.14.2 mail transfer agent
sqlite® 3.6.10 database system
subversion® 1.5.1 revision control system
sylpheed?! 2.6.0 e-mail client

tell 8.5.7 program interpreter
vim?! 7.2 text editor

xfig! 3.2.5 vector graphics editor
xine-lib? 1.1.16.2 media library
xorg-server” 1.5.1 X server

xterm?! 2.4.3 terminal emulator

Thttp://freshmeat.net/;

cluster-pages/mpsolve/;

*http://www.dm.unipi.it/
Shttp://opensolaris.org/os/;
4http://x.org/; Development versions of software systems are

marked with the date of download in brackets.

Table 1: Analyzed software systems

processor statements. The two levels of programming (the
metalevel of cpp and the source code level of C) have sepa-
rate namespaces in XML, which gave us the opportunity to
conduct a coherent and separate analysis of the source code.
We measured the metrics introduced in the Section 3.2
on the XML representation. Basically, the analysis rests on
the traversal of the XML-annotated source code using our
self-written tool cppstats. This tool and the comprehensive
data for each system are available at our project’s Web
site.® Table 2 on page 10 depicts the condensed data of all
forty software systems analyzed with our tool cppstats.

S. INTERPRETATION & DISCUSSION

The collected data provide answers to various research
questions. Here, we focus on program comprehension and

8http://fosd.de/cppstats/

refactoring). During the refactoring discussion, we concen-
trate on two alternative SPL implementation techniques:
(1) aspects [22] and (2) feature modules [5]. We limit our
discussion to these two because, in our view, they have
been receiving most attention from the academic community
regarding implementation of variability in recent years. Sub-
sequent to the data interpretation and refactoring discussion,
we discuss possible threats to validity.

The percentages given in this section are the average and
the standard deviation (ats). All plots illustrate one of the
metrics LOC and NOFC compared with some other metric.
Additionally, we calculated the correlation coefficient between
the metrics being compared using the method of Kendal [20],
because all input data are not normally distributed.

Comprehension

1. How does program size influence variability? The
data reveal that the variability of a software system increases
with its size (Figure 2a). This is confirmed by the correlations
between the metrics LOC and NOFC as well as LOC and
LOF, which correlate highly. We can explain this correlation
with the observation that larger software systems usually
exhibit more configuration parameters and, consequently, are
more variable. The amount of variable source code (LOF
metric) in each project correlates with its size and is on the
average 23+17 % (Figure 2b).

The LOF metric reveals two interesting issues. First,
we found that, in some mid-size software systems such as
libxml2, openvpn, sqlite, and vim, the amount of feature
code exceeds 50 % of the code base. Second, the four largest
software systems (freebsd, gec, linux, and opensolaris) contain
a smaller percentage of variable source code compared to
the average. A reason for both issues may be that the
specification of configurable features is more complex in
larger systems than in smaller ones. The higher complexity
aligns with possibly more scattered and tangled features, a
correlation which we address next.

2. How complex are extensions via cpp’s variability
mechanisms? The complexity of cpp-based SPL implemen-
tations increases with the increasing use of feature constants
in feature expressions and of #ifdef nesting (SD, TD, and
AND metric). We observed that the size of a software system
either correlates only at a very low level (SD and TD metric)
or does not correlate with the number of features (AND met-
ric). All data points are widely scattered and each correlation
coefficient is close to zero. That is, we argue that there is
no relationship between the number of features in a software
system and the complexity in terms of feature constants. Ini-
tially, we expected that, in software systems with a high num-
ber of feature constants, the complexity of feature expressions
(more feature constants are involved) to be higher than in
smaller software systems, but the complexity stays the same.

Notably, the standard deviation of the scattering degree is
in most systems quite high (e.g., emacs, freebsd, lynx, and
python). That is, a significant number of feature constants
incur a high scattering degree and the respective implementa-
tion scatters possibly across the entire system. However, we
cannot infer from the scattering degree the places at which
feature constants occur in the source code. The scattered fea-
ture constant may only appear in a subsystem (e.g., a group of
files). In the future, this should be investigated in more detail.

The mean and the standard deviation of the tangling degree
are quite small in most systems (1 to 3 on average) and,

o o
— o
o ° ° o
8 m ° ° o
o ° o _]
° . o 0
o
S % X
— ° o [=)
8 3 ° . 3 £ o %0
o o oc° ®© LL o o
z °o"o% © O & 7]
o 0 ' oo o
- ° 4 0o ©
o] o) oo
o o | o
— ° o
o o] o ©
— I I I I I
10K 100K M 10M 10K 100K

a) LOC (correlation coefficient: 0.57)

b) LOC (correlation coefficient: 0.58)

°
X °
o o
o
Te] o o
o,
g
000
o G gaced ©
] ¥
o S ° %
[
® o °
o °
o o o
® B 7
o o
I I T T T
M 10M 10 50 500 5000

¢) NOFC (correlation coefficient: 0.74)

Figure 2: a) plot LOC/NOFC; b) plot LOC/LOF with the average of variable source code in all software

systems; c¢) plot NOFC/LOF

consequently, the complexity of feature expressions is low. A
lower complexity is preferable, because feature expressions
that consist of a high number of feature constants impair
program comprehension.

In addition to the scattering and tangling degree, we meas-
ured the average depth of nested #ifdefs (Figure 3¢; AND
metric). Notably, in all software systems, the average AND
is approx. 1, which means that nesting is used moderately
(i-e., the number of nested #ifdefs does not grow with the
number of feature constants — NOFC metric). A lower AND
is preferable, because the programmer has to be aware of
outer #ifdefs when reasoning about inner code. We also
determined the maximum number of nested #ifdefs in a file.
Two projects (freebsd and gec) reached a maximum number
of 24. The rest of the systems remained at 2 to 9. We argue
that high numbers of nested #ifdefs are not manageable,
impair program comprehension, and increase the potential
for errors. Furthermore, a high AND may reduce the po-
tential for refactorings. Since a nested #ifdef depends on
the enclosing one, the dependency between both #ifdefs has
to be taken into consideration when a refactoring should be
applied.

Refactoring

3. At which level of granularity are extensions ap-
plied? The data reveal that programmers use fine-grained
extensions (e.g., statement or expression extensions) infre-
quently.® The overall occurrence of these extensions is
1.84+1.8% on the average. Two projects use them slightly
more frequently: (1) lighttpd with 6 % statement extensions
and (2) vim with 6 % expression extensions. Although specific
modularization techniques have been proposed for implement-
ing fine-grained extensions [30, 14, 26], their usefulness seems
to be limited.

Most extensions occur at the global level (GL metric;
46+12%): enclosing functions, type declarations/definitions,

9Less than 1% of the extensions did not match the patterns
of our GRAN metric.

or (re-)definitions of feature constants. These extensions
can be realized by SPL implementation techniques, such
as aspects or feature modules, in which the introduction of
functions or types is supported [6].

Beneath the global level the second largest set of extensions
occur at the function and block level (FL and BL metric;
3349 % and 19+7%): enclosings (e.g., an if-block or a state-
ment) inside a function. Both extension types are harder
to apply, because extensions can appear at every point of a
function, and not all proposed techniques provide particular
patterns for matching them. The most promising SPL imple-
mentation technique is the aspect, which enables extensions
beneath the function or type level by addressing particular
extension points. However, the data do not reveal whether
an implementation technique is applicable and workarounds
for refactorings using either feature modules or aspects may
be necessary [17, 29].

4. Which types of the extension occur? Our data re-
veal that 8946 % of the extensions are heterogeneous (HET
metric). Homogeneous extensions (HOM metric) add up to
5+5 % and the combination of both extension types (HEHO
metric) makes up to 4+2 %. Aspects are well known for their
ability to implement homogeneous extensions [5]. We ob-
served that 5% of the extensions would benefit from aspects;
89 % would suffice with simpler mechanisms, such as mixins
or feature modules; for the rest of the extensions a combina-
tion of aspects and feature modules would be profitable [5].

The data coincide with an analysis conducted by Apel [4],
which revealed that most extensions are heterogeneous. Apel
analyzed the use of AspectJ rather than cpp, but the results
are similar.

Threats to Validity

Limitation to a single language. Programming lan-
guages provide different mechanisms for the implementation
of SPLs. For example, C4++ provides template metapro-
gramming, which can replace most cpp macros for SPL
implementations [11, 31]. We limit our analysis to C to make
the results of the analyzed software systems comparable.

o n — o o
= o
°
°
n
o |] >]
9 . < — .
- o
[a)] o
@) ° [a)] °
)] o _| o oo [™ o ° <Z(™ _| o
— ° o o — I
° ° o ° o°,
o8 ° o °
o %0, °o o = o % o N 0. © 3
o °9 o o Oo] o o o
0 ooo ° 8o i o g": Z ° ° — _| ? °.9 ° :o
i oo o ° ° o A o: — o o © 4
o o - — o o o
T T T T T T T T T
10 50 500 5000 10 50 500 5000 10 50 500 5000

a) NOFC (correlation coefficient: 0.23)

b) NOFC (correlation coefficient: 0.36)

¢) NOFC (correlation coefficient: 0.09)

Figure 3: a) plot NOFC/SD; b) plot NOFC/TD; c) plot NOFC/AND

Selection of the software systems. A major problem
with case studies is the selection of the objects of study be-
cause a biased selection can render the results useless. We are
aware of this problem; to minimize it, we selected a large num-
ber of software systems of different domains for our analysis.
Source code. Different coding conventions used in software
systems may lead to wrong conclusions. For this reason, we
preprocessed the analyzed software systems by eliminating
comments, empty lines, and include guards, and by applying
source code pretty printing.

Feature detection. Our analysis is limited to the source
code and to #ifdefs. But the representation, selection, and
implementation of features is not limited to #ifdefs. Addi-
tional configuration layers, like configuration scripts or tools
are also used in SPL engineering. A comprehensive analysis
of these configuration layers is out of scope. Our focus on
the source code coincides with the programmer’s point of
view in feature implementation.

We expect the amount of configurable source code to in-
crease when we include the additional configuration layers.
This traces back to the selection of files, modules, etc.
High-level and low-level features. An automated analy-
sis of the source code cannot distinguish well between high-
and low-level features. High-level features represent require-
ments of stakeholders, whereas low-level features reflect de-
sign decisions made by programmers (e.g., tracing or porta-
bility issues like different types of signed integers for different
compilers or platforms), which are not of interest to most
stakeholders [3]. Making this distinction is not possible with-
out additional expertise regarding the software systems and
the domains. Here, we are not interested in it, because we
are only looking at the usage of cpp’s variability mechanisms
at the implementation level.

Feature expression equality. We use string comparison
to check the equality of different feature expressions to de-
termine which code fragments belong to the same expression.
Our analysis misses the semantic equivalence of feature ex-
pressions like A && B and B && A. However, we found
that these occur rarely in the SPLs analyzed. In a random
inspection of 12 smaller SPLs, we found the error for not

considering the equivalence to be below 2.5 %.'°
Heterogeneous and homogeneous extensions. The
classification of extensions into heterogeneous and homo-
geneous is common in the software engineering literature
[5, 9]. Our tool distinguishes heterogeneous from homo-
geneous source code fragments by string comparison. Thus,
character-based, syntactic changes in the source code are not
classified correctly. The additional information we gather on
the AST does not help here, because semantically equivalent
source code fragments can differ in syntax and are thus not
recognized by a comparison of subtrees of the AST. The
problem is even more serious, because arbitrary extensions
that destroy the source code structure are possible with the
preprocessor. Generally, the problem is related to the de-
termination of code clones [7]. However, to our knowledge,
there is no code clone detection tool capable of comparing
arbitrary source code fragments for equality. A combination
of our analysis tool with code clone detection tools may lead
to more precise results. We expect a higher number of homo-
geneous extensions. Our measurement marks a lower bound
of homogeneous extensions.

Mapping of #ifdefs to AST elements. For creating an
AST and mapping #ifdefs to AST elements, we rely on the
tool src2sreml. Especially, the GRAN and TYPE metrics
rely heavily on the correctness of this mapping. The authors
of src2srcml use an extensive test suite to verify the relation
of #ifdefs and source code in the XML representation.

6. PERSPECTIVE

Our analysis provides a substantial amount of data that
is valuable for further research on language design and tool
support. The data are (1) a basis for discussions on the
feasibility of implementation techniques for implementing

10The problem arises from checking the equality of predi-
cates, a problem which is in the class of NP problems. We
used the tool Maple (http://maplesoft.com/) to check the
equivalence of feature expressions in some smaller SPL. The
equality check takes hours even for a small software system,
and the equivalence check of a large software system, such as
the Linux kernel, would take an estimated time of 13 years.

SPLs and (2) valuable input for language designers and tool
writers. Nevertheless, while performing the analysis, several
issues came up which we plan to address in further research.

Although we selected a large number of software systems
covering a variety of domains, we cannot infer valuable infor-
mation on cpp usage regarding a specific domain, because the
number of systems for each domain is too small. However,
we believe that the usage of cpp’s variability mechanisms is
not just a question of program size, but also of the domain.
For example, the variability of operating systems (e.g., driver
implementations) to support different hardware platforms
may be different than in a Web server. Our results reveal
that the Web servers analyzed are more variable in terms of
configuration parameters (NOFC metric) and source code
(LOF metric) than the operating systems analyzed, but the
sample is too small to draw a general conclusion. We plan
to investigate particular domains in isolation in terms of
comprehension and refactoring and to look for differences
and similarities to the case study presented here.

Our analysis covers only one specific release of each soft-
ware system. We believe that gathering data of a software
system over time reveals interesting insights into its adapta-
tion and evolution. These may involve the support of a new
platform, a new functionality, or the adaptation to structural
changes. To this end, we plan to apply cppstats also to
consecutive versions of a software system to contribute to
the findings of previous work [1, 28].

Finally, based on the granularity and homogeneous/hetero-
geneous metrics, we plan to explore the possibility of auto-
mated refactorings of #ifdefs. To this end, we look for
patterns of cpp-based extensions and map them to alterna-
tive SPL implementation techniques. Our goal is to provide
tool support to programmers with suggestions on possible
refactorings in legacy applications [1].

7. RELATED WORK

The cpp tool has been the subject of several papers in the
past. We group them according to program comprehension
and refactoring and discuss the relation to our work.

Comprehension

The most comprehensive analysis of the cpp tool was con-
ducted by Ernst et al. [12]. The authors presented results of
an analysis covering mainly the facilities and possible pitfalls
of macro expansion. We complement their case study with
detailed information about variability implementation.

Krone and Snelting proposed a tool that extracts #ifdefs
from software systems to compute the configuration struc-
ture [23]. The tool covers only the coupling of feature con-
stants; it neglects the implementation part (feature code) in
terms of homogeneity and granularity.

Favre covered cpp usage in software development from a
general point of view without looking at it empirically [13].

Refactoring

Adams et al. proposed a set of patterns for refactorings of
#ifdefs into aspects [1]. The authors tested their approach on
one software system. Other researchers also addressed the use
of aspects for refactoring [2]. Our metrics enable a discussion
of different SPL implementation techniques for refactorings.
Furthermore, we provide data obtained from several software
systems, which provides a more realistic view of cpp’s usage.

Kastner et al. raised questions of granularity at a theoreti-
cal level [18]. The authors could not draw conclusions on the
necessity of certain implementation techniques. Our work
contributes to this discussion.

There is a significant amount of work on cpp-aware refactor-
ings [15, 33, 35]. This work aims at refactorings within C pro-
grams. In contrast, our analysis provides data for discussions
on the applicability of other SPL implementation techniques,
such as aspects or feature modules, to replace #ifdefs.

8. CONCLUSION

We presented a comprehensive analysis of variability mecha-
nisms (usage of conditional inclusion; #ifdefs) of the pre-
processor cpp. We highlighted the connection between the
capabilities of cpp and the concepts of SPL engineering. To
this end, we formulated four research questions regarding
the variability of software systems in general, the complexity,
granularity, and types of extension. We proposed a set of
metrics for answering these questions and analyzed forty
publically available open-source software systems with more
than thirty million lines of code.

We found that cpp’s mechanisms are used frequently for
implementing source code that is optional or incremental, as
it occurs in SPLs (on the average 23 % of the code base in
a project is variable). Furthermore, we observed that the
complexity of these extensions is independent of the size of
the software system. Another result is that most extensions
occur at a high level of granularity (programmers use #ifdefs
mostly to enframe functions or entire blocks, such as if-
statements or for-loops). This is promising, especially, when
considering refactorings using alternative SPL implementa-
tion techniques, such as aspects or feature modules, that pro-
vide similar mechanisms for implementing such variabilities.
Finally, we found that most extensions are heterogeneous
and, consequently, that the quantification mechanisms of
aspect-oriented languages are not needed frequently.

The data we have collected can serve as input for the
research area on language design and tool support and may
permit answers to further questions on SPL engineering.

Acknowledgments

We are grateful to Janet Feigenspan for help with statistical
evaluations. Apel’s work is supported in part by DFG project
#AP 206/2-1.

9. REFERENCES
[1] B. Adams, W. De Meuter, H. Tromp, and A. Hassan.
Can we Refactor Conditional Compilation into
Aspects? In Proceedings of the International
Conference on Aspect-Oriented Software Development
(AOSD), pages 243-254. ACM Press, 2009.

[2] B. Adams, B. Van Rompaey, C. Gibbs, and Y. Coady.
Aspect Mining in the Presence of the C Preprocessor.
In Proceedings of the AOSD Workshop on Linking
Aspect Technology and Evolution (LATE), pages 1-6.
ACM Press, 2008.

S. Apel. The Role of Features and Aspects in Software
Development. PhD thesis, School of Computer Science,
University of Magdeburg, 2007.

S. Apel. How AspectJ is Used: An Analysis of Eleven
AspectJ Programs. Journal of Object Technology
(JOT), 9(1):117-142, 2010.

(3

[4

[5] S. Apel, T. Leich, and G. Saake. Aspectual Feature
Modules. IEEFE Transactions on Software Engineering
(TSE), 34(2):162-180, 2008.

[6] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software
Engineering (TSE), 30(6):355-371, 2004.

[7] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and Evaluation of Clone
Detection Tools. IEEE Transactions on Software
Engineering (TSE), 33(9):577-591, 2007.

[8] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[9] A. Colyer and A. Clement. Large-Scale AOSD for
Middleware. In Proceedings of the International
Conference on Aspect-Oriented Software Development
(AOSD), pages 56-65. ACM Press, 2004.

[10] A. Colyer, A. Clement, and G. Blair. On the Separation
of Concerns in Program Families. Technical Report
COMP-001-2004, Lancaster University, January 2004.

[11] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[12] M. Ernst, G. Badros, and D. Notkin. An Empirical
Analysis of C Preprocessor Use. IEEE Transactions on
Software Engineering (TSE), 28(12):1146-1170, 2002.

[13] J. Favre. Preprocessors from an Abstract Point of View.
In Proceedings of the International Conference on
Software Maintenance (ICSM), pages 329-339. IEEE
CS, 1996.

[14] M. Fowler. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley, 1999.

[15] A. Garrido and R. Johnson. Challenges of Refactoring
C Programs. In Proceedings of the International
Workshop on Principles of Software Evolution
(IWPSE), pages 6-14. ACM Press, 2002.

[16] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, SEI, November 1990.

[17] C. Késtner, S. Apel, and D. Batory. A Case Study
Implementing Feature Using AspectJ. In Proceedings of
the International Software Product Line Conference
(SPLC), pages 223-232. IEEE CS, 2007.

[18] C. Kistner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 311-320. ACM Press, 2008.

[19] C. Késtner, S. Apel, and M. Kuhlemann. A Model of
Refactoring Physically and Virtually Separated
Features. In Proceedings of the International
Conference on Generative Programming and
Component Engineering (GPCE), pages 157-166. ACM
Press, 2009.

[20] M. Kendall and B. Babington Smith. The Problem of
m Rankings. The Annals of Mathematical Statistics,
10(3):275-287, 1939.

[21] B. Kernighan and D. Ritchie. The C' Programming
Language. Prentice-Hall, 1988.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of the Furopean

23]

(24]

(25]

(26]

27]

(28]

29]

30]

(31]

(32]

(33]

(34]

(35]

Conference on Object-Oriented Programming
(ECOOP), pages 220-242. Springer-Verlag, 1997.

M. Krone and G. Snelting. On the Inference of
Configuration Structures from Source Code. In
Proceedings of the International Conference on Software
Engineering (ICSE), pages 49-57. IEEE CS, 1994.

K. Lee, K. Kang, M. Kim, and S. Park. Combining
Feature-Oriented Analysis and Aspect-Oriented
Programming for Product Line Asset Development. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 103-112. IEEE CS, 2006.

J. Maletic, M. Collard, and H. Kagdi. Leveraging XML
Technologies in Developing Program Analysis Tools. In
Proceedings of the ICSE Workshop on
Adoption-Centric Software Engineering (ACSE), pages
80-85, 2004. http://www.acse2004.cs.uvic.ca/.

G. Murphy, A. Lai, R. Walker, and M. Robillard.
Separating Features in Source Code: An Exploratory
Study. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 275-284. IEEE
CS, 2001.

K. Pohl, G. Bockle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, 2005.

A. Reynolds, M. Fiuczynski, and R. Grimm. On the
Feasibility of an AOSD Approach to Linux Kernel
Extensions. In Proceedings of the AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), pages 1-7. ACM Press, 2008.

M. Rosenmiiller, S. Apel, T. Leich, and G. Saake.
Tailor-Made Data Management for Embedded Systems:
A Case Study on Berkeley DB. Data and Knowledge
Engineering (DKE), 68(12):1493-1512, 2009.

M. Rosenmiiller, M. Kuhlemann, N. Siegmund, and

H. Schirmeier. Avoiding Variability of Method
Signatures in Software Product Lines: A Case Study. In
Proceedings of the GPCE Workshop on Aspect-Oriented
Product Line Engineering (AOPLE), pages 20-25, 2007.
http://wuw.softeng.ox.ac.uk/aople/.

Y. Smaragdakis and D. Batory. Implementing Layered
Designs with Mixin Layers. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), pages 550-570. Springer-Verlag, 1998.

H. Spencer and G. Collyer. #ifdef Considered Harmful,
or Portability Experience with C News. In Proceedings
of the USENIX Technical Conference, pages 185—197.
USENIX Association Berkeley, 1992.

D. Spinellis. Global Analysis and Transformations in
Preprocessed Languages. IEEE Transactions on
Software Engineering (TSE), 29(11):1019-1030, 2003.
K. Sullivan, W. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan. Information Hiding Interfaces
for Aspect-Oriented Design. In Proceedings of the
European Software Engineering Conference and of the
International Symposium on Foundations of Software
Engineering (ESEC/FSE), pages 166-175. ACM Press,
2005.

M. Vittek. Refactoring Browser with Preprocessor. In
Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR), pages
101-110. IEEE CS, 2003.

sisApeue oy} jo ejye(q :Z 9[qelL

(Toae] amyeusis poyjew A ‘[oA0] Uolsserdxoe :fIF ‘[0AS] JUSUILIRIS S {[9Ad] 3DO[q I {[eas] odL) 1o uorjouny I ‘[9Ad]
[eqo[8 :T5) Arenuelsd oY) SULINSLOW SUOISUIIXD JO Joqunu :NYYD ‘(suoriod snoousSomwoy pue snosuaS0191oy M SUOISU9)Xe Jo Ioquinu :QHHH ‘SUOISua)xa
SN0aua801997 JO IoquInu T HH ‘SUOISU9)IXe Snosusfouwror Jo Iaquinu :JAQH) 2d4) o7} SULMSseaW SUOISU9)Xo Jo Ioquinu ‘FJX,J, :090I130p Sursue) afeiese (1],
{00130p BurIe)jeds oFeIoAr (IS SJOpI# Jo yidop Jurjsou ofeIose ((INV 0POO 9Injesj Jo soul] : JOTT ‘SIURISUOD 9INjed] Jo Ioqunu :HJON :9pod Jo soul] :DO'T

i 12 | € 19% 788 L00°T | L€ 661T°T | 92 €9°'TFGET | TT'6IFOL'S SEO0FIVI | 8061 €57 129'67 ULI9)X
LT | #8 | 1S |2ge'c | 986°C | 880°C | V4G 06LC | 792 L6 TFP8'1 | 92°8¢F00°6 IT°0F60°T | LGG'S6 09¢'1 128225 I0A19S-8I0X
8T | IT | %9 | 61T |288c | 19¢'c | 26 667 | 69 9 TFO8'T | €2 LTF0E'S € 0FLTT | T09°0LT G691 GGE'GHT qI-ouIx
I 9 4 86 18T 861 01 TST 1 66 TFSS'T | £9°9F99F CI'OFS0T | #81°G 201 675°cL 8yx
1.1 | €12 | 91T | 298°'¢ | 9ge¥v | 2.9'C | S0g €807 | 801 LY IFOV'C | 60°C8F0S61 | IS0FLST | 8L9°CET 6L 18€°62¢ A
i 8T | ¢ 629 089 9.6'c | 2¢ 0%c'e | €¢ P 1FL9C | €7 98F6L°E 8T'0FST'I | 819°9% 18%'C €8T°GET 0%
11 | ¢ T | 991 668 49 8T 9F¥ S CEIFIVT | LEOIF6IT CUOFCI'T | L¥8'SI 1% CE1'66 pooyd]4s
i % € SIV 12Vl | 686'c | 77 16¥ 981 0C' TFIST | OT'SEFEOTI | EE0FLET | €€7'8C 60¥ L££°609 UOISIDAQNS
¢ 9 1| 928 999 £T8 11 7.8 8 9T IF6L'T | #9°CTFTL L ST0FTET | L88‘0S dite LIS%6 ofbs
Sz 199 |9 SIOT | ¥PO‘T | €8€T | §S 16T | ¥ 92 IF¥0°Z | ¥S'8TF06°S 6C°0FSET | 966°1¢€ 088 PrLE8 [rewrpuos
L 18 |4 198 0£L9 | y22'c | 111 8159 | ¥¢¢ 60 TFL9°C | 09°0TTFSO¥ | 1Z°0FST'T | 860°00T LT1'S 09T'7.LE uoy3Ad
0 6 9 181 11¢ 445 4! £6¢) 66°0FL8'T | 09°CTF869 I7°0FSS'T | ¥86°S €31 6L0'%¢ Axoatad
gl € |0 952 16€'T | 16S°T | 04 1€0°T | €9 CTTFIST | LESBIFLT CLUOFII'T | ¥03'€T 269 1SL° 1LY [bsoagysod
6 | 6 0 69¢ G90°'T | 060°T | €9 758 09 L8°0F9T'T | PV ITFVCE PI'OFST'T | S€0°0F 9.8 065°69% u3pid
02 [€S | €9 |966T | 0g0'c | I8T'G | gSI WLy | 01€ € TF68'T | €7 6IFSS S S 0F6Z T | 0£8°961 9e¥'e 1I¥'7LS duyd
0 4 1 S0% 109 L6C'1T | ¥ 806 1€1 G9'TFT0C | L9°CIFI0'9 9% 0FSZ'T | 089°9% 6£9 1.£'86 joxred
er | L 0¢ | gz 9L¥ €99 11 SHy S 0’ TFILT | CI'STF69°9 17 0F9F' 1 | 88G'ET 9T GRT '8¢ udauado
9.¢ | 80€ | S0 | FOF9T | 2S9°'C¥ | 998°8¢ | 06E'T | 969°CC | 86%'C | LF IFFST | 66°€6FcF 0T | PTOFFI'T | 2L FF9°T | 106°0T | gF0°L6I‘S || strefosuado
ST |92 | SV | 9sL ee'T | €6I°T | 99 we'l | 9¢ STTFEIT | €8 24F99F 0% 0FIZT | 25699 80, GLI'OTG deppuado
0 0 0 ¥ 01 0g 0 81 0 SV 0FLT T | 08 TFVS'T FO'OFST'T | €92 el 181°01 aafosdur
9z | 61 | 08T | 969°T | 0€1‘e | 910°¢ | €SI Le¥'c | €8 9 TFO0S'T | ISTIFIR'S STOFITT | 890FII 9¢z'1 101909 IoAerdw
0 1 ¢ jattd 01¢ 29 81 29¢ 18 7S 0FOV'I | 6F 8FIL'S € 0F9Z° T | 689°01 96¢ 65.°€9 XIuru
8 69 |6 TCG'T | 669°T | SS€°T | @9 1LLT | Tg 12 TFS8C | 89°90TFIS'TT | 9V 0FF9'T | S8S°E¥ 908 TgS LTI XUA]
021 | L. | 6% | ©L0°L | ¥20°02 | T19°0€ | 9.8 89¢'LT | ¥EY 9 TFVI'T | 96 LFFLO'9 IT°0F60°T | 696°LF9 G01°6 127986 xXnur
91 | I 1S | 682 8S% 062 gg [4éd 44 26'0F9€'T | 2T 9F89F 61°0FSI'T | §95°8 291 £86°8¢ Pdiysy
0 6c | 0 6£6 PS6°T | €26'9 | 92 €69°c | 191 C0'€FT0'S | 60°06F9¢'8 6E°0F6S° T | oL'6ET 170 £06°01% gruxqIq
0 0 1 j«d 96 Gl ¢ €L i 79°0F0C'1 | P CFICC L0°0FS0'T | 2931 GG 8667 ISSII
i 61 | 0S | 012 S09 160°T | 8F L¥6 gg 11°2F60°C | 0T'0CFIL L 0% 0F9I'T | €¥S°0T 454 190°9. jordnus
LT [ST |99 |¢€g9 608 0S¢ ge 808 6 S6°0FICT | SOFFSI'E G0'0FE0'T | €68°TT 16% GI8FST OLIPWINUS
GG [86 | 19T | 81%'c | €¥I‘F | 080°0T | I6€ 128'S | CEY 02 TF69T | LS IEFOE L 9T'0FVI'T | 1¥9°98 g10‘e G8G'1G. oqI[3
I 0 4 i3 0£9 61T | ¢€ 97 €91 79 TFGY'T | 87 SIFES9 80°0FL0°T | TIT'6I z6¢ 189°L85 duns
€ | el | 9T | %69 90g'T | 291'c | L9 IWI'T | SPI CUIFSCT | OV 6F86°E 80°0F90°T | ¥98°1¢C 918 120°ch¥ jd110s3s0y3
1S | 69¢ | #8¢ | evL'c | 08L°G | €cLIl | g€cg 08¢'6_ | 28¥ ST'EFTET | S6°61F96°9 €5 0F0Z T | L¥S¥8T £90°G g0e'ere’L 003
SzS | 169 | ¥S¥ | LET'6T | 02S'2E | 0TF'SY | 662 | 9166 | 054°C | 0S' IFICC | PEFIPFLY OL | LT OFVIL | 986°GHS L9191 | €zL'868°S psqea1y
06 | 6TT | ST | STST | #Pe'c | 12€'€ | 611 €06'e | 8IT SS'TFIOE | 88T FIS 0T | 85 0F9Z'T | 09T°9L €Le'T 17€°LET SoRUID
S 0 L 9. (e 657 91 ! g GG'0FE0'T | 69°9TFOF'S F0'0FE0'T | 90%'S 16 39.'821 eIp
4 0 I 11¥ QLe 798 54 6LV ¥ 08°0F9F' T | #T'CIFE6'S ST'OFIT'T | 60801 68T gye‘cl ArUIRID
0 L 0 81¢ TLT jaas 01 09% 4 CLIF6ST | 8C'LF0L°E 80°0FL0T | 649°L 8z¢ 8L8°1S 993 0I91[D
gl |61 | ¢ PRSI | 8€TI'T | 9¥¢'T | 80T L0ST | 681 G8'0F6ET | 08°EIFI9T CLI'0F60T | I¥E'ST 2851 607 LST qp 4oes{oq
€T | Ss¢ | ev | 8g8 981‘c | €10'C_| 86 170‘c_ | ¥E1 G TFELT | SE'SIFRS'S ST'OFSI'L | SL0°SY 8ST°T 209712 oyoede

TN jicy 1S 1d 1A o HHOH LHH WOH
NVHUD HJdAL aL as aNVv A071 DJION | DOT owreu

10

