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Abstract. Distributed mechatronic systems integrate sensors, processing units,
communication networks, and actuators. In order to achieve a rapid develop-
ment process and an improved maintainability it is necessary to combine and
replace such modular components in a flexible way. For seamless composabil-
ity we developed communication middleware and a programming abstraction
for distributed sensors and actuators. In this paper we describe a comprehen-
sive development toolchain based on these abstractions. Sensors and actuators
are specified by an extended electronic datasheet for smart embedded devices.
Following this approach, the user defines the capabilities of a device on a high
system level in a declarative way. From that description, the functionality is gen-
erated using domain-specific tools like Matlab/Simulink. Finally, we improved
the back-end tools that provide the code for the target system. Thus this code is
derived with minimal user-intervention.

1. Introduction

The development of distributed mechatronic applications requires an interdisciplinary ef-
fort of electrical and mechanical engineering as well as computer science. Such appli-
cations integrate heterogeneous systems like different sensor types, computers/microcon-
trollers and multiple diverse communication networks. To simplify and support the de-
velopment process [Schulze and Zug 2008] describe a modular system structure. This
allows combining components of different development stages, e.g. components in a pre-
liminary stage, simulated by Simulink blocks with already tested hardware components
(hardware-/software-in-the-loop systems). The modularity also supports testing and im-
proves maintainability of the final product.

Precondition for this functional composability is a common abstraction for the
components. We distinguish between three main aspects. Firstly, we need a generic
communication interface, which decouples the application development from underly-
ing networks and their specific characteristics. The second aspect is concerned with
the internal structure of a component to provide a high degree of freedom when com-
bining sensors, actuators and network interfaces. Thirdly, we suggest a method to inte-
grate components that are defined and configured outside the development process (e.g.
legacy components). We strive for an easy adaptation and integration of such compo-
nents. A mismatch of configurations should be avoided by respective compatibility checks
[Kaiser et al. 2008].



General communication mechanisms and interfaces are important for distributed
applications. Usually, a broad spectrum of networks and lower level protocols has to be
integrated. At a certain communication level, however, all elements of the distributed ap-
plication have to agree on a common structured communication object. This requires the
encapsulation of the underlying heterogeneous network structure. Therefore, we devel-
oped our communication middleware FAMOUSO (Family of Adaptive Middleware for
autonomQOUs Sentient Objects [Herms et al. 2008, Schulze 2009]) that provides event-
based communication over different network types according to the publish/subscribe
paradigm (CAN [Robert Bosch GmbH 1991], 802.15.4 [ZigBee Alliance 2003], Ethernet
communication, etc.). FAMOUSO allows communication between components specified
in different programming languages (C/C++, Python, Java, .NET) or by domain-specific
engineering tools (LabVIEW, Matlab/Simulink). In contrast to other communication mid-
dleware, FAMOUSO supports different qualities of communication and is particularly
developed for resource constraint devices as 8-bit controllers often used in smart devices.

A additional abstraction level addresses the internal structure of a sensor/actuator
node. It describes typical internal modules required in smart devices. These include
modules for data acquisition, signal conditioning, filtering and fault detection. Such a
programming abstraction forces the developer to structure application specific code into
modular and replaceable subsystems that e.g. can be represented and specified as blocks
in Matlab/Simulink [MathWorks 2010a]. In [Zug and Kaiser 2009] we examined typical
faults in sensor applications and suggested an architecture capable to cope with such
situations. These concepts are also used in our proposed development chain.

Finally, we provide an abstract description of hardware and software configuration
sets for a network node. This substantially simplifies and accelerates the development
process. A standardized description also supports the use of code generation tools. Hence,
changing parameters in some system component or even the integration of completely
new hardware may be performed automatically or with minimal intervention only. As a
result, the descriptions of the hardware components are capable to detect compatibility
problems and may avoid faulty combinations. This is described in [Kaiser et al. 2008].

The aspects addressed above, i.e. communication, internal structures, and compo-
nent description, represent the structure and the interfaces of a sensor/actuator node but
do not reflect the component’s behavior so far. The functionality of a component, e.g.
the signal processing and the algorithms for filtering, has to be specified for each type of
sensor and actuator specifically. This is the realm of domain specific programming lan-
guages and tools. Therefore, we combined the proposed abstractions with the Mathworks
Simulink toolchain. This offers a large library of packages for control design and signal
and state processing. Additionally, it includes tools (e.g. Real-Time-Workshop) to gener-
ate code from such a set of blocks for a specific hardware target. Our work includes an
enhancement of such back-end tools for the AVR micro-controller.

The paper is structured as follows: In Section 2 we introduce the framework and
illustrate the main concepts. Subsequently we use an example scenario to present the sys-
tem descriptions of an appropriate node in Section 3 and the behavior and code generation
for this application Section 4. Section 5 illustrates the state of the art and lists a survey
of related approaches. Section 6 summarizes the paper and specifies current and future
work.
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Figure 1. Framework development chain from XML descriptions to target code

2. Development Tool Chain for Distributed Applications

In this section we describe the main concepts of our development framework. Figure 1 il-
lustrates the main workflow (1 - 5) and shows the three steps — XML Description, Simulink
Model and Target — connected by two transformation/generation tools — Model Genera-
tion and Target Code Generation.

The box marked by (1) on the left site, XML Description, is the starting point of our
development chain. Three different XML files include all information of the connected
sensors. A platform specification defines the processor type, the board properties and the
communication settings. Section 3 describes the structure and contents of those files.
The clear separation of the descriptions in different files enables a flexible combination
in varying scenarios. The System Specification determines the connection between sensor
and board interfaces (an example is given in Section 3) .

Based on this abstract system specification we derive an appropriate Simulink
model during the first generation step, marked by (2) in the workflow illustration. The
Profile Selection module provides a flexible definition of the run-time environment of the
Simulink model. This can be a simulation in the Simulink environment or an implemen-
tation for an embedded target. The Profile Selection algorithms check the availability on
a Simulink System Target File (STF) necessary for the target code generation process and
part of the Simulink model file. In a second step the users have to decide about the sensor
inputs which can be implemented as simulation module or by an interface block to a real
transducer. The sensor data sheets contain all information required for a basic sensor sig-
nal simulation. Hence, it is possible to coordinate simulated and real sensors on the target.
The Profile Selection provides a graphical user interface and calls the Model Generator,
that transforms the collected information into a Simulink file (.mdl).



We obtain the basic structure of a Simulink model ready for an integration of
the Application methods as depicted in the right box labeled with (3). The Application
processes input signals from simulated or real sensors as from the networks and calcu-
lates output values transmitted to Actuator Interfaces. At this stage the benefit of the
framework is obvious. The developer does not need to cope with network or hardware
interfaces. This is done automatically. It should be noted, that the user is able to control
the Profile Selection from the Model Generation out of Simulink. The special block calls
the generation process that derives a new Simulink model. Hence, simulated sensors can
be replaced by real ones without any error-prone copy and paste actions between different
model variants.

Simulink offers a comprehensive code generation tool chain, called Realtime
Workshop [MathWorks 2010b], which was enhanced by a target configuration for a small
8-bit controller during a previous work [Brade 2009]. The necessary information for the
target code generation process is stored in the Simulink model during the model gener-
ation process. Suitable compiler, linker and flash tools etc. are defined as well as addi-
tional libraries, run-time specification etc. so that it needs only a mouse click to bring the
Simulink model down to the embedded target platform. Additionally, the Simulink model
is used for the derivation of an Electronic Datasheet (EDS) of node’s output done by our
EDS Generator. 1t contains all information that is helpful for a correct interpretation,
validation, and processing of the results transmitted by this node. A compressed version
is stored on the target. This allows the use of service discovery methods for a dynamic
integration and interaction.

In the following subsection we illustrate two parts of our framework more in detail,
the XML description files for sensors and platforms and the profile switch mechanisms
controlled out of the Simulink environment. For a comprehensible presentation we intro-
duce an example scenario and assume, that we want to develop a smart temperature sensor.
Our sensor node is equipped with an Atmel ATO9OCAN128 processor combines two types
of temperature transducers, a AD592 and a CON-THEMOD with a higher precision but a
smaller range. The AD592 offers only a voltage output while the CON-THEMOD mod-
ule provides an additional digital I2C interface. The temperature signals should be jointed
and the result published via FAMOUSO.

3. XML Description Files

The electronic data sheets were stored in an XML structure. XML offers a sim-
ple, standard way to exchange structured textual data. The advantage of this tech-
nique lies in the availability of machine processing using the Document Object Model
(DOM) [Apparao et al. 1998] and the human readability in contrast to the binary repre-
sentation of IEEE-1451. As depicted in Figure 1 we divide the entire sensor description
into three types for sensor, platform and communication.

3.1. Sensor/Actuator Description

In a sensor data sheet we store general information of the transducer, interface description
and context information. Due to the similarity, we handle both component types, sensors
and actuators, with the same file type and structure. We are talking about sensors and
sensor description in the following for the sake of simplicity and readability. However,
similar statements are also applicable to actuators.



The first part of a sensor description file contains general information like sen-
sor type, the vendor, layout pins and its supply properties similar to IEEE 1451.2. The
interface description informs about all available interfaces and their configuration param-
eters that deliver sensor data or receive actuator commands. The third section is used to
store context sensor properties. These properties describe signal behavior and parameters
that are necessary for fusion and weighting mechanisms, simulation purposes and fault
detection techniques concerning a reference output [Dietrich et al. 2010].

Considering our example scenario we have to write two sensor description files
using an appropriate editor. This tool allows a convenient handling of the XML Files by
a GUI that provides form structure with input boxes, buttons and drop down frames. The
interface description list contains one entry for the AD592 sensor and two specifications
for the CON-THEMOD, for each sensor statistical signal parameters and a linearization
function are integrated.

3.2. Platform Description

The platform description combines basic information and the available interfaces of the
platform. The first part has a similar background as the general information section from
sensor description. Here we store general information like board type, board revision and
processor type similar to CODES described in [Kaiser and Piontek 2006]. The second
part encounters the interfaces and corresponding device drivers of the platform.

Our sensor board used in the example scenario provides the periphery of the Atmel
processor and supplies interfaces to the analog digital conversion, 12C, and CAN buses,
as well as two UART.

3.3. Communication Description

The communication description is tailored for the integration of FAMOUSO. It contains
necessary information like subjects of the events for publishing and subscription as well
as parameters like periodicity, omission degrees, etc.

In the example scenario the temperature values and their validity are published
periodically.

3.4. System Specification

The three XML files mentioned above are composed in a system specification file. The
specification file selects the interfaces between sensor components and the used target
platform. Storing the connection data in a separate file results in a high degree of flexi-
bility because it opens the ability to compose and replace different sensors, actuators and
platforms. Consequently, it is possible to develop the application on different boards and
select yet another one for series production. The system specification file is also gener-
ated by a graphical tool that helps to hide the error-prone task of manual XML editing and
checks the compatibility of the interfaces. E.g. if a developer tries to combine a sensor
with a LIN bus with our scenario board, this results in an error message.

Listing 1 summarizes parts of a system specification file. Line 4 and 5 define
references to the connected sensors and their descriptions. As noted above, the first sensor
(AD592) is assigned in line 10 to the third channel of the analog digital converter of our
platform. The second transducer (CON-TEMOD-I2C) is connected to the 12C bus and
uses the fifth address.



Listing 1. Example of a System Specification XML file

1 <?xml version="1.0" encoding="utf—-8"7>
» <container>

3 <context>

4 <Sensor1>AD592-BN</ Sensorl1>

5 <Sensor2>CON_TEMOD_I2C</Sensor2>

6 </context>

7 <connections>

8 <AVR-Processor>

9 <Sensorl>

10 <plattform>analog.channel3</plattform>
1 <sensor>analog</sensor>

12 </ Sensorl>

13 <Sensor2>

14 <plattform>i2c.address5</plattform>
15 <sensor>i2c</sensor>

16 </Sensor2>

17 </AVR-Processor>

18 </connections>

19 </container>

4. Simulink Model Generation

The model generator transforms the information of the specification file into a Simulink
model. Beside the visible model structure of a node, the process generates the context
information, device drivers for sensor components and the scripts necessary for profile
switches. For this purpose a configuration set for target code generation is selected and
the user can customize the sensor interfaces with the respective graphical tool. The con-
figuration set, called profile, contains device drivers and the Simulink parameterization
for the associated platform. In our example project we use two general profiles: the simu-
lation in the Simulink environment and the execution of node behavior on an Atmel AVR
processor. Within real target profiles the developer can replace physical sensors interfaces
by simulation blocks.

A Simulink model combines different blocks connected by arrows that represents
the data flow as shown in Figure 2. A block is presented by a rectangle and hides its
functionality behind the respective graphical representation. The developer may describe
each block by an individual S-Function, by a model reference or including a common
library block.

Figure 2 shows the output of the generation process. We obtain a basic structure
that offers suitable interfaces to the sensors, actuators and to FAMOUSO. The developer
implements the behavior of the Processing block only and integrate the desired applica-
tion here.

The Simulink models in Figure 2 of our example scenario look similar on the high-
est level, but for the different profiles two various sub-models implement the interfaces
of the AD592 and CON-TEMOD-I2C sensor (visible in the sub window in each figure).
In Figure 2(a) we depicted the simulation profile. The actual state of profile switch is
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Figure 2. Profile switch between a simulation environment (a), and a code gener-
ation toolchain (b)

documented in the headline of the ProfileSwitch block. For simulation practice, there is
only an emulation driver with the output unit “Degrees Celsius”. On the right side, we
use the profile AVR BOARD connected to the real sensors. Hence, the first block named
S-Function represents the analog device driver for the Atmel processor. The device driver
delivers a signal with a voltage, which have to be transformed in “Degrees Celsius” and
linearized by a “Lookup_Table” block.

After the implementation of the behavior and validation by simulation, the tar-
get code generation process translates a Simulink model into the target languages. The
process of code generation is controlled by a System Target File (STF). One STF rep-
resents a range of processors, typically a processor family. The Embedded Real-time
Workshop [MathWorks 2010c] provides a number of these STFs. However, in most case,
especially for 8-bit devices, there are basic structures only. Hence, we created our own
STF for the AVR that is now available for future projects [Brade 2009].

5. Related Work

Our approach covers a broad spectrum of methods used in system development and a
number of ongoing research topics. Hence, it is difficult to compare our work to other
projects under a single perspective. Therefore, we evaluated several tools, standards etc.
that include ideas related to our approach. In Tab. 1 we summarize the results according
to the three abstraction categories of our approach. An empty field in the table means that
this feature is not supported, a “+” marks some basic support while a “++” denotes the
comprehensive integration of an aspect. The “v"” symbol validates the existence of the
main feature categories.

In the first group of categories we determine the integration of a communication
abstraction that offers a common interface and helps to hide specific properties of the
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Communication Abstraction v v v
Middleware Integration ++ ++ +
Modular Concept v v v v v
L; sensor interface + ++ ++
3 communication ++ + + +
= functionality + + ++
Electronic Data Sheets v v v v v v
i sensor ++ ++ ++ +
8 platform G +
communication ++ + +
Description Languarge XML | XML | XML | binary | binary text
Functionality v v v
Programming Interfaces C Math C g, m,
ML, m, mex,
Java etc. etc.
Code Generation v v v
Code Generation Tool XSLT RTW
Target Languarge C C C
Error prevention + +

Table 1. Comparison of different development environments for distributed ap-
plications considering high level sensor descriptions

underlying network. Some of the referenced approaches provide or integrate an existing
communication middleware for this purpose. The second group categorizes the existence
of a modular structure, which combines predefined functions like sensor and communi-
cation interfaces, error detection modules, as well as application specific modules. The
next category examines the usage of an abstract component description in electronic data
sheets for different categories of sensor node components. Category four divides the ref-
erences considering the implementation interfaces for behavior related functionality. The
utilization of this information is depicted in category five. Here we mark the capabilities
of a code generation and combination in the development process. The following tools
and approaches were classified according to the four categories:

CODES (COsmic embedded DEvice Specifications) described
in [Kaiser and Piontek 2006] represents a predecessor of some parts of our framework.
The approach focuses on a XML based description language for the specification of
sensor features and communication parameters for smart autonomous components. The
communication abstractions of the underlying middleware COSMIC [Kaiser et al. 2005]
are mapped to the electronic data sheet and allow a dynamic setup of the communi-



cation. The sensor descriptions follow some ideas of the Transducer Electronic Data
Sheets (TEDs) according to unit coding, data types, and boundaries. The CODES data
sheet is compressed available on each node. CODES supports an underlying middleware
extensively, but it does not consider realistic sensors and whose parameters in the data
sheet design.

Sensor Model Language (SensorML) provides a framework for describing sensor
systems, as well as the associated data processing. In contrast to the following stan-
dards the user can define filter or fusion functions in the Mathematical Markup Language
(MathML). The comprehensive concept is used to describe sensor, platform, and function-
ality. The description of process properties is based on Sensor Web Enablement Common
namespace and provides the entire Sensor Web Enablement functionality. The communi-
cation interface would be described by an extension of OSI. The concatenation of separate
processes enables processing, analysis, and visual fusion of multiple sensors. SensorML
does not include appropriate tools for behavior development beside the MathML interface.
For complex fusion applications an abstract description of algorithms is not possible in
this way.

The OMG Smart Transducer Interface Specification (STIS)
[Object Managment Group (OMG) 2003] provides an access via the CORBA real-
time service (RS) interface, the diagnostic and management (DM) interface, and the
configuration and planning (CP) interface of small, smart transducers in a distributed
control system. The standardization of the different interfaces is mapped on an interface
file system (IFS) typically in the memory of each Smart Transducer. For an interpretation
of the data in the IFS additional meta data about the particular IFS are stored on a central
node with higher performance. The authors of [Elmenreich et al. 2004] enhance the
Standard Transducer Interface (STI) concept and developed a XML description of the
functionality for simple fusion tasks. As mentioned one section before, OMG STIS
divides interface programming and application development. The descriptions are used
for message identification but not in the development process.

IEEE 1451 Smart Transducer is a family of standards for connecting smart de-
vices [IEEE Standards Association 1997]. IEEE 1451.2 defines an electronic data sheet
and a digital sensor interface to access sensor measurements, set actuators, control main-
tenance functions, or to obtain the data sheet of the sensor/actuator system. Hence, the
standard establishes the communication between a Network Capable Application Pro-
cessor (NCAP) and an actual sensor node called Smart Transducer Interface Modules
(STIM). Those structure represents a mechanism that enables a flexible network inter-
face via special NCAPs. The standards 1451.3 to 1451.5 enhance the interaction between
STIMs and NCAPs to various protocols and interfaces. The description of the sensors,
stored at each node contains a detailed specification of the sensor’s vendor, firmware, and
physics in a compressed TEDs [Char 1997]. Tools for an additional use of the electronic
data sheets beside message identification and interpretation are not known yet.

Mathworks Simulink [MathWorks 2010a] and National Instruments LabVIEW
[National Instruments 2009] are widely used toolchains for simulation, Hardware-in-the-
Loop (HiL) scenarios and code generation. Therefore a broad variety of tool-boxes (e.g.
control engineering, data acquisition, image processing, etc.) are available and helpful
for rapid developments. Both tools offer interfaces for different programming languages



beside the standard graphical oriented development systems. Simulink does not support
the utilization of meta information about data sources like sensors. The code generation
process checks only data types of the used variables. LabVIEW integrates the concept of
TEDs from IEEE 1451 and identifies connected sensor based on this information. The
user has the possibility to scan the network during the development process and to call
calibration functions. Data sheets can be located on the node or in an extended version
as a virtual TED on a server application. Simulink and LabVIEW offer a large amount
of development tools in particular for code generation. However, they do not allow an
external description of the used sensors, processors etc. All parameter have to be defined
directly in the model.

CANopen [CAN in Automation 2005] is a high-level protocol for CAN-
bus [Robert Bosch GmbH 1991]. Every CANopen device is delivered with a vendor elec-
tronic data sheet. This electronic data sheet specifies communication, error and applica-
tion profiles. The developer can define profiles to customize a CANopen device. These
modifications are deposited by a device configuration file. The exchange of information
occurs by a process data object and a service data object. Process data objects carry the
real-time data with a look-up mechanism to encode units. In contrast, service data objects
were used to configure the CANopen device. All configurations of a device were placed in
the device object dictionary. Thus, the device object dictionary is the abstraction between
application and communication.

From Tab. 1 we can conclude that none of the related approaches meets all re-
quirements completely. Each of the presented tools, standards etc., covers an individual
focus only and shows excellence in just this point. While engineering tools like Simulink
and LabVIEW do not consider (or in very limited extent only) external knowledge about
sensors and communication specification, they are very suitable for developing the re-
spective control and filter algorithms. Additionally, incoming data structures have to be
correctly interpreted by the developer. The standards for smart transducer interfaces de-
fine the communication, services, data types, etc., but they do not care about the relation
between input and output values. Hence, we have to combine several approaches to meet
our requirements addressed in Section 1.

6. Conclusions and Outlook

The intention of our framework is to enable a flexible combination of different software
and hardware components during a development process. Furthermore we aim at the in-
tegration of domain specific tools in distributed control applications composed from net-
works of smart sensors and actuators. Therefore, we introduce abstractions of processors,
sensors and actuators defined in XML descriptions and connect them with widely used
development tools. This enables the developer to configure sensor and network interfaces
on a high, declarative level. As a result applications can be developed independently. The
developer may also choose the favourite domain specific language.

In the future we will test and refine the framework in a distributed robotic scenario.
Additionally, we want to develop an appropriate way to derive the System Target File
automatically for code generation using a XML definition file too.
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