
MLCCA – Multi-Level Composability Check Architecture for
Dependable Communication over Heterogeneous Networks

Michael Schulze, Georg Lukas
Department of Distributed Systems
University of Magdeburg Germany

E-mail: {mschulze, glukas}@ivs.cs.uni-magdeburg.de

Abstract

During the design of complex networked systems,
it is cruical to ensure the composability of the de-
ployed applications and network protocols. Special
care has to be taken to provide non-functional re-
quirements like bandwidth and latency. Existing solu-
tions only tackle this problem during the design phase;
later refactoring or added components are not cov-
ered, potentially causing QoS violations. We pro-
pose MLCCA, a multi-level architecture which com-
plements the design-time composability checks with
additional automatic checks performed at compile-
time and at run-time. The required infrastructure
is embedded into our communication middleware FA-
MOUSO, making it transparent to application devel-
opers. The architecture has been evaluated in a tele-
operated mobile robot case study. If the QoS at-
tributes could not be fulfilled due to refactoring or
changed conditions, no communication was allowed
by the middleware, ensuring that the application could
enter a fail-safe state. No data was sent over insuffi-
cient channels. Thus, our combination of FAMOUSO
and MLCCA enables the sustainable deployment of
complex networked systems.

1 Introduction

Many complex systems with embedded compo-
nents in the automotive field and industrial automa-
tion such as cars, autonomous vehicles and robots
include multiple heterogeneous networks. These net-
works connect smart sensors and actuators and have
specific attributes concerning bandwidth, delay, time-
liness or dependability. To take an example from the
automotive area, FlexRay [4], TTCAN [5] or multi-
ple CAN buses [15] are currently used for time critical
functions and demanding body electronics. The use
of separate systems ensures local quality properties
at adequate costs. However, firstly, this complicates

the combination and exchange of information about
network boundaries. This makes it hard to realise
sensor sharing for high level services like driver as-
sistance systems. Usually, address assignment is per-
formed manually, requiring significant effort to syn-
chronize the address mapping of different networks at
the gateways. Secondly, to specify temporal proper-
ties of cross-network communication, no generic high
level mechanisms are available. Instead, this has to
be done explicitly at a low network implementation
level, too.

In a multi-network system physical subnets are
connected via gateways which route and filter infor-
mation across network boundaries. The strength of
this system structure, sometimes called a federated
network, is the adaptation of the subnets to their spe-
cific needs and, from a safety point of view, the phys-
ical isolation between the networks concerning tem-
poral and functional faults. As an alternative, inte-
grated architectures have been proposed [16, 13]. In-
tegrated architectures apply virtualisation techniques
to emulate multiple networks on a single physical
network. In that approach, a communication inter-
face is provided to the application software which is
equivalent to the interface in the respective sub net-
works. Thus, it is transparent for the application
software that the underlying network is different and
allows legacy communication software to be used un-
changed. Beside other problems an integrated archi-
tecture is inappropriate in scenarios like cooperating
mobile robots or tele-operating a mobile robot, where
sensors and actors need a low-overhead communica-
tion bus, while tasks like fleet management require
high-bandwidth Ethernet or Wireless LAN.

Our approach uses a federated architecture, allow-
ing to preserve the advantages and physical separa-
tion of subnets. To tackle the problems of address
assignment, cross-network gateways and filtering, we
use our publish/subscibe middleware FAMOUSO. It
hides the characteristics of the underlying networks
by providing a common interface and a content-based

1

addressing scheme. Network identifiers are generated
automatically on demand.

However, a straight-forward abstraction of differ-
ent network protocols is not sufficient for applications
with non-functional QoS or real-time requirements
like a bounded latency or a certain guaranteed band-
width. Such application end-to-end demands have
to be considered, especially when crossing network
borders. No communication link may be established
over inadequate channels. Because a manual verifi-
cation would be tedious and error-prone, we propose
an automated approach to verify whether a potential
network connection fulfills the application require-
ments. These composability checks are usually only
performed during the design-time, leaving system re-
configurations after the initial design unverified. We
are proposing MLCCA, the Multi-Level Composabil-
ity Check Architecture, which extends these tests to
the compile time and run time, closing the verifica-
tion holes and allowing reliable end-to-end communi-
cation.

In section 2 we motivate the need for composability
checks at different levels. Section 3 describes the com-
munication middleware FAMOUSO, which we are us-
ing to hide the complexity of the checks from the ap-
plication. The realization of MLCCA is presented in
detail in section 4 and evaluated on a case study in
section 5. Related work is regarded in section 6. Fi-
nally, the paper is concluded in section 7.

2 Multi-Level Composability Checks

In the design of complex systems it is very im-
portant to consider the requirements of the involved
components with regard to their composability. Usu-
ally, this is done by specifying component attributes
and performing manual or automatic composability
checks.

It is also possible to specify communication at-
tributes for components and network modules during
the design time and to automatically verify the com-
posability of those components with the desired net-
works. This can be made intuitive by graphical proto-
typing tools like Matlab Simulink or LabView, where
data type safety is ensured by the design tool, disal-
lowing connections between mismatching endpoints.
In this work, we pick up the means of formal at-
tributes to describe the QoS requirements of applica-
tions and the capabilities of network stacks, respec-
tively. These attributes can be checked by a design
tool, warning the user about QoS violations or even
forbidding unsafe combinations.

However, it is not sufficient to implement these
checks in the design tools. After the initial de-
ployment of a multi-network system, it is possible
that refactoring of the infrastructure takes place at
the source code level, manually changing the auto-

generated code or adding additional components.
Such changes can lead to the invalidation of pre-
vious guarantees, causing component malfunctions.
We propose a second level of checks at the com-
piler level to ease the network debugging and main-
tenance. When the source code is compiled for a
certain component, it is possible to verify the QoS
attributes again using compile time function evalua-
tion and to generate compiler errors for invalid com-
binations. This is much more convenient than debug-
ging invalid combinations in the field, especially when
components are realized using embedded devices with
limited debugging capabilities.

However, it is possible to combine different pre-
compiled components on the same network, causing
a run-time overload situation. To cope with this prob-
lem as well as to support network media with dynamic
attributes (like wireless mesh networks with changing
topologies), we propose a third level of checks per-
formed at run-time of the network.

3 FAMOUSO

Our middleware FAMOUSO (Family of Adaptive
Middleware for autonomOUs Sentient Objects [19,
18, 17]) provides an event-based publish/subscribe
communication over different network types. Ob-
jectives of FAMSOUSO are portability, adaptability,
configurability and efficient resource usage to allow
also the deployment on small resource-constrained
embedded devices. The middleware supports a broad
variety of different hardware platforms ranging from
8-bit micro-controllers up to 64-bit server systems
and enables interaction over different communication
media like CAN [15], 802.15.4 [21], AWDS [1] and
UDP-multicast (Figure 1). Furthermore, FAMOUSO
can be used from different programming languages
(C/C++, Python, Java, .NET) as well as from engi-
neering tools (Matlab/Simulink, Labview) simultane-
ously. Thus, the middleware enables the developers
to individually choose their preferred combination of
tools and languages.

In FAMOUSO the exchanged information is incor-
porated into events, which consist of three different
parts:

1. a subject, represented by a 64 bit unique identi-
fier (UID) that describes the content,

2. the content or payload itself (for instance the
value of a distance measurement) and

Application Application

Field BusField Bus

Application Application

FAMOUSO Middleware

Mesh Net Mesh Net

Figure 1. FAMOUSO middleware example

2

3. optional additional attributes (e. g. sensor posi-
tion, context, time-stamp).

Subjects span a global address space, having a
meaning across multiple networks. This global name
space is exploited on gateway nodes for selective for-
warding or filtering. For example, if a certain subject
is not subscribed outside a subnet, it is not propa-
gated by the respective gateway.

From the perspective of many applications, it is
sufficient to define a subject and the according pay-
load format to establish communication. However,
networked embedded applications also often require
non-functional properties like real-time delivery or re-
liability. To allow the definition of these properties,
we introduce the notion of event channels. An event
channel is a programming abstraction used to define
the application requirements as well as to convey ac-
tual events between the application and the middle-
ware. There are two distinct types of event chan-
nels used for publishing and subscribing information,
which differ in the supported callback functions. The
event channel definition resembles the event, also con-
sisting of three parts:

1. the subject corresponds to the conveyed events,

2. attributes describe dissemination parameters like
period, deadline, latency, reliability or band-
width requirements,

3. callbacks specify which application functions
have to be called for event processing. For the
subscriber, there is a notification handler which
is called on successful reception of events and an
exception handler for cases when the specified
requirements have been violated. For publishers
only the exception handler exists. It is called if
an event could not be published according to the
specification.

The specification of QoS parameters for event
channels allows the middleware to check whether de-
manded QoS parameters are admissible on the one
hand, and on the other hand they are used to reserve
local and/or network resources. During deployment,
an instance of the FAMOUSO event channel handler
must be running on every node. It integrates into
the network, provides gateway services between sub-
nets, and establishes the event channels requested by
applications.

Our FAMOUSO middleware is a three-layered ar-
chitecture. At the top-level, the event layer handles
event channels and serves as an interface to the ap-
plication. The next level, the abstract network layer
encapsulates functionality that is independent of a
specific network. For example, this layer offers a frag-
mentation protocol that adapts events to the maxi-
mum transportable payload of the lowest layer, the

specific network layer. This layer contains the net-
work specific aspects like configuration protocols or
information how messages have to be transmitted.
For a detailed description of the FAMOUSO architec-
ture the reader is referred to [18, 17] as it is beyond
the scope of this paper.

4 MLCCA – Realization

We extend the FAMOUSO middleware with an ad-
ditional component, the Multi-Level Composability
Check Architecture MLCCA. This allows us to hide
the complexity of the composability checks on all lay-
ers behind a defined event+attribute interface. There
is no change for legacy applications, while QoS appli-
cations are supported on all network layers specifying
the supported attributes.

Still, two things must be considered for making
the composability checking effective. First, the for-
mal attribute definitions must be declared in a format
which allows to check them during design-, compile-
and run-time. To achieve this, we propose to use the
XML format with the event channel syntax defined
by [14] (example in figure 2). Second, the plethora
of possible attributes must be standardized to allow
matching applications against network layer modules.

However, the standardization of attributes is not
trivial, because there are multiple ways to specify the
same aspects of a network medium. To name an ex-
ample, for periodic events the deadline and period
attributes usually have the same meaning, requir-
ing a conversion function. There is also a connec-
tion between packet loss, an attribute specifying the
per-packet probability of loss, and omission degree
which means the probability of a number of consec-
utive losses. However it is not trivial to convert be-
tween these two attributes, meaning that a network
layer module should specify both of them, and the
application can choose to use one or both according
to its requirements.

We propose the following attributes to be speci-
fiable by applications and network layers: period
(packet rate and deadline for periodic applications),
latency (the end-to-end delivery time for a packet),
jitter (for inter-packet arrival times), bandwidth
(specified in bytes/second), packet loss and omission
degree (according to the previous paragraph).

In the following, we use the example of an emer-
gency switch to demonstrate the principal approach
across the layers. The emergency switch is one com-
ponent of our mobile robot in figure 6. It is specified
as a periodic application sending heart-beat signals
with a period of 50 ms with a maximum omission de-
gree of 2 packets, resulting in a worst-case reaction
time of 150 ms after the switch is activated. These
two constraints must be met by the network layer to
allow successful deployment.

3

<EventChannel>
<SubjectUID>0 xa4efeecc3210b497</SubjectUID>

<Desc r ip t i on>emergency switch</ Desc r ip t i on>
. . .

<Att r ibute s>
<Attr ibute>

<Name>Omission</Name>
<Value>2</Value>

</ Attr ibute>
<Attr ibute>

<Name>Period</Name>
<Dimension>

<SIUnit><Seconds>1</Seconds></SIUnit>
<Magnitude>−3</Magnitude>

</Dimension>
<Value>50</Value>

</ Attr ibute>
</ Att r ibute s>
. . .

</EventChannel>

Figure 2. XML event channel attribute de-
scriptions

4.1 Design Time
Complex systems like cars or mobile robots con-

sist of many components and different sub-nets. For
both the components and the network protocols their
associated non-functional properties like bandwidth,
latency and packet loss have to be defined. We use
XML based object descriptions to specify these at-
tributes in a way accessible to a variety of tools. Fig-
ure 2 shows an excerpt of the XML output gener-
ated by our DescriptionCreator design tool for the
emergency switch described above. The example de-
scribes the QoS attributes of the emergency switch
event channel and defines the omission and period
QoS parameters for event transmissions.

One way to perform the composability check on
a system consisting of different application and net-
working components is our SystemChecker tool. It
works on the XML descriptions of all involved compo-
nents and a description of the middleware configura-
tion, which contains information about how the com-
ponents are interconnected and is written in XML as
well. It performs two types of checks by deploying
XSL Transformations (XSLT):

completeness of specification, verifying that for
every requested subscription there is also a pub-
lisher.

correctness, checking whether the QoS attributes
match between publishers and subscribers and if
they can be fulfilled by the network connection
between the participants.

The early detection of mismatching configurations
is especially desirable when developing complex sys-
tems consisting of many components. In such sys-
tems it is hardly possible to perform a manual veri-
fication of all attributes of every component. This is

even more important when embedded systems are de-
ployed, which do not provide suitable output facilities
to signal problems at run-time.

In analogy to rapid prototyping software with au-
tomatic code generation, we developed a tool that
generates C++ code from the XML based attribute
descriptions. The created code contains all specified
channels and application callback stubs, allowing the
developer to concentrate on the program logic.

For a detailed discussion of the XML description
format and the checking mechanisms the reader is
referred to [9] and [8].

4.2 Compile Time
The second stage within our MLCCA is the

compile-time checking. At first, this additional
check might seem superfluous because potential errors
would be uncovered at design-time. However, many
systems undergo refactoring after a certain deploy-
ment time, often without using the original design
tool. Such a refactoring can change the network con-
nection between two components, invalidating their
QoS attributes. In addition, it is possible to write
applications from scratch without using rapid proto-
typing tools. These applications need the same means
to detect unusable component combinations without
having the help of a design tool. Again we follow
the rule to detect problems as early as possible in the
development process.

1 #include ”Period . h”
2 #include ”Omission . h”
3 #include ”At t r i bu t eL i s t . h”
4
5 // emergency switch event channel s p e c i f i c a t i o n
6 struct EmergencySwitchSpec {
7 typedef Attr ibuteL i s t <
8 Period <50>,
9 Omission<2>

10 > : : type a t t r i b u t e s ;
11 } ;

12 #include ”CheckAttr ibuteAgains tAt tr ibuteLis t . h”
13 // check with in a network l ay e r component
14 typedef CheckAttr ibuteAga instAttr ibuteLi s t<
15 EmergencySwitchSpec : : a t t r i bu t e s ,
16 Omission<5>
17 > : : type t e s t ;

Figure 3. C++ code that defines and checks
QoS parameters

The challenge in providing compile-time checks for
attribute constraints is that the application source
code is syntactically correct, whereas the compiler
shall refuse it with an expressive error message when
the constraints are not met. Source code which con-
tains matching attributes shall compile without any
warnings.

Figure 3 shows source code generated from the
XML description of the emergency switch event chan-

4

nel (lines 1-11) and the checking definition (line 12-
17). This code deploys reusable templates for generic
attributes like Period and Omission, which are pa-
rameterized by their respective values. The con-
straint checking logic is implemented using Tem-
plate Meta Programming (TMP), allowing to use the
compiler to interpret the attribute definitions and
checks. Hereby, the compiler first instantiates the
templates, replacing them with accordingly gener-
ated statements. In a second step, the post-processed
source is compiled into machine code.

Our approach is embedded in the template instan-
tiation phase, where the attribute types are matched
against each other and their corresponding values are
compared. Typically, compiler error messages caused
during template instantiation are very verbose. To re-
duce confusion, we generate an additional customized
error message that describes the encountered problem
and appears at the end of the compiler output. Thus
the developer is able to perceive the reason of the mis-
configuration. The source code in Figure 3 generates
such an error message due to the mismatch between
the required omission of 2 and the provided omission
of 5. Figure 4 depicts the error message, with the cus-
tomized ATTRIBUTES MISMATCH error in line 3, which
is caused by line 17 of the mentioned source code.
The error message clearly states that an attribute
mismatch was caused between Omission< 5u > and
Omission< 2u >.

The code generation facilities during the template
instantiation phase also allow us to automatically
generate run-time accessible representations of the
specified attributes in the ASN.1 notation [3]. These
representations are used in the run-time checking sys-
tem.

1 CheckAttr ibuteAga ins tAtt r ibuteL i s t . h : 7 8 :
i n s t an t i a t e d from
CheckAttr ibuteAgainstAttr ibuteLi s t<l i s t 2 <
Period <50u>, Omission<2u> >, Omission<5u> >

2 main . cc : 1 7 : i n s t an t i a t e d from here
3 CheckAttr ibuteAga ins tAtt r ibuteL i s t . h : 6 0 : e r r o r :

no matching func t i on f o r c a l l to
a s s e r t i o n f a i l e d (∗∗∗ (TestAttr ibutes<
Omission<5u>, dere f< l i t e r <l i s t 1 <Omission<2
u> > > > > : :ATTRIBUTES MISMATCH: : ∗ ∗ ∗) (
Omission<5u>, Omission<2u>))

Figure 4. Customized error message gener-
ation if QoS can not be mapped

It should be noted that the compile time checking
code is not specific to a certain compiler but is ab-
solutely C++ standard complaint, meaning that any
C++ standard compliant compiler can be used.

4.3 Run Time
After a multi-component system which has passed

the design- and compile-time checks is changed, it is

1: for req in subscriber.attrs ∪ publisher.attrs do
2: avail := netlayer.attrs[req.name]
3: if avail is null or

avail.value < req.value then
4: return ”Error: req.name not fulfilled”
5: end if
6: end for
7: return success

Figure 5. Run-time attribute verification

still possible that the required attributes are violated.
This can happen when two CAN-bus based compo-
nents are separated onto different buses connected via
an unreliable bridge, or when additional components
are added, overloading the network medium. Because
such reconfigurations can happen without using the
design tool and the components are already finished
and their program code compiled and deployed, the fi-
nal composability check can only happen during run-
time.

We embed the run-time checks into the abstract
network layer (ANL) of the FAMOUSO middleware.
This allows to hide the complexity both from the ap-
plication and the network layer programmers, who
only have to provide the required and supported at-
tributes, respectively. These attributes can be auto-
generated by the C++ compiler from the source code
attribute specification, or specified manually. The
ASN.1 syntax used in both cases allows to implement
the checks even on low-end micro-controllers.

The run-time checks are performed for event chan-
nels as well as on gateways (algorithm pseudo-code
in figure 5). The requirements provided by the sub-
scriber and the publisher have to be matched to the
ones supported by the network layer (or both net-
work layers on a gateway). The check is performed
by creating a union of the subscriber and publisher
attribute lists and iterating over it (line 1). For each
of the requested attributes, the according attribute
of the network layer is looked up (line 2). If it is not
specified or it does not provide the required quality
(line 3), an error is returned. In that case, the subject
is not subscribed and no event data is sent through
the network, preserving bandwidth. The algorithm
only succeeds (line 7) if all required attributes are
defined by the network layer and provide sufficient
quality. The consideration of already-existing con-
nections has been removed from the pseudo-code for
clarity, the actual algorithm is more complex.

For the emergency switch this means, if an unsuit-
able network bridge is deployed between the publisher
(switch) and subscriber (actors), the heart-beat sig-
nals will not be relayed, preventing any activity which
could cause harm. Critical applications should be de-
signed to enter a fail-safe state when no communica-
tion is possible, e.g. by using the exception handler.

5

Some network layers allow varying quality depend-
ing on their current configuration. For example, the
AWDS routing protocol provides higher bandwidth
over short links because multi-hop connections accu-
mulate network load. Also, the bandwidth require-
ments of the already-established event channels and
other connections have to be considered [6].

For such dynamic scenarios the decision can not be
made in the ANL, it has to be performed in the net-
work layer on a case-by-case basis. Here, the applica-
tion attributes and the desired end-points (publisher,
subscriber or gateways) are passed down to the net-
work layer, which calculates if the attributes can be
granted and makes appropriate bandwidth/resource
reservations. A dynamic network layer should define
its static attributes based on a best-case situation,
allowing to detect unrealistic combination at design-
and compile-time. By also specifying a dynamic at-
tribute, an appropriate display is possible in the de-
sign tools. The ANL can use this attribute to deploy
the network-layer specific composability check func-
tion. This is used to make the final decision during
run-time.

The combination of static checks (based on the
pre-defined network attributes) and dynamic checks
allows a reliable verification whether application de-
mands can be satisfied at the network layer. Detected
violations are communicated to the application’s ex-
ception handler.

5 Case Study

To demonstrate the applicability of the multi-level
composability check architecture, we show its actual
implementation as part of a mobile robot case study.
The mobile robot embeds a control laptop, differ-
ent sensors as well as actors. It provides two video
cameras for tele-operation and a built-in emergency
switch (figure 6). There is a CAN bus interconnecting
the laptop with the sensors, actors and the emergency
switch. If the switch is triggered, the actors (motors)
have to stop to prevent further damage. The cam-
eras are attached via USB to the laptop, which acts
as a gateway into the AWDS multi-hop network. A
stationary PC is used by a worker to tele-operate the
robot (as depicted in figure 7). The network connec-
tion is transparent to the FAMOUSO based control
application, which runs on the PC and directs com-
mands to the actors behind the laptop AWDS-CAN
gateway. The sensors publish their values, which are
transported by the gateway to the control application
transparently (figure 8).

We will demonstrate the implementation of
MLCCA based on the emergency switch and supple-
ment it with a bandwidth-demanding application, the
live video streaming.

The conceptual description of the emergency

drives

distance
sensor

line sensor

gripper

cameraemergency
switch

Figure 6. Volksbot platform

switch made in section 4 applies here as well. How-
ever, attempts to move the emergency switch from
the robot to a stationary position near to the con-
trol PC should fail, because AWDS can not guaran-
tee an omission degree less than 5, independent of
its network topology. Thus, such a change would
cause an error message in the design tool, if performed
there. The generated code would also refuse compi-
lation when replacing the CAN network layer with
the AWDS instance manually, giving the error mes-
sage in figure 4. When the switch is moved from the
robot-local CAN bus to a second CAN bus behind the
control PC, this change is completely transparent to
both endpoints. It would not be detected by the com-
piler, because the CAN bus directly attached to the
switch supports the required parameters. However,
due to the run-time check performed on the gateway,
the attribute mismatch would be detected and the
heart-beat messages would be filtered. Without these
messages, the motor controllers will not perform any
action, staying in a fail-safe mode.

A more complex issue is presented by the live
video stream. In addition to a latency requirement

Figure 7. Tele-operation screen (left: net-
work topology above distance sensors;
right: live video)

6

FAMOUSO

commands sensor values

Figure 8. Case study: tele-operating a mo-
bile robot

of 200ms for every frame, it imposes a high band-
width demand. Depending on the video quality, ei-
ther 100KByte/s or 400KByte/s have to be provided
end-to-end. The sensors’ CAN bus is obviously not
suitable for this demand. However, even the AWDS
network can not guarantee a successful transmission
of the high-quality stream. As this question can not
be answered during design- or compile-time (both the
latency and the bandwidth demands can be fulfilled
by AWDS in some topologies), these checks must
pass. Only the run-time check can discriminate if
the request can be granted or not. Here, we follow an
adaptive strategy: the control PC subscribes to the
high-quality stream. If this stream can be delivered,
it is automatically routed from the robot. If a delivery
is declined by the AWDS network layer, the applica-
tion has to switch to the low-quality stream. When
this is declined too, no tele-operation is possible any
more.

The bandwidth-check is performed using a medium
access time accumulation formula: every link of a
multi-hop connection requires a certain amount of
time to transfer the desired amount of data. This
time is reciprocal to the link data rate, which the
hardware adapts to the medium conditions. The
available bandwidth on the link is the reciprocal of
the sum of the times for all links on the path. If it is
higher than the application requirement, the test is
passed.

In a simplified example, consider the robot laptop
A being connected via a router B to the control PC
C. The link data rates are RA↔B = 24MBit/s and
RB↔C = 11MBit/s. The maximum throughput is
then calculated with:

1
RA→B→C

=
1

RA↔B
+

1
RB↔C

(1)

RA→B→C =
1

1
24MBit/s + 1

11MBit/s

(2)

RA→B→C ≈ 7.54MBit/s (3)

This is more than required for the high-quality
video stream (400KByte/s = 3.2MBit/s) so it will
be accepted by the network layer. However, if the
data rate on one of the links drops or another station
is introduced in between due to the robots mobility,
the network layer re-evaluates the available end-to-
end bandwidth and may disable the packet delivery,
calling the subscriber’s exception handler.

Of course, the realization of bandwidth guarantees
requires an admission control scheme to prevent over-
saturation of the medium. A possible mechanism has
been presented in [6].

6 Related Works

Related work in the area of describing properties of
components are manifold. Systems like WSDL [11],
UPNP [7] or Jini [20] are only some representatives
of systems that exploit descriptions for discovering
services dynamically. However, due to lack of QoS
attributes they are not suitable for our purpose and
their complexity is also too heavyweight for use in
networked embedded systems. Description systems
like CANopen [2] or IEEE 1451 [10] are used in the
industrial as well as automotive area to tackle this
problem. However, most of the descriptions there
are expressed in a very special and often proprietary
way. Furthermore, the component descriptions ex-
plicitly define the underlying network medium instead
of only specifying their requirements, making it infea-
sible to combine them with other network modules.
Thus, these standards do not support interactions
between different communication networks. Finally,
in most cases the descriptions are not available in a
form which can be automatically processed by check-
ing and code generation tools.

Compilation-time checks of non-functional param-
eters comparable to the presented approach do not
exist to the best of the authors’ knowledge. Other
compile time checks like type conformance or type
conversion tests are usually automatically performed
by the compiler. By doing additional checks on the
attribute types and the QoS values and by automat-
ically generating attribute mismatch error messages,
we go a step further.

The most commonly used runtime system with
support for attribute checking is CORBA [12]. The
CORBA standard allows specification of QoS param-
eters for its interfaces. Attributes like reliable trans-
port or deadlines can be requested, and the system
only allows communication between participants if
their specifications match. When an established spec-
ification is violated, the applications are notified and
have opportunity to adapt to the new situation, as far
as possible. However, the CORBA framework is not
designed to scale down to low-end micro-controllers
and their communication buses.

7

7 Conclusion

In this paper, we have presented MLCCA, a
Multi-Level Composability Check Architecture. This
architecture allows applications to specify non-
functional requirements like QoS or real-time prop-
erties, which are automatically checked during the
design-, compilation- and run-time of a project. With
our approach, the application-specified requirements
are never violated. If they can not be fulfilled by
the network, no communication channel is established
at all, preventing later damage. We have shown
that MLCCA hides the complexity of the composabil-
ity checking into the FAMOUSO middleware, pro-
viding a clean and easy-to-use interface to applica-
tions. This combination of communication middle-
ware and enforcement of QoS requirements provides
an ideal fundament for many applications. Both the
FAMOUSO middleware and MLCCA are designed to
scale from 8-bit micro-controllers up to large server
systems, allowing simultaneous deployment of devices
from the whole range. Different network technologies
can be used, ranging from CAN to the IP-based UDP-
multicast or Wireless Mesh Networks.

A case study has demonstrated how MLCCA can
be successfully deployed to support the tele-operation
of mobile robots. However, it has also shown an
important detail which has to be handled in future
work. Applications like video streaming, which can
adapt their requirements to the available resources,
have to do so manually in the current implementation.
Future work will cover the support of attribute sets,
where the application author specifies several alterna-
tive sets of attributes, each with a priority value. The
run-time system then will have to perform a series of
checks, trying to allow the set with the highest possi-
ble priority, and automatically switching between the
sets according to the current situation.

References

[1] AWDS project. http://awds.berlios.de, 2009.
[2] CiA. CiA 306 DS V1.3: Electronic Data Sheet Spec-

ification for CANopen. CiA, CANopen, January
2005.

[3] O. Dubuisson and P. Fouquart. ASN.1: commu-
nication between heterogeneous systems. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2001.

[4] FlexRay Consortium. FlexRay Communications Sys-
tem Protocol Specification Version 2.1 Revision A.
2005.

[5] T. Führer, B. Müller, W. Dieterle, F. Hartwich,
R. Hugel, and M. Walther. Time Triggered Commu-
nication on CAN (Time Triggered CAN-TTCAN).
7th international CAN Conference, 2000.

[6] A. Herms, E. Nett, and S. Schemmer. Real-time
mesh networks for industrial applications. In Pro-
ceedings of 17th International Federation of Auto-

matic Control World Congress (IFAC’08), Seoul,
Korea, July 6–11 2008.

[7] M. Jeronimo and J. Weast. UPnP Design by Exam-
ple: A Software Developer’s Guide to Universal Plug
and Play. Intel Press, 2003.

[8] J. Kaiser and H. Piontek. CODES: Supporting the
development process in a publish/subscribe system.
In Proceedings of the fourth Workshop on Intelligent
Solutions in Embedded Systems WISES 06, pages 1–
12, Vienna, 30. June 2006. ISBN: 3-902463-06-6.

[9] J. Kaiser, S. Zug, M. Schulze, and H. Piontek. Ex-
ploiting self-descriptions for checking interoperations
between embedded components. In International
Workshop on Dependable Network Computing and
Mobile Systems (DNCMS 08), pages 41–45, Napoli,
October 2008.

[10] K. Lee. Ieee 1451: A standard in support of smart
transducer networking. In Proc. 17th IEEE Instru-
mentation and Measurement Technology Conference
IMTC 2000, volume 2, pages 525–528 vol.2, 2000.

[11] J. J. Moreau, R. Chinnici, A. Ryman, and S. Weer-
awarana. Web services description language (WSDL)
version 2.0 part 1: Core language. Candidate recom-
mendation, W3C, March 2006.

[12] OMG. Data Distribution Service for Real-time Sys-
tems Version 1.2. Object Managment Group, 1. Jan-
uary 2007.

[13] P. Peti, R. Obermaisser, F. Tagliabo, A. Marino,
and S. Cerchio. An Integrated Architecture for Fu-
ture Car Generations. In ISORC ’05: Proceed-
ings of the Eighth IEEE International Symposium
on Object-Oriented Real-Time Distributed Comput-
ing (ISORC’05), pages 2–13, Washington, DC, USA,
2005. IEEE Computer Society.

[14] H. Piontek. Selfdescription mechanisms for embed-
ded components in cooperative systems. PhD thesis,
University of Ulm, 2007.

[15] Robert Bosch GmbH. CAN Specification Version
2.0. 1991.

[16] J. Rushby. Partitioning for Avionics Architec-
tures:Requirements, Mechanisms, and Assurance.
NASA Contractor Report CR-1999-209347, NASA
Langley Research Center, June 1999. Also to be is-
sued by the FAA.

[17] M. Schulze. FAMOUSO project website. online,
http://famouso.sourceforge.net, 2009.

[18] M. Schulze. Famouso eine adaptierbare publish/-
subscribe middleware für ressourcenbeschränkte sys-
teme. Electronic Communications of the EASST
(ISSN: 1863-2122), 17, 2009. Workshops der
Wissenschaftlichen Konferenz Kommunikation in
Verteilten Systemen 2009 (WowKiVS 2009).

[19] M. Schulze and S. Zug. Exploiting the FAMOUSO
Middleware in Multi-Robot Application Develop-
ment with Matlab/Simulink. In In Proceedings of the
ACM/IFIP/USENIX 9th Internatinal Middleware
Conference (Middleware2008), Leuven, Belgium, 1-5
December 2008.

[20] J. Waldo. The Jini Specifications. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[21] ZigBee Alliance. ZigBee Specification - IEEE
802.15.4. 2003.

8

