
Exploiting the FAMOUSO Middleware in Multi-Robot
Application Development with Matlab/Simulink

Michael Schulze and Sebastian Zug
Otto-von-Guericke University of Magdeburg

Faculty of Computer Science
Department of Distributed Systems (IVS)

{mschulze, zug}@ivs.cs.uni-magdeburg.de

Francisco Campos and Fernando Carreira
Instituto Sup. de Engenharia de Lisboa

Polytechnic Institute of Lisbon
{fcampos, fcarreira}@dem.isel.ipl.pt

ABSTRACT
We describe a framework for the development of distributed
systems combining real and virtual components, sensors and
actuators. We show the benefits of our approach for the de-
velopment and validation of multi robot applications. Based
on our middleware, which provides a flexible communica-
tion for distributed systems, virtual and real components
are seamlessly exchangeable during different development
steps. This modularity and compatibility allows appropriate
adjustments for design, rapid prototyping and examination
as soon as an opportunity to reduce the hardware effort for
large scenarios.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Architectures]: Middleware; D.2.12
[Interoperability]: Distributed objects

General Terms
Design, Experimentation, Languages

Keywords
Middleware, Publish/Subscribe, Multi-Robot, Development
Framework, Embedded Devices

1. INTRODUCTION
The development of (multi) robot systems demands the in-

tegration of different technologies, namely, mechanics, elec-
tronics, hardware and software. The design cycle consists of
a number of tasks usually sequenced as mechanical design,
instrumentation and programming. As in other complex
mechatronic systems, this process benefits from the early
validation of the different levels of design. The control algo-
rithms have to match to the mechanical design. For example
the position of a distance sensor is an important parameter
for the collision avoidance algorithm. A software framework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware ’08 Companion, December 1-5, 2008 Leuven, Belgium.
Copyright 2008 ACM 978-1-60558-369-3/08/12 ...$5.00.

to support robot design should therefore include capabilities
for mechanical modeling and simulation, sensor and actu-
ators specification, hardware interface and communication,
control engineering and programming. Currently, due to the
disparate nature of these requirements, the development of
robotic systems is usually carried out in a fragmented fash-
ion, making use of different software tools and programming
languages that do not allow for automatic integration among
them. This results in an extra burden for the designer.

Currently, a number of development environments are
available, such as the Microsoft Robotic Studio [4] and the
open-source Player Stage Project [1], which attempt to in-
tegrate the several aspects of a robotic system development
process. These platforms support the simulation of multi-
robot behaviour in virtual environment, based on realistic
physical engines that reproduce the mechanical behaviour
of the robots and offers the simulation of the most common
sensors and actuators. Within these development environ-
ments, the same control schemes may be applied to real
hardware, allowing for the control of real robots which can
run in parallel with their Virtual Reality representations.
Both tools are reliant on TCP/IP networks and in case of
the Robotic Studio upon a .NET framework in the back-
ground. Accordingly a powerful hardware is required and
the kind of networks is limited [6].

Even though these programming environments provide
tools for robot simulation and control, they supports well
known hardware platforms like the PIONEER robotics or
the Lego Mindstorm system mainly. However, on a crucial
position within the integration, a problem is the communica-
tion among software components of the robotic system that
may exist in different hardware modules, run on different
operating systems and have available different communica-
tion protocols. Due to this fact, the mentioned development
frameworks and other works like [5] support only a limited
number of well known hardware platforms.

This problem can be tackled by an appropriate middle-
ware layer that guarantees a seamless distribution of infor-
mation among the interested software components within a
hardware network. Thus all components are able to commu-
nicate with each other independently of their development
state. In this paper, we introduce the FAMOUSO (Family of
Adaptive Middleware for autonomOUs Sentient Objects)
middleware for the combination of virtual, software compo-
nents with real modules of robotic systems. Simulation is a
major tool during the design cycle, since it allows for early
validation of design options, iteration of solutions and cor-
rection. Along the design cycle, simulated modules should

be progressively substituted by real components, which have
been properly validated. The proposed framework supports
the simulation of software and hardware modules as well as
the coexistence of real and simulated components. For an
example, the design process starts with the realisation of
the mechanical structure of the robot and with the develop-
ment of control algorithms. This can be done in parallel by
running the control algorithms on a PC in a Software-in-the-
Loop system. Later the algorithms are downloaded onto the
robot. In the same way the sensors can be simulated in a
virtual environment first and be replaced by real sensors on
the real robot finally. This combination of real and virtual
components simplifies the development of high-grade dis-
tributed applications. Following, our approach allows the
coexistence of simulated and real robots and reduces the
hardware effort considerably. The FAMOUSO middleware
provides means for information distribution between differ-
ent platforms like PCs and dedicated micro-controllers. FA-
MOUSO permits smooth transitions from each development
stage of this design cycle, due to its seamless integration of
different platforms at runtime. To offer a development tool
chain from model design, simulation and code generation we
implemented a FAMOUSO interface for Matlab/Simulink.

In this paper, we describe an example scenario that
demonstrates the potential of FAMOUSO for robot devel-
opment. The example shows a running VR model of a robot
and its environment on a PC, while another computer runs
the control algorithms. This example intends to demon-
strate a stage of development where the control algorithms
are already running on the physical prototype, while the
sensors are simulated in the development framework. This
stage of development allows the testing of control algorithms
against realistic environment situations and the specification
of sensor characteristics and location.

2. FAMOUSO MIDDELWARE
FAMOUSO [11] is an event-based publish/subscribe mid-

dleware and the successor of the COSMIC (COoperating
SMart devICes) middleware. On the level of exchanged
events they are fully compatible. The main concepts are de-
scribed in [8, 7]. Additionally, FAMOUSO provides means
for adaption e.g. to a specific platform. The middleware of-
fers an event-based communication model according to the
publisher/subscriber concept. FAMOUSO is especially de-
signed to allow cooperation between smart sensors and ac-
tuators on different hardware platforms ranging from 8-bit
micro-controllers up to 32-bit PC/Workstations and interac-
tion over a broad variety of communication media like Con-
troller Area Network (CAN) [10], 802.15.4 [13], AWDS [2]
and UDP-MultiCast.

In FAMOUSO an event is a programming abstraction and
the carrier of the exchanged information. A FAMOUSO
event consists of three different parts:

1. a subject, represented by a 64 Bit unique identifier
(UID) that describes the content,

2. the content or payload itself for instance the value of
a distance measurement and

3. additional attributes (e.g. sensor position, context,
quality) which are optional.

The subject of a message has a meaning across multiple net-
works. This is exploited for filtering at the network bound-
aries. If a certain subject is not subscribed outside a specific
subnet, it is not propagated by the respective gateway.

Generally, events may arise in two different ways. Firstly,
an event is spontaneously generated by the hardware e.g.
caused by detection on a sensor interface. This means the
physical environment is the stimulus of an event. Secondly,
an event could periodically initiated by a clock to sense a
change of a variable or a state within the system.

FAMOUSO uses event channels as abstraction for event
transfers. An event channel has the same subject as the cor-
responding event. The event is published by pushing it to
the according event channel. In case of subscription, the ap-
plication gets a notification by the event channel if an event
occurs. The programming abstraction event channel is in-
troduced to map the UID of an event to specific network
addresses and therefore it hides the heterogeneity of the dif-
ferent network architectures by providing a global addressing
scheme. Furthermore the event channel is used for network
resource allocation - for instance a part of the bandwidth.
Depending on temporal constraints or the importance of the
event, the event is classified into three different quality levels
which are hard real-time (HRT), soft real-time (SRT) and
none real-time (NRT).

In FAMOUSO all events are handled by the event channel
handler (ECH), which is part of the event layer (EL). The
EL is the interface to the application level. Consequently,
the publisher uses the EL to send events to event channels
and on the other hand the EL provides the subscriber with
notifications and supports it by reading events from event
channels.

On the application side, the FAMOUSO API is accessible
from several languages like C++, Java, Python, C# and also
via engineering tools like Labview or Matlab/Simulink [12].

Network

PC - Windows/Linux

Matlab/Simulink

Application

FAMOUSO

Filtering and data storage

 Communication Interface

PublishSubscribe

Input

object

Output

object
Information

Processing

Notify

Figure 1: FAMOUSO Matlab/Simulink integration

3. MATLAB/SIMULINK INTEGRATION
Matlab is a computational tool which provides powerful

toolboxes addressing the classic and advanced methods in
control engineering and signal processing, such as fuzzy and

FAMOUSO

PC 1 Robot Simulation PC 2

SimulinkMatlab/Simulink

Virtualisation

Obstacle Avoidance

Algorithm

Calculation of the

current translation and

rotation

Absolute Positions and

Orientations

Real Robot

AT90CAN128

Obstacle Avoidance

Algorithm

Distance

Sensor

Calculation of the

current translation and

rotation

Sensor Simulation

Calculation of the

Simulated Sensor Data

Mobile

Robot

Sensor

Beam

Figure 2: Structure of the demonstration scenario

neuronal network based controllers. Among the branches of
Matlab, there are Simulink and the Virtual Reality toolbox,
two applications which, when combined, allow for the devel-
opment of dynamic systems simulations synchronized with
a Virtual Environment. The integration of FAMOUSO into
Matlab/Simulink offers the broad functionalities of this de-
velopment suite combined with a transparent access to all
relevant information through FAMOUSO, simplifying the
development process seriously [9].

Instead of using the plain communication facilities of Mat-
lab/Simlink like direct TCP/IP the application uses FA-
MOUSO for its communication. The Matlab/Simulink FA-
MOUSO interface offers the uniform FAMOUSO API as
shown in Figure 1. In Matlab/Simulink each event channel is
represented by an instance of the input or output class that
contains the respective subject, administration variables and
a configurable predefined number of the last received events.

The notification service that indicates new occurred events
is implemented in two kinds – polling and callback. The
callback functionality is typically used by Matlab applica-
tions. In contrast to Matlab, Simulink models run cyclically
in predefined periods. In order not to break these polling is
applied in each cycle, first. The polling function fetches all
received events and refreshes the data storage of all input
channel objects. Due to the storage feature, the user has
the possibility to define in which way the events of the last
periode have to be handled. Thus the return value of the
access methods of each input channel object can be either
”newest”, ”mean” or ”sum”. In Section 4 we exploit that in
our example scenario and that shows the importance of that
feature.

4. EXAMPLE SCENARIO
As an example, we use a typical robot application and

development challenge – the influence of the sensor capa-
bilities for collision avoidance. Figure 2 shows our scenario
comprising of several simulated and/or real mobile robots

that navigate in a 2-dimensional environment with obsta-
cles. According to a robot’s configuration it is visualized in
the virtual representation. The sensor information is cal-
culated in a simulation module based on robots position.
The collision avoidance algorithm runs in small applications
on a PC for instance as a Matlab/Simulink script. On the
other hand a real mobile robot with sensors and actuators
does real measurements and movements instead of calculat-
ing them. To allow the perception of virtual elements by
the real robot, it consumes virtual sensors information addi-
tionally. Hence, the mobile system ”views” both the virtual
and the real environment, however, for the application the
origin of information is transparent.

The information are exchanged via FAMOUSO. The val-
ues of the simulated distance sensors are published to an
event channel, which is subscribed by the virtual and real
robots. Each robot uses the ”newest” sensor values only.
Hence, the real robot behaves on the values of the simulated
sensor information and real measurements, accordingly. The
virtualization and simulation modules obtain the movement
from another FAMOUSO event channel in a ”sum” fashion.

The scenario provides an environment for testing move-
ment algorithms based on sensor range and orientation. The
closed loop of this interaction is illustrated in Figure 2 where
a real robot and simulated systems interact. A lot of other
combinations and configuration are imaginable with our flex-
ible approach.

For the visualisation the virtual reality toolbox of Mat-
lab/Simulink was used, enhanced by the VR Studio, a pack-
age developed by Campos et al. [3]. This toolbox allows
for the creation of dynamic virtual environments in simple
fashion. Elements of the simMechanics toolbox ensure the
realistic physical simulation of the robot’s behavior.

5. CONCLUSIONS
In this paper, we describe the integration of our middle-

ware FAMOUSO within the Matlab/Simulink environment.

We show the resulting benefits of using FAMOUSO for the
development of distributed systems. FAMOUSO’s network
transparent and flexible communication allows the combina-
tion of real and virtual components in each step of the devel-
opment process. Exploiting the possibilities of FAMOUSO
enables an easy and seamless integration of different com-
ponents on different systems.

6. ACKNOWLEDGEMENT
This work is part of the project DECOMOR which has

been supported by the DAAD and GRISCES in a German-
Portuguese collaboration scheme [D/06/12913] and by the
MiNEMA (Middleware for Network Eccentric and Mobile
Applications) Scientific Programme of the ESF (European
Science Foundation).

7. REFERENCES
[1] The player project. online,

http://playerstage.sourceforge.net.

[2] AWDS project homepage. online,
http://awds.berlios.de, 2008.

[3] F. M. Campos, F. Carreira, and J. M. F. Calado. VR
Studio as an auxiliary tool for technical education. In
Proceedings of Engenharias 2007, Covilhã, Portugal,
November 21–23 2007.

[4] M. Corporation. Microsoft robotics studio. online,
http://msdn.microsoft.com/en-

gb/library/bb881626.aspx.

[5] G. Dudek and R. Sim. Robodaemon - a device
independent, network-oriented, modular mobile robot
controller.

[6] J. Jackson. Microsoft robotics studio: A technical
introduction. IEEE Robotics & Automation Magazine,
14:82 – 87, Dezember 2007.

[7] J. Kaiser and C. Brudna. A Publisher/Subscriber
Architecture Supporting Interoperability of the
CAN-Bus and the Internet. In 2002 IEEE
International Workshop on Factory Communication
Systems, Väesteras, Schweden, August 28–30 2002.

[8] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira.
COSMIC: A middleware for event-based interaction
on CAN. In 9th IEEE International Conference on
Emerging Technologies and Factory Automation
(ETFA 2003), Lisbon, Portugal, September 2003.

[9] J. Kaiser, M. Schulze, S. Zug, C. Cardeira, and
F. Carreira. Sentient objects for designing and
controlling service robots. In Proccedings of IFAC’08,
volume 17th International Federation of Automatic
Control World Congress, Seoul, Korea, July 6-11 2008.

[10] Robert Bosch GmbH. CAN Specification Version 2.0.
1991.

[11] M. Schulze. FAMOUSO project website. online,
http://famouso.sourceforge.net, 2008.

[12] M. Schulze and S. Zug. Using COSMIC – A real world
case study combining virtual and real sensors. In
Proceedings of the 5th Minema Workshop on
Middleware for Network Eccentric and Mobile
Applications, Magdeburg, Germany, September 11–12
2007.

[13] ZigBee Alliance. ZigBee Specification - IEEE 802.15.4.
2003.

