
Latency Analysis for the Cooperation of Event and Time-Triggered

Networks

Sebastian Zug, Michael Schulze and Jörg Kaiser
Otto-von-Guericke University
Faculty of Computer Science

Department of Distributed Systems (IVS)
Universitätsplatz 2
D-39106 Magdeburg

{zug, mschulze, kaiser}@ivs.cs.uni-magdeburg.de

Abstract

The paper describes the analysis of cross network
latencies occurring when federating an asynchronous,
event-triggered CAN-Bus and a synchronous time-
triggered TTP/C network. The connection of net-
works is motivated by both cost-efficiency trade-offs in
various network types and reasons of isolating highly
critical from less critical communication. The intrin-
sic latencies incurred when crossing network bound-
aries are evaluated under various conditions - either
in some form of synchronisation with a global time
or in completely unsynchronised networks. The re-
sults from the formal analysis are compared to exper-
imental results obtained in a mobile robot where the
critical reactive control components are connected by
a TTP/C network while additional sensor informa-
tion improving the quality of control is obtained via a
CAN-Bus.

1 Introduction

Embedded systems often face problems caused by
communicating across multiple, heterogeneous net-
works. One of the reasons is the cost-efficiency trade-
off. Usually, complex embedded systems in the auto-
motive field and industrial automation (e.g. cars, au-
tonomous vehicles and robots) include multiple het-
erogeneous networks with specific requirements con-
cerning bandwidth, delay, timeliness or dependabil-
ity. Subsystems are grouped and connected according
to these individual demands, and messages are ex-
changed via a gateway. The use of separate systems
ensures local quality properties at adequate cost. On
the other side, however, it complicates the combina-
tion and exchange of information because the mes-
sages may have to cross network boundaries. This
is particularly difficult when different communication
paradigms are used as a synchronous time-triggered

and an asynchronous event-triggered network. Two
well-known representatives for these opponents in
the automotive area are the Time-Triggered Protocol
(e.g. TTP/C) [1] and the Event-Triggered Protocol
(e.g. CAN-Bus) [2]. It has been recognized, how-
ever, that the combination of both worlds would be
beneficial, and protocols combining both communi-
cation paradigms in one system have been developed.
TTCAN [3] and FlexRay [4] combine time-triggered
and event-triggered communication in a single net-
work. TTCAN, on the one hand, cannot ensure the
high safety properties as the time-triggered part is a
convention rather than enforced by independent hard-
ware measures. It also abandons all positive CAN fea-
tures concerning error detection and fault handling
and no longer supportssporadic and aperiodic traf-
fic very well. FlexRay, on the other hand, provides
guardians but sacrifices many elegant fault-tolerance
properties of TTP/C [5]. Another way of integration,
introduced in [6], is to emulate an event-triggered net-
work on top of a time-triggered one. In this approach,
legacy CAN applications can run without modifica-
tions. However, even though such emulation is pos-
sible and certainly beneficial in specific application
areas, the cost of adequate network support is high.
Smart sensors and actuators will not have the re-
sources and capacity to participate in such a network.
This is the reason why the authors introduce physi-
cal gateways. These gateways allow the connection
of low-cost sensor-actuator networks to the backbone
network of the integrated architecture. Therefore, we
investigate the case where networks are federated and
connected via gateways while maintaining their spe-
cific properties and strength.

In our application scenario, the synchronous Time-
Triggered Protocol (TTP/C) is used to realize the
distributed safety critical motor control and collision
avoidance of a mobile robot (see Fig. 1).

To adjust the trajectory of the robot continuously,
the independent motor units not only receive obsta-



Figure 1. Robot Structure

cle warning and speed information of the other unit
via TTP/C but also angular speed and absolute di-
rection from a gyro and a compass module attached
to a CAN-Bus (and connected via a gateway). This
gateway translates message formats and performs ad-
dress transformation. As an additional benefit, the
gateway can control the information flow between the
connected network domains and provide services like
information filtering, scoping and - to a certain extent
- fault isolation. In our robot application, the trans-
ferred sensor information is not safety critical and
does not need real-time guarantees. It improves the
quality of control but does not affect safety issues.
Nevertheless, it is important to estimate the inher-
ent latencies which may occur when transferring mes-
sages from the asynchronous, event-triggered CAN-
Bus (or a similar event-triggered network) to the syn-
chronous time-triggered network and vice versa. This
is particularly important if all events (e.g. of the
gyro) have to be transferred and any loss of messages
would cause an error. Hence, the analysis of laten-
cies is important to support the proper adjustment
of periods and the assignment of message slots on the
TTP network. The simplest way, of course, would
be to synchronize message transfers on the CAN-Bus
and the TTP. This, however, would require the addi-
tional overhead of introducing a scheme like real-time
event channels [7] and a global time base across net-
works boundaries.

In this paper, we assume a raw CAN-Bus con-
nected to a TTP/C network via a gateway. This
gateway translates message formats and performs ad-
dress transformation. As an additional benefit, the
gateway can control the information flow between the
connected network domains and provide services like
information filtering and scoping and - to a certain
extent - fault isolation. The networks are not syn-
chronized and no global time is available. We ana-
lytically derive the latencies of the message transfer
across the gateway assuming that the highest priority
CAN message has to be transmitted under different
load conditions. In this case, the latencies introduced

by the gateway and the phasing with the schedule of
TTP/C can be evaluated. The analytical results are
then verified by an experimental assessment in the
robot application.

2 Latency Analysis

2.1 General Description of the Delay

In this section, we describe the latencies when con-
necting different networks via a gateway. The ba-
sic structure is depicted in figure 2. The gateway
supports two functionalities: the ET 2TT task trans-
forms ET messages and inserts them into the respec-
tive TT communication slot TTcom1. The way back
is controlled by TT 2ET . If a message reaches the
gateway via TTCom2, it will be transmitted on the
ET network.

For the subsequent discussion, the two opposite
directions for message transfers are called ET → TT
and TT → ET . If both are combined in a round trip
time ET → TT → ET , we denote it as ET 	 TT .

∆tETb

tETt

∆ϕ1 + tET2T T + ϕ2

tTT com1

ϕ3

tTT com2

∆t′ETb
+ tT T2ET + ϕ5

tETt

ϕ4

ET ← TT

ET → TT

ETnode Gateway TTnode

Figure 2. Gateway latencies

The entire duration of the message propagation
from the ET network to the TT domain is determined
by several parameters associated to each step in the
figure.

∆tETb
- (ET bus blocked) Starting at the left hand

side of figure 2, a message transfer may be de-
layed by an ongoing transmission. If an ET mes-
sage has to be transmitted (with the highest pri-
ority), a loaded network can delay it by an ET
bus transmission time at most. If a immediate
bus access is possible, ∆tETb

will be "0".

tETt
- (ET bus transmission time) The transfer of

a message in the ET network depends on the
transmission rate and the length of the message.

∆ϕ1 - (phase displacement) In the gateway, the mes-
sage has to wait for the appropriate execution
slot of the conversion task, ET 2TT . The mes-
sage is now synchronized with the TDMA sched-
ule.

tET2TT The ET 2TT task reads the ET message,
transforms it into the TT message format and
propagates it to the TT domain.



tTTcom1
- (TT communication slot 1) The message is

delayed by ϕ2, waiting for the propagation task
TTcom1. The next step in the schedule is the
target task for the message which is reached after
the next latency of ϕ3.

The time needed for a message propagation from an
ET node to a TT node can therefore be represented
by the following equations:

tET→TT =∆tETb
+ tETt

+

∆ϕ1 + tET2TT + ϕ2+

tTTcom1
+ ϕ3

(1)

For the opposite direction in figure 2, the message
transmission from TT to ET is similarly determined
by the following parameters:

ϕ4 Starting in a TT application, the message has to
wait for the transmission task in TTcom2.

tTT2ET After ϕ5 , the TT 2ET conversion task trans-
fers the messages to the ET network.

∆t′ETb
The propagation into the ET network could

be delayed if the ET bus is loaded. The plain
ET transmission requires tETt

.

Hence, the end-to-end delay from a TT node to an
ET node is modelled by:

tTT→ET =ϕ4 + tTTcom2
+

ϕ5 + tTT2ET + ∆t′ETb
+

tETt

(2)

We assume now that a special TT task returns all
incoming, transformed ET messages inside a single
TT period. This scenario does not represent a usual
application but a possibility to illustrate the result-
ing delays of synchronised and unsynchronised net-
works comparably. Therefore a round trip time has
to combine ET → TT and TT → ET . Dynamic
terms (marked by a ∆ symbol) change their values
depending on the actual state of the TDMA schedule
and ET bus load. The static values are derived from
network configurations and from the schedule of the
TT domain. For a more comprehensible notation, the
static parts are separated. Hence, the static terms in
equations 1 and 2 can be combined to

tET	TTstatic
=tET2TT + ϕ2 + tTTcom1

+

ϕ3 + tTTapp + ϕ4 + tTTcom2
+

ϕ5 + tTT2ET + 2 · tETt

(3)

The entire duration of a round trip can be calculated
by adding the dynamic terms of equations 1 and 2 to
3

tET	TT = ∆tETb
+ ∆ϕ1 + ∆t′ETb

+ tET	TTstatic

(4)

This equation describes the general representation of
latencies caused by the gateway. In the following
section, we discuss the consequences for special con-
straints.

2.2 Delay distribution function

The interpretation of equation 4 depends on two
scenario parameters:

synchronised/unsynchronised networks If a
global time exists throughout the system, it is
possible to synchronise the ET message trans-
mission in a way that the message reaches the
gateway just before the respective conversion
task starts. The next section shows that in
this case the delay behaviour of the federated
network can be determined exactly for the
highest priority message.

ET bus without load / ET bus with load
Additional ET bus load may delay the mes-
sage transmission for the duration of one ET
transmission. Without additional load, an
immediately access can be assumed.

For different combinations of these parameters, two
kinds of results for tET	TT are possible. The first one
is a concrete latency value. Statistical distributed de-
lays described by a probability density function p(t)
between tmin and tmax are more complicated to han-
dle. The paragraphs below derive equations for the
different constellations based on 4.

Case 1: Synchronised Networks - No Load
The following examination of synchronised networks
is based on two conditions:

• Both domains have access to a global time.
Hence, it is possible to define a global schedule
for the TT and ET domain. TT scheme is im-
posed onto the ET network [7].

• The most urgent message has the highest prior-
ity in the ET network and is sent without delay
based on the global schedule.

In this case, the phase displacement becomes zero and
there is no delay caused by ET network access. Equa-
tion 4 can be simplified to

tET	TT = tET	TTstatic
+ 2 · tETt

(5)

The delay of a round trip can be exactly calculated.

Case 2: Synchronised Networks - With Load
The conditions are now changed:

• Both domains have access to a global time.



• The respective message has the highest priority
in the ET network and can only be delayed by
an ongoing transmission.

To ensure that the correct TT time slot is met, the ET
message has to send with a constant phase displace-
ment of ∆ϕ1 = 2 · tETt

. Accordingly, the equation 4
is simplified to

tET	TT =tETt
+ tET	TTstatic

+

∆t′ETb
+ 2 · tETt

(6)

Only the time for the ET bus arbitration on the
way back introduces an uncertain dynamic element
of ∆t′ETb

. The tET	TTmin
implies an immedi-

ate message transmission with ∆t′ETb
= 0 whereas

tET	TTmax
considers the longest delay - in this case

∆t′ETb
= tETt

. Hence, tET	TTmax
represents the

worst case.

tET	TTmin
=tET	TTstatic

+ 3 · tETt

tET	TTmax
=tET	TTstatic

+ 4 · tETt

(7)

The delay may take all values between these two
points in a uniform distribution, which can be defined
by

psynch(t) =

{

1

T
, tET	TTmin

<= t < tET	TTmax

0 , else
(8)

with T = tET	TTmax
− tET	TTmin

. The representa-
tion of the delay by a probabilistic function includes
the worst case. If the information is non-critical, the
ratio between delay and success rate can be deter-
mined. If an application does not need each response
to its requests, it will be possible to calculate the min-
imum waiting time to obtain a defined probabilistic
percentage of all messages.

Case 3: Unsynchronised Networks Without
any time synchronisation, the ET message can reach
the gateway at arbitrary points in time, e.g. one mo-
ment after the conversion task slot has passed. In
this case the delay caused by the phase shift ϕ1 is
equivalent to an entire tTTperiod

. If the message is re-
ceived just before the ET 2TT slot, it defines ϕ1 = 0.
Of course, ϕ1 can take all intermediate values, hence
a uniform probability density function describing the
delay for this step can be derived by

pϕ1
(t) =

{

1

tT Tperiod

, 0 <= t < tTTperiod

0 , else
(9)

Similarly, the ET bus arbitration produces a uni-
formly distributed delay between 0 ≤ ∆tETb

≤= tETt

as shown in equation 7. This means

p∆tETb
(t) =

{

1

tETt

, 0 <= t < tETt

0 , else
(10)

For both directions in the round trip, the ET bus has
to be accessed. This means p∆tETb

(t) has to be con-
sidered twice. To obtain a single equation, the three
distributions have to be combined and then added to
the equation in 3. The resulting probability distribu-
tion of the sum of two or more independent random
variables is the convolution of their individual distri-
butions. In our case, this can be expressed by:

punsync(t) = p∆tETb
∗ p∆tETb

∗ pϕ1

For three independent uniform distributions, a func-
tion depicted in figure 3 can be derived for the con-
dition 2 · tETt

< tTTperiod
.

Figure 3. Probability Density Function for

unsynchronised Networks

The figure shows that the time for a round trip
is between tET	TTstatic

+ 2 · tETt
and tET	TTstatic

+
tTTperiod

+2 · tETt
. Unlike the case 2 - equation 8, it is

no longer a uniform distribution but exhibits varying
probabilities. According to the general solution of
this problem described in [8], we derived a probability
distribution punsync(t) for our approach function with
a constant factor k

k =
1

t2ETt
· tTTperiod

by equation 11.

Case 4: Other Configurations With an exten-
sion of the equation 4, it is also possible to describe
the delays in federated networks for messages with
arbitrary priority. This either requires a probabilis-
tic model of message arrival time and priority distri-
butions or an analysis scheme like Rate Monotonic
Scheduling [9].

3 Measurements

To validate our analysis, we implemented an ex-
perimental setup embedded into the robot scenario
depicted in figure 1. For the TT communica-
tion approach, we used a TTTech development sys-
tem [10] consisting of 4 PowerNode PN312 compo-
nents (MPC555 processor,1 MByte RAM, 4 MByte



punsync(t) = k ·































1

2
t2 , 0 ≤ t < tETt

− 1

2
t2 + 2tETt

t + t2ETt
, tETt

≤ t < 2tETt

t2ETt
, 2tETt

≤ t < tTTperiod

t2ETt
−

1

2

(

t − tTTperiod

)2
, tTTperiod

≤ t < tTTperiod
+ tETt

2tETt

(

tETt
+ tTTperiod

− t
)

+ 1

2

(

t − tTTperiod

)2
, tTTperiod

+ tETt
≤ t < tTTperiod

+ 2tETt

0 , else

(11)

Flash). The ET network is a CAN bus with two
AT90CAN128 AVR Atmel processors attached. The
first node works as message source and as destina-
tion for the round trip measurement. For each round
trip, the time between transmission and reception
of the message is recorded. The crystal-controlled
timer functions of the CAN nodes show a resolution
of 1/16MHz. The second node produces a defined
load on CAN bus.

Figure 4 illustrates the TTP schedule and its tem-
poral order. The TTP/C round has been adjusted to
5000µs. This is, of course, an arbitrary value and
the round is much longer than needed to allocate
the two message slots and to execute the three TT
tasks. With the selected arrangement, all possible
phase shifts were integrated and allow the validation
of a generalized exemplary schedule.

Column 2 of figure 4 illustrates one, periodically
repeated TTP/C cycle 0 − 5000µs with known com-
munication slots and tasks. For the concrete CAN
and TTP network, the gateway tasks ET 2TT and
TT 2ET become CAN2TTP and TTP2CAN . The
two tasks are executed on the gateway node and one
- TTPApp - on an application node. Two dedicated
slots are provided for communication. The time scale
shows the duration of each slot in column 3. Column
1 illustrates the CAN domain, representing the mea-
surement application and the bus traffic. The bold
line depicts the way of a message through the net-
works.

The execution time of all TT tasks and communi-
cation slots can be calculated using:

ttasks = tCAN2TTP + tTTP2CAN + tTTPApp

tslots = tTTcom1
+ tTTcom2

ttasks + tslots = 1350µs

The CAN message is based on an extended CAN
frame with 8 bytes payload. Hence, the message has
a constant length of 147Bit including stuff bits and
has a transmission time of tETt

= 588µs in the CAN
network. The other parameters are listed in table 1.

Measurements on an unloaded bus This exper-
iment should result in the latencies that are only at-
tributed to the delays in the gateway and the arbi-
trary phase between the CAN and TT networks.

Figure 4. Measurement TTP/C tasks and

slots

For the first measurement scenario without CAN
bus traffic, the latency for a round trip is caused
by mapping to the cyclic time slot in the TT do-
main only. In this case ∆tETb

= 0 and ∆t′ETb
= 0

for equation 4. The CAN message is delayed until
the start of the conversion task CAN2TTP by the
TDMA schedule as depicted in figure 4. Caused by
the internal CAN buffer management, the message is
read at tstart = 174µs. Hence, the deadline for accep-
tance in the current TT period is shifted to this value.
If the CAN message is received just before the start
of reading the CAN buffers, the latency (depicted as
∆ϕ1 in figures 2 and 4) will be quite small. However,



Denotation Symbol Value
TTP/C period tTTPP eriod

5000µs
CAN2TTP task tCAN2TTP 700µs
TTP2CAN task tTTP2CAN 450µs
TT-Application task tTTPApp

200µs
CAN bit rate 250kBit/s
CAN message length 147Bit
CAN transmission time tETt

588µs

Table 1. Parameters of the setup

if the message arrives shortly after tstart, it cannot
be read and thus message processing is delayed for
one TDMA period ∆ϕ1 = tTTPP eriod

. Therefore, the
jitter is defined by the average half of a period.

In the opposite direction, the TTP2CAN task
transmits the message to the CAN network at tend =
3695µs. This is a task specific value and was deter-
mined by measurements in advance.

Hence, the theoretically minimal round trip time
tmincalc

can be calculated according to equation 4 .

tmincalc
= tTTPP eriod

+ 2 · tETt
(12)

Based on figure 4 tmincalc
can be calculated as follows

tmincalc
=tend − tstart + 2 · tETt

=(3695− 174 + 2 · 588)µs

=4697µs

(13)

For the round trip the maximum delay tmaxcalc
is de-

termined by ∆ϕ1 = tTTPP eriod
(by):

tmaxcalc
=∆tTTPP eriod

+ tmincalc

=(5000 + 4697)µs

=9697µs

(14)

For this scenario and based on equation 8, we expect
a uniform distribution between tmincalc

and tmaxcalc

with 0 ≤ ∆ϕ1 ≤ tTTPP eriod
.

A measurement series for validation, that used the
schedule described above, produces the results listed
in table 2.

Denotation Symbol Value
Number of measurements 10.000
Minimal delay tmin,meas 4699µs
Maximal delay tmaxmeas

9702µs
Difference 5003µs

Table 2. Measurement results without bus

load

The calculated minimal delay tmincalc
varies from

the measurements illustrated in table 2 by ∆tmin =
2µs.

The measured maximum delay exceeds the theo-
retical maximum by ∆tmax = 5µs. These deviations

are caused by inaccuracies of the time measurement
in the AVR processor. To check this assumption, the
gateway was substituted by another CAN node and
we observed a delay of 4µs.

Measurements with background traffic In a
more general scenario, a second CAN node contin-
uously transmits low priority CAN messages. The
CAN message of the round trip wins the arbitration
phase due to a higher priority.

The theoretically minimal round trip time is the
same as calculated by equation 13 to tmincalc

=
4697µs. According to equation 4 and figure 3, the
theoretical maximum delay tmaxcalc

is determined by:

tmaxcalc
= ∆tTTPP eriod

+ tmincalc
+ 2 · tETt

= (5000 + 4697 + 2 · 588)µs

= 10873µs

The measurement results can be summarised in the
following table:

Denotation Symbol Value
Number of measurements 10.000
Minimal delay tminmeas

4832µs
Maximal delay tmaxmeas

10861µs
Difference 6029µs

Table 3. Measurements with bus load

The measured value is (4832−4697)µs higher than
the calculation result. This can be explained with
probability property of the delay. Obviously, the
10,000 measurements do not include the theoretical
minimal delay. A higher number of repeating (let con-
verge) allows convergence of (the) tmincalc

to tminmeas

and tmaxcalc
to tmaxmeas

.
The distribution of the measured 10,000 latencies

is illustrated by a histogram in figure 5 . The calcu-
lation based on equation 11 is added with the bold
line.

4 5 6 7 8 9 10 11
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

t in ms

p
ro

b
a

b
ili

ty

Figure 5. Latency distribution

The measurements show that the analysis models
the real system behaviour adequately.



4 Conclusion and Future Remarks

The content of this paper is part of our research
on middleware for embedded networked systems. The
goal is a seamless and uncomplicated integration of
components and networks into a decentralized con-
trol system. Apart from the problems related to
masking the different addressing schemes, the tem-
poral aspect of interaction across multiple networks
is the focus of our interest. The analysis presented
in this paper evaluates intrinsic latencies which are
incurred when combining a time-triggered and an
event-triggered network. TTP/C and the CAN-Bus
can be regarded as adequaterepresentatives at both
ends of the spectrum reaching from strictly syn-
chronous to completely asynchronous networks. La-
tencies occur due to network-specific delays like ar-
bitration and busy media as well as latencies in the
connecting gateway. The contribution of this paper
is firstly a formal probabilistic analysis of these la-
tencies under various network conditions. Secondly,
the results are confirmed by an experimental evalu-
ation. The outcome of the paper can be exploited
in two directions. Firstly, it provides worst-case la-
tencies for synchronized and non-synchronized cases
which can be used to adjust the static schedule in
the TT domain. Secondly, it allows the determina-
tion of the coverage-latency trade-off. Therefore, it is
possible to figure out which latency can be expected
for a certain percentage of messages. As an example,
an application accepts sensor readings within a cer-
tain time window. The respective probability of the
temporal requirements being fulfilled can directly be
derived from the analysis (cf. figure 5).

In our future work, we will investigate the COS-
MIC (Cooperating SMart devICes [11]) middleware
in an application scenario of sensor/actuator net-
works. COSMIC provides event channels with differ-
ent synchrony properties on the CAN-Bus, i.e. hard,
soft and non-real-time channels. Additionally, COS-
MIC solves the problem of network transparency by
offering a uniform naming and binding scheme thus
masking the different addressing schemes and sup-
porting the routing of messages. The analysis of this
paper will be used to allocate appropriate time slots
and deadlines to make real-time behaviour across the
networks possible.

References

[1] H. Kopetz and G. Bauer, “The Time-Triggered Ar-
chitecture”, Proceedings of the IEEE, vol. 91, no. 1,
pp. 112 – 126, Jan. 2003.

[2] Robert Bosch GmbH, CAN Specification Version
2.0, 1991.

[3] T. Führer, B. Müller, W. Dieterle, F. Hartwich,
R. Hugel, and M. Walther, “Time Triggered Commu-

nication on CAN (Time Triggered CAN-TTCAN)”,
7th international CAN Conference, 2000.

[4] FlexRay Consortium, FlexRay Communications Sys-
tem Protocol Specification Version 2.1 Revision A,
2005.

[5] H. Kopetz, Real-Time Systems Design Principles
for Distributed Embedded Applications, Kluwer Aca-
demic Publishers, Boston / Dordrecht / London,
1997.

[6] R. Obermaisser, “CAN Emulation in a Time-
Triggered Environment”, in Proceedings of the 2002
IEEE International Symposium on Industrial Elec-
tronics (ISIE), volume 1, Jan. 2002. IEEE.

[7] J. Kaiser, C. Brudna, and C. Mitidieri, “COSMIC:
A real-time event-based middleware for the CAN-
bus”, Journal of Systems and Software, vol. 77, no. 1,
pp. 27–36, July 2005, Special issue: Parallel and
distributed real-time systems.

[8] F. Killmann and E. von Collani, “A Note on the
Convolution of the Uniform and Related Distribu-
tions and Their Use in Quality Control”, Economic
Quality Control, vol. 16, no. 1, pp. 17–41, 2001.

[9] K. Tindell and A. Burns, “Guaranteeing Message
Latencies On Control Network (CAN)”, 1st interna-
tional CAN-Conference, 1994.

[10] TTTech Computertechnik AG, “TTP-Powernode –
The TTP Development Board”, Product description,
September 2005.

[11] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira,
“COSMIC: A middleware for event-based interac-
tion on CAN”, in 9th IEEE International Conference
on Emerging Technologies and Factory Automation
(ETFA 2003), September 2003, Lisbon, Portugal.


