

Exploiting Self-Descriptions for Checking Interoperations between Embedded

Components
Joerg Kaiser, Sebastian Zug, Michael Schulze,

Otto-von-Guericke-University Magdeburg, Germany
Hubert Piontek, University of Ulm, Germany

kaiser@ivs.cs.uni-magdeburg.de

1 Introduction

Today’s embedded systems like cars, robots and industrial plants are more and more built from a large
number of independent networked devices provided by third party suppliers and are configured to a
complete system after the software of the individual components has been designed and implemented.
The components are assumed to have a their own computational core, some periphery like sensors or
actuators, and a network interface. They cooperate with other components via messages. To an
extreme, a complete vehicle as a car or a robot can be viewed as a component communicating and co-
operating with other mobile systems or an instrumented smart environment sharing information and
services. There are multiple dimensions and system levels of interoperability like syntactic, semantic
and temporal, which have to be considered when performing the final configuration towards an
operational system or even support dynamic interactions.

Failures frequently occur as a result of system integration, configuring a system from independent
hardware devices or software components. It is usually assumed that in most cases they are detected
during integration testing and then removed from the system. However, this firstly may be a tedious
task and some faults will remain in the system causing disastrous system failures. Spectacular, well-
known examples are the loss of Ariane-5 [Lio1996], partly because of interpreting diagnostic
information as inertial data and the Metric-English units’ mismatch destroying the Mars Climate
Orbiter [Nas1999]. Secondly, a dynamic system like a team of robots performing a joint action cannot
be checked by integration testing at all because interaction occurs dynamically at run-time. One key
issue for these systems is a precise description of the devices that covers the above mentioned
interoperability dimensions. These descriptions should be kept favourably with the devices itself or be
at least electronically accessible when needed to evaluate compatibility between components. The
benefits range from discovering the abilities of components e.g. in a team robot application to
checking compatibility of devices that are evaluated when a relation between them is established. The
paper mainly addresses the aspects of checking compatibility of interactions using such self-
descriptions. This may be at configuration time or even at run-time. Detecting a mismatch is a
contribution to preventing serious failures resulting from incompatible data structures,
misinterpretation of data or wrong temporal assumptions.

The rest of the paper is structured as follows: we first give a brief overview of the system model
realized by the COSMIC middleware. Then we introduce CODES, a scheme for describing embedded
devices. Chapter 4 sketches related work in this area and finally, we provide a summary and an
outlook on future work.

2 System model

Compatibility checking is intimately related to the system model and the model of communication.
Our model is based on two basic concepts, autonomous objects1 that are active entities performing all
computations and events that constitute typed communication objects disseminating data. The notion
of autonomous objects is inspired by smart sensor and actuator components. This can be hardware
components incorporating an individual computational component, some periphery and a network
interface or also concurrently executed software components. From a conceptual point of view they

1 Autonomous Objects in COSMIC are referred as Sentient Objects in other publications [VCC2002],
[CKV2007] because these objects also can adapt their behaviour according to the operational context. Because
this sentience is not in the scope of the paper, we just emphasize the autonomy aspect.

can be related to the concept of actors [Agh1986], however with a specific semantic and interaction
model. Autonomous objects consume and produce events that are the only visible entities that are
exchanged between objects and that are occurring at the object interface. No further access to internal
state variables is supported. The term “event” is used to denote a typed communication object and
expresses the publish/subscribe-based model of communication where nodes are notified when data is
available. Events do not refer to any synchrony model as e.g. in real-time systems where they are
associated with asynchrony nor to a specific low level computational model as e.g. in TinyOS
[HSW2000]. Events are disseminated through event channels. Event channels are typed unidirectional
communication channels that transport events of the respective type and provide latency properties
and guarantees. Autonomous Objects, events and event channels are supported by the COSMIC
middleware, which is particularly designed for tiny embedded systems. A detailed description of the
COSMIC middleware is beyond the scope of this paper and is available in [KBM2005]. The important
property of the publish/subscribe is that the communication is based on the content of a message rather
than on an address. This allows the dynamic use of information because a component has to specify
what information it needs to perform a computation rather than of who provides this information.
Because any interaction between components is performed via events we describe the interface of an
autonomous object in terms of these events. Events have: 1.) A subject identifying the event, 2.)
attributes related to the context in which the event was generated like a location and a time, 3.) quality
attributes describing temporal validity, periodicity and optional constraints on the physical parameters
like ranges and precision and 4.) a contents carrying the respective payload. Because of the application
area in mind, we precisely define the kind and dimension of the physical units of the contents, which
goes beyond the type checking usually available when invoking an object. The event channel
description comprises the synchrony attributes for the dissemination. Parameters to specify a channel
include, the subject that is disseminated, the synchrony class, information about the period of
dissemination, and whether it is an outgoing or incoming event channel. The parameters of the event
and the event channel are contained in the device description are the main information used for
compatibility checking.

 3 Describing components with CODES

Device descriptions for embedded devices are well known in industrial automation and part of many
field-bus standards. However, in many cases they are only available as text documents (see chapter 4).
If they are used for on-line compatibility checking they have to be in a form that can be processed
automatically. CODES [KaP2006] uses XML to provide this possibility because the wide spectrum of
tools that are available to process XML documents. We call a device description an “Electronic Data
Sheet (EDS)” following the terms of the IEEE 1451.2 [Lee2000] standard. The EDS contains many
parts describing general information about a device like supplier, software and hardware versions and
so on. We will concentrate on the event and event channel descriptions here because they are the most
important elements for compatibility between devices. Fig. 1a gives an example for an event
description. The most important fields for compatibility checking are:
- The name of the event, which should have a meaning to the consumer. There is a textual

representation of the subject “oil_temperature” which is mapped to a UID that during operation is
used to identify an event. It should be noted that this binding to a name always allows to
unambiguously identify an event from a structural and a semantic aspect throughout its lifetime.

- The data type of the contents, which in the case of Fig. 1a is a 16 Bit unsigned integer. For data
types involving multiple bytes, coding information as the byte order is specified additionally.

- The physical dimension of the contents, that is represented in the SI (Système  international 
d’unitès, SI) notation [TyT2008] and is most important if this event should be used dynamically
by other devices. In the example the temperature will be disseminated in degrees Celsius.
Because the SI system specifies temperature in Kelvin, an additional offset has to be added.

 
As mentioned above, the event description also comprises a number of attributes. An example of a
time stamp is given in Fig. 1b. As the contents itself, the physical attributes are specified according to
the SI system. Attributes may be related to the context in which an event is generated or to non-
functional and temporal issues like whether an event is sporadic or periodic and what is the period.

Additionally, a validity interval is specified for real-time events after which the event expires and the
system notifies an application about an unsuccessful transmission.

<Event>
 <Subject> oil_temperature</Subject>
 <SubjectUID>0x1234567890ABCDEF</SubjectUID>
 <Description>Samples oil temperature, output in
 degrees celsius. </Description>
 <DataStructure>
 <Field>
 <Name>oiltemp</Name>
 <Description>oil temperature </Description>
 <DataType>u_int_16</DataType>
 <ByteOrder>BigEndian</ByteOrder>
 <Dimension>
 <SIUnit><Kelvins>1.0</Kelvins></SIUnit>
 <Magnitude>0.0</Magnitude>
 <Offset>273.15</Offset>
 <Scaling>1.0</Scaling>

 </Dimension>
 <Attributes> ... </Attributes>
 </Field>

</DataStructure>
 ...
</Event>

<Attributes>

 <Field>
 <Name>time</Name>
 <Description>absolute time in NTP
 format</Description>
 <DataType>u_int_32 </DataType>
 <ByteOrder>BigEndian</ByteOrder>
 <Dimension>
 <SIUnit><seconds>1.0
 </seconds></SIUnit>
 <Scaling>1</Scaling>
 </Dimension>
 </Field>

</Attributes>

Fig. 1a: CODES event specification Fig. 1b: CODES event attribute specification

In the same way as events, the properties of event channels are described. The main information is the
subject and the synchrony class of the channel. The entire description of a device in an XML
document sums up to a typical size of up to 50kbyte for sensor or actuator devices. This EDS for a
device is used during multiple stages of system life to check compatibility of interaction and detect
possible faults:
- During development of components, XML schemata are used to check the completeness of a

specification. Furthermore, as a means to prevent implementation errors, a tool for generating code
from the descriptions has been realized. At the moment, this mainly ensures that the correct data
structures are defined on the consumer side and appropriate conversions be made.

- During the configuration phase, the descriptions of events are evaluated and it has to be ensured
that the incoming event specification of a subscriber matches the respective outgoing specification
of a publisher. In a system built from a large number of devices, it is often hard to determine the
properties of all individual components that may be dependent on manufacturer, version and other
characteristics. This is particularly true when devices have been added or replaced after the initial
configuration. If the description is stored with the device itself, the actual building blocks can
always be identified easily.

- During run-time, every new subscription can be checked. This is exploited for dynamic interactions
e.g. in applications where robots dynamically interact with each other or with an instrumented
smart environment. In these scenarios a vehicle may want to use environment events from a remote
sensor. The descriptions allow discovering and using events dynamically and checking the
structural and content properties. This requires the respective computational resources to evaluate
the EDS on-line and needs additional time.

Because of the memory and performance restrictions in small devices, it is not possible to store the
EDS in plain text format or evaluate the XML-descriptions with a smart device. We therefore realised
a solution in which storage and the evaluation are separated. The descriptions are stored in a
compressed form. E.g. for the 38,6 kbyte description of an acceleration sensor, the size of the gzip
representation is 2.8 kbyte. This is an acceptable size to store in the flash memory even of a tiny
device. On start-up or during maintenance these descriptions are uploaded to a dedicated more
powerful node in the system. This also seems to be a reasonable assumption because even if the

reactive level of a car or a robot can be seen as a network of tiny nodes, there are some more powerful
nodes responsible for higher-level functions. These nodes collect and process the descriptions perform
the checks whenever a node newly subscribes to some event provided in the system.

4 Related Work

Much effort already has been expended on describing properties and services in systems configured
from multiple components. This ranges from the field of service-oriented systems like WSDL
[CCM2001], Jini [Wal2000] and UPnP [WeJ2003]. They exploit descriptions for discovering services
dynamically. The reason why these systems are not fully appropriate for our purposes is their
complexity and their lack of describing physical units and the quality of dissemination. Addressing
this issue, device profiles have been introduced in industrial automation long ago. Among them are
CANopen [CiA1996-2005] and IEEE 1451 [Lee2000], as well as TTP/A [KHE2000], [EHK2001] and
LIN [ABD2003] in the automotive area. However, most of the device profiles in industrial automation
are expressed in a very special and proprietary way. Secondly, they reflect the specific properties of
the underlying network and therefore, these standards do not support interactions between different
communication networks. Finally, in most cases, the descriptions are not available in a form, which
automatically can be used and manipulated by a machine. Table 1 summarizes the properties of
standards related to this work.

  CANopen  IEEE 1451  LIN   TTP/A  CODES 
           
Descr.  text  binary  text  XML  XML 
Config.Mngmt.  vendor spec.  vendor spec.  yes  yes  yes 
Comp. check.  no  no  no  no  yes 
Real‐time  limited  limited  limited  HRT  yes 
Resrc. Usage  low  very low  very low  very low  low 

Table 1: Properties of device descriptions

The work closest  to CODES  is  the  IEEE 1451.2 standard and the smart  transducer  interface of 
the  TTP/A  system.  The  EDS  of  the  1451  standard  inspired  particularly  our way  to  represent 
physical units and general information. The main differences to IEEE 1451.2 are the use of XML 
to  describe  the  devices,  the  representation  of  temporal  aspects  and  our  integration  with  the 
COSMIC  middleware.  COSMIC  provides  the  possibility  to  run  across  multiple  heterogeneous 
networks and enables cross‐network communication.   TTP/A  is  focussed on minimal resource 
consumption  and  keeps  the  references  to  the  descriptions  in  the  devices  only.  Because  it  is 
based  on  a  static  Time  Triggered  Architecture  there  is  no  need  for  any  dynamic  check.  It  is 
possible  to  access  a  smart  device  from  a  CORBA  system  via  the  smart  transducer  interface 
[OMG2003] where these descriptions may be exploited.  
 
5 Conclusion 

The intention of CODES device description is to enable the correct interoperation of autonomous
objects in a heterogeneous networked system. In a scenario, in which we need to integrate
heterogeneous devices from multiple sources with no complete knowledge of the internal code,
precise descriptions are inevitable to ensure compatibility. These descriptions have to be an inherent
part of the device and inseparably related to it. The descriptions must have a sufficient level of detail
and completeness that allows compatibility checking. CODES addresses these needs in the design,
integration and operation of the system by a suite of tools and services. During device specification,
the CODESCreator assists the correct creation of a description by respective templates and a graphical
user interface. The generated electronic data sheet (EDS) is validated against the respective XML
schema. In this way, the Creator ensures that all aspects of the device description are covered. A
further problem is that a correct specification not always results in correct code. This aspect is treated
by CODES during the implementation phase. Part of the code to use a certain event of a component is
generated automatically. Here we exploit XML style sheets and an XSLT processor for the respective

transformations. It ensures the compatibility of data types and data structures by omitting coding
errors resulting from low-level program details. While these tools enforce compatibility between
producing and consuming components during the design phase, the COSMICMonitor and the
LogPlayer further exploit the generated EDSs when testing and maintaining the system. The Monitor
allows observing specific events. Rather than inferring information and dissemination details from the
application code, the observable features, like specific events, periods and other quality properties can
be derived from the descriptions of events and event channels. Finally, CODES provides a service to
discover devices and events in a dynamically. An XML style sheet is used to express a request and
according to this, the XLST processor extracts the respective information from the EDS. This allows a
very fine-grained search for sensor or actuator services exploiting the entire expressivity of the device
description. A complete and detailed description of CODES is available in [Pio2007].

 
6  References 
 
[Agh1986] Gul Agha: “Actors: A model of Concurrent Computation”, MIT Press, 1986
[ABD2003] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc., Volcano Communication Technologies

AB, Volkswagen AG, and Volvo Car Corporation. LIN specification v2.0, 2003.
 [CCM2001] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services Description Language

(WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.
[CiA1996] CiA Draft Standard 201–207 Version 1.1. CAN Application Layer for industrial applications,

February 1996.
[CiA2002] CiA Draft Standard 301. CANopen Application Layer and Communication Profile, February 2002.
 [CiA2004] CiA Draft Recommendation 303–2. CANopen Representation of SI units and prefixes, December

2004.
[CiA2005] CiA Draft Standard 306. Electronic data sheet specification for CANopen, January 2005.
[CKV2007] António Casimiro, Jörg Kaiser, Paulo Verissimo, “Generic-Events Architecture: Integrating Real-

World Aspects in Event-Based Systems”, Lecture Notes in Computer Science (Architecting
Dependable Systems IV), Volume 4615/2007, Springer 2007, pp. 287-315

 [EHK2001] W. Elmenreich, W. Haidinger, and H. Kopetz. “Interface Design for Smart Transducers”, In IEEE
Instrumentation and Measurement Technology Conference, volume 3, pages 1642–1647,
Budapest, Hungary, May 2001.

[HSW2000] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System Architecture Directions for
Networked Sensors”, ACM SIGPLAN Notices, Volume 35 , Issue 11, November 2000

[KBM2005] J. Kaiser, C. Brudna, C. Mitidieri, “COSMIC: A real-time event-based middleware for the CAN-
bus”, Journal of Systems and Software, Volume 77, Issue 1 (July 2005), Special issue: Parallel
and distributed real-time systems, pp. 27 - 36

[KaP2006] J. Kaiser and H. Piontek, “Codes: Supporting the development process in a publish/subscribe
system”, in Fourth Workshop on Intelligent Solutions in Embedded Systems (WISES 2006),
Vienna, Austria, June 2006.

[KHE2000] H. Kopetz , M. Holzmann, W. Elmenreich, “A Universal Smart Transducer Interface: TTP/A”,
Proceedings of the Third IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, St. Malo France, 2000

 [Lee2000] K. Lee, “IEEE 1451: A standard in support of smart transducer networking”, Proceedings of the
17th IEEE Instrumentation and Measurement Technology Conference, 2000. IMTC 2000.

[Lio1996] J. L. LIONS (Chairman of the board), “ARIANE-5, Flight 501 Failure” Report by the Inquiry
Board, July 1996

[Nas1999] Mishap Investigation Board “Mars Climate Orbiter”, Phase I Report, November 10, 1999
[OMG2003] Object Management Group, “Smart Transducers Interface Specification”, Version 1.0, January

2003, available from: http://www.omg.org/cgi-bin/doc?formal/03-01-01
 [Pio2007] H. Piontek, “Self–description mechanisms for embedded components in cooperative systems”,

PhD Thesis, University of Ulm, 2007
[TyT2008] B. N. Taylor, A. Thompson (Eds.), “The International System of Units (SI)”, NIST Special

Publication 330, 2008 Edition, National Institute of Standards and Technology Gaithersburg, MD
20899, March 2008

[VCC2002] P.Verissimo, V.Cahil, A.Casimiro, K.Cheverst, A.Friday and J.Kaiser, “Cortex: Towards
supporting autonomous and cooperating sentient entities”, In Proceedings of European Wireless
2002, Florence, Italy, Feb 2002

[Wal2000] J.Waldo, “The Jini Specifications”, 2nd edition. AddisonWesley, 2000
[WeJ2003] J. Weast M. Jeronimo, “UPnP Design by Example”, Intel Press, 2003.

