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Abstract

The paper describes the event model and the architecture of the COSMIC (COoperating SMart devIiCes) middleware. Based on
the assumption of tiny smart sensors and actuators, COSMIC supports a distributed system of cooperating autonomous devices.
COSMIC considers quality of service requirements in the event model and provides an application interface which allows to express
the respective temporal and reliability attributes on a high, application related abstraction level. According to the need in most real-
time systems, COSMIC supports event channels with different timeliness and reliability classes. Hard real-time event channels are
considered to meet all temporal requirements under the specified fault assumptions. The resource requirements for this type of chan-
nel are statically assigned by an appropriate reservation scheme. Soft real-time event channels are scheduled by their deadlines, but
they are not guaranteed under transient overload conditions. Non-real-time event channels are used for events without any specified
timeliness requirements in a best-effort manner. The paper finally presents the layered COSMIC architecture to map the different

channel classes to the CAN-Bus.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many control applications are based on distributed
devices controlling a physical process. Sensors and actu-
ators connected by a network observe and evaluate as-
pects of the physical environment and act in response
to it. At a first glance, this is not new because distributed
sensors and actuators connected by field busses are com-
mon in industrial automation since years. However,
although sensing and acting is physically distributed in
these systems, the logic control of the process still is cen-
tralized. The sensors are polled periodically by a central
instance, which then calculates new values and set points
and eventually disseminates them to dedicated actua-
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tors. This is reflected in many respective application
level protocols in the field bus area, e.g. CiA (1999),
Profibus (1999), Noonen et al. (1994) and SDS (1996).
New applications and recent technological develop-
ments motivate a new system and control architecture.
From a technological point of view, sensors and actua-
tors comprise special purpose hardware (sometimes also
mechanical elements) for signal reception and condition-
ing together with computational elements and a network
interface. The smart nodes therefore constitute autono-
mous entities which allow to capture sensor data at
the real-world interface, transform it to a machine read-
able form and spontaneously disseminate it as a stand-
ardized message to the distributed system. Moini
(1997) makes the point that “smart sensors are informa-
tion sensors, not transducers and signal processing ele-
ments”. Recently, standardization efforts are expended
for such systems by OMG (2001) and by IEEE (Bryzek,
1996). The most interesting and challenging property of
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these intelligent devices is their ability to spontancously
interact with the overall system. This enables a modular
system architecture to control physical processes reac-
tively without the need of a central co-ordination facil-
ity. In such a system, multiple different sensors will
co-operate to augment perception of the environment
and autonomous actuators will co-ordinate actions to
increase speed, power and quality of actuation thus
forming decentralized sensor and actuator networks.
To ease the interaction of cooperating objects, the sys-
tem should provide an adequate level of abstraction. The
application designer should not be forced to deal with the
low-level message passing of the raw field bus. The com-
munication model should reflect the requirements of a
control system composed from autonomous active com-
ponents. This demands for the spontaneous generation
and dissemination of events when they are detected at
the sensor interface or triggered by internal state
changes. A many-to-many communication mechanism
is needed to efficiently disseminate sensor data and con-
trol information because many entities may be interested
in the data supplied by a sensor and multiple sources may
disseminate similar information. Finally, to maintain
autonomy of components and reduce the side effects of
communication, the data transfer should not be coupled
with a transfer of control, as it is the general case in
client-server interactions (Pereira et al., 2001).
COSMIC supports an event-based communication
model. The term ‘“‘event-based” in this context does
not refer to any specific model of synchrony. Events
are typed information carriers. They may be spontane-
ously generated and immediately disseminated triggered
by an occurrence in the environment or the system itself.
Alternatively, an event may be triggered periodically by
a clock and contain the current state of a variable or
a previous change of state. Events in COSMIC are dis-
seminated in a publisher/subscriber style. Publisher/
subscriber protocols are well known to support sponta-
neous, many-to-many communication relations and
reflect autonomy of communicating entities (Rajkumar
et al., 1995; Eugster et al., 2001b; Kaiser and Mock,
1999). COSMIC extends the publisher/subscriber
scheme by integrating a real-time event model which re-
flects that events disseminated in the system may repre-
sent real-world events requiring real-time dissemination
in the control system. An event is characterized by a
context of occurrence which at least is defined by a loca-
tion and a point in time. Additionally, because the event
may represent a time/value entity for which the value
changes over time, quality properties which are related
to the temporal validity have to be assigned. The context
and quality attributes (sometimes called “functional”
and “non-functional”) are complementary to the event
data. To control the quality of dissemination we intro-
duce the concept of event channels. An event channel
is an abstraction of the communication mechanisms.

Events can be published to an event channel which then
ensures the required dissemination quality.

The paper starts with introducing the notions of
events and event channels in Section 2. Section 3 de-
scribes the layered COSMIC architecture. Related work
is reviewed briefly in Section 4 and conclusions and
future work are summarized in Section 5.

2. Events and event channels

An event may occur in the physical environment or in
the computing system. Hence, both, an observation of a
real-time entity and a state transition of a variable are
uniformly characterized, represented and disseminated
as an event. Smart sensors substantially support this
view on the system because they encapsulate all low-
level computations. On the respective abstraction level
they are represented as active objects, taking the roles
as publishers and subscribers producing or consum-
ing events, respectively. An architecture which describes
this model of ““generic events” has first been presented
by Verissimo and Casimiro (2003) in the context of
CORTEX (Verissimo et al., 2002). The event layer rep-
resents the only means of information dissemination and
hides the network as well as the transformation process
of the I/O subsystems. Because all events appear at the
event layer, it is possible to treat events consistently
whether they are generated in the environment or in
the system. The event and event channel model intro-
duced by COSMIC constitute a specific way to realize
such an architecture.

Different from simple messages, an event is a typed
information carrier. In COSMIC it includes the context
in which an event has been generated and quality attri-
butes. An event instance is specified by a tuple compris-
ing a subject, attributes and contents:

Event := (subject, context_attribute_list,

quality_attribute_list, data)

A subject defines a type of event and thus is related to
the event contents. The pro and cons of subject-based
addressing are discussed in detail elsewhere (Oki et al.,
1993; Eugster et al., 2001a; Pereira et al., 2001) and
are not reviewed again in this paper. In our system, a
subject is represented by a unique identifier. An event
is further characterized by a set of attributes. The attri-
butes related to context comprise e.g. a location, the
time of occurrence or a certain network zone. The
non-functional attributes include quality aspects as a
validity interval (expiration time), a deadline and a tol-
erated omission degree. Finally, the data comprise
event’s contents specified by the application.

Events are propagated from publishers to subscribers
through event channels. We introduce event channels as
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abstractions of network resources and therefore assign
QoS related properties attributes of these resources.
An event channel is an instance of an event channel type
characterized by a subject, quality attributes and han-
dlers which are invoked to notify an object or handle
exceptional situations:

EventChannel := (subject, attribute_list, handlers)

An event channel exclusively disseminates events that
are compatible with its respective subject. As attributes,
an event channel may include e.g. a latency, dissemina-
tion constraints and reliability parameters. A data struc-
ture representing an event channel is dynamically
created in the local middleware whenever a publisher
first announces a publication or a subscriber subscribes
to a channel. According to the need in most real-time
systems, COSMIC supports event channels with differ-
ent timeliness and reliability properties. We distinguish
three event channel classes: hard real-time event chan-
nels (HRTEC), soft real-time event channels (SRTEC)
and non-real-time event channels (NRTEC). A HRTEC
offers delivery guarantees under an anticipated number
of network failures. Events published to a SRTEC are
scheduled according to the earliest deadline first
(EDF) algorithm. As outlined below, deadlines may be
missed in situation of transient overload or due to the
arbitrary arrival times of messages. Finally, a NRTEC

disseminates events that have no timeliness require-
ments.

3. The COSMIC architecture

Implementing the event model requires to map the
abstractions of that model (publisher, subscriber, event
type, event instance) to the elements provided by the
technical infrastructure of the system such as objects,
messages and addresses. More precisely, we can identify
publishers and subscribers with application objects, and
event instances with messages that are sent over the
CAN-Bus (Bosch GmbH, 1991). The respective func-
tionality to perform these mapping in COSMIC is
encapsulated in the Event Channel Handler which re-
sides in every node. The ECH provides the interface
for the application and maintains all the data structures
to enable the event-based interaction.

Fig. 1 presents the abstraction layers which are han-
dled by the ECH for the CAN-Bus, a standard field
bus developed for the automotive industry (Bosch
GmbH, 1991). It depicts the abstractions which are
available at the layers, i.e. the objects which are pro-
vided by the layer, the methods which can be applied
to these objects, the services which are provided, and
the specific protocols. On the lowest level, we assume a

abstractions methods services middleware
protocols
event-layer .
even - binding
-publish(event), - event_notif,, protocol
c;cm S event channel _subcribe (channel), - exception_notif.
channels o h | UID
different QoS classes: -announce (channel) fﬂ o
classes . gg;g?:g::: - discard_subscription CAN-ID
- NRT-channel {channsl)
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message - send_HRT-msg - HRT-excpt. Detection
classes: - send_SRT-msg
RT-msg-layer - HRT-msg - send_NRT-msg - SRT msg_notify
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Fig. 1. Abstractions layers of COSMIC.




30 J. Kaiser et al. | The Journal of Systems and Software 77 (2005) 27-36

standard CAN-Bus. CAN is a broadcast bus which pro-
vides message identifiers to characterize the contents of a
message rather than a source or destination address. For
a detailed discussion of the CAN features the reader is
referred to the CAN standard specification CAN 2.0
(Bosch GmbH, 1991), Rufino et al. (1998), Fredriksson
(2002) or Livani and Kaiser (1999). The CAN message
identifier is exploited for a prioritized bus arbitration
effectively providing a global distributed priority-based
message dispatching for all messages which are ready
to be sent. The CAN standard 2.0 B defines a 29-bit
identifier. It is often argued that the 29-bit identifier is
a substantial overhead because a CAN message body
may contain at most 64 bits of payload and therefore
the CAN standard 2.0 A is preferable which only needs
11-bit IDs. However, the small size of the payload is also
an argument for the extended format because useful
information can be transferred to the ID and therefore
saves rare space in the message body (Fredriksson,
2002). As one of the consequences of a short identifier
it is impossible in most application level protocols for
CAN to assign individual priorities to messages. In-
stead, only a fixed and very limited priority assignment
of message classes can be achieved (see e.g. CiA, 1999;
Noonen et al., 1994; SDS, 1996). We will exploit the
long identifier on the abstract network layer for an expli-
cit priority control and to identify nodes and events. The
abstract network (AN-) layer is subdivided in two levels.
The lower level defines the structure of the message
identifier.

The 29-bit identifier is subdivided in (1) an 8-bit pri-
ority field, (2) a unique 7-bit node identifier field (node-
ID) and (3) in a 14-bit event tag (e-tag). The priority
field allows 256 priority levels which are exploited in
the RT-msg-layer to realize the different real-time mes-
sage classes. The node-ID-field is used to solve the prob-
lem of unique message identifiers because equal CAN
message identifiers would result in an arbitration conflict
which cannot be resolved. To support the dynamic
deployment of smart components, a configuration pro-
tocol dynamically assigns this node-ID when a node is
attached to the CAN network or during the start-up
configuration phase. Every node has a 64-bit long iden-
tifier assigned at production time and stored in non-vol-
atile memory. The configuration protocol converts this
long node UID in a temporary 7-bit node-ID. The de-
tails of the configuration protocol which is functionally
similar to configuration protocol in Can Application
Layer protocol CiA (1993) can be found in Kaiser and
Mock (1999).

The RT-msg-layer is responsible for the real-time
properties of message dissemination. It is built up on
the structured message identifier and provides messages
with different real-time properties. In this layer, the 8-bit
priority field of the structured CAN message identifier is
evaluated to schedule the message on the medium. COS-

MIC provides three different real-time classes, hard real-
time, soft real-time and non-real-time.

3.1. Scheduling hard real-time messages

Hard real-time messages have delivery guarantees
and use reserved time slots in a TDMA (time division
multiple access) scheme. Reservations are organized in
rounds. This is similar to the time-triggered protocols
like TTP (Kopetz and Griinsteidl, 1992; Kopetz et al.,
2001; Fiihrer et al., 2000). A round specifies the cycle
in which the schedule of the communication medium is
repeated. The intention of the reservation-based scheme
is to avoid collisions by statically planning the transmis-
sion schedule. The correctness of the reservations
regarding timing conflicts and temporal overlap are
checked by an admission test. We assume that this is
done before any new reservation is confirmed and that
the reservations are made off-line. Hence any conflict be-
tween hard real-time messages is avoided. Reservation
based system need a global time base to determine when
a respective message slot has arrived. Global time in
COSMIC is based on synchronized clocks according
to the algorithm proposed in Gergeleit and Streich
(1994). At synchronization intervals of 1 s, the maxi-
mum measured offset between two clocks was below
+2.5 ps after the clocks have stabilized (14 s). Therefore
a gap of at least AG,;, > 5 pus has to be inserted between
reserved slots to prevent any conflict between reserved
HRT slots because of the time-skew of the synchronized
clocks. Different from other reservation-based schemes,
COSMIC exploits the priority mechanism of CAN to
enforce that the respective hard real-time message is sent
in the reserved time slot. Whenever the reserved time
slot is reached, the hard real-time message obtains the
maximum possible priority in the system and therefore
will be transmitted whenever the bus becomes free.
Fig. 2 sketches the temporal properties of a time slot.

Because a message cannot be preempted, there may
be a non-hard real-time message transfer still going on
when the reserved slot is reached. Therefore, we have
to consider a maximum waiting time which, in the worst
case, is the longest possible CAN message and add it to
the time slot. This prevents that a hard real-time mes-
sage does not reach the deadline because of a lower
priority message. In Fiihrer et al. (2000) a non-hard
real-time message is prevented from being sent if it
would affect a reserved time slot. This scheme, however,
would imply that (1) all nodes have synchronized clocks
and (2) that before sending any non-hard real-time mes-
sage, the global schedule of reserved slots has to be
checked. In our scheme there may be simple smart de-
vices not participating in the clock synchronization.
They are allowed to send a message at any time, the only
restriction is that they never may use the priority re-
served for hard real-time messages.
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Fig. 2. Structure of a time slot.

To cope with transient transmission faults, a hard
real-time message may be sent multiple times depending
on the required degree of reliability. This means that the
respective slot has to be extended accordingly. Our pro-
tocol relies on the fault-handling mechanisms of the
standard CAN which has an impact on the fault classes
which we can handle. Standard CAN provides mecha-
nism for transient transmission errors and some perma-
nent node failures based on time redundancy. An
automatic retransmission of messages copes with tran-
sient faults. An additional mechanism is provided to
handle permanent faults in the physical CAN interface.
An analysis of the fault-handling times of the CAN-Bus
can be found in Rufino and Verissimo (1995) and in Li-
vani and Kaiser (1999). For a message with B bytes
of data, the maximum length of the message includ-
ing header and bit-stuffing is: ! Messageiengin = 75 +
| Bx9.6]. Under the assumption of f'single transmission
failures, the required minimum time-slot length is:
Slotiength = 2 X tmessage T (fmessage T 18) X f+ 3, expressed
in bit-times. Assuming a single message failure of an 8
bytes message at 1 Mbit/s (message transmission time:
151 ps, fault detection and retransmission 18 ps) and a
gap between the slots of 50 ps, approximately 1900
slots/s can be allocated. If it is necessary to tolerate a
permanent controller failure, this number drops down
to an approximate number of 350 slots/s.

Compared to a maximum throughput of about 6500
maximum length messages, the number of possible slots
is low. However, it should be noted that these numbers
only refer to the number of guaranteed slots not to the
number of messages which actually can be sent. This dis-
tinguishes our approach from the purely time-triggered
one as proposed by Kopetz et al. (2001) and Fiihrer
et al. (2000). Firstly, we exploit not only time but also
the priority mechanism to enforce hard real-time guaran-
tees. Time is used to separate hard real-time messages
which all have the same maximum priority in the system.
In most situations, > the CAN-Bus allows to determine,

! The factor 9.6 is because of the bit stuffing mechanism.

2 There are situations of inconsistent replicas and even inconsistent
omissions (according to Rufino et al., 1998, inconsistent omissions
occur with a probability in the order of 10~°). Kaiser and Livani (1999)
describe a transparent mechanism to handle these situations.

without any additional overhead, whether all opera-
tional nodes have received a message successfully. In this
case, the reserved redundant message slots are not
needed and the sending node will stop to further transmit
the message. In case there are pending SRT- or NRT-
messages, the priority mechanism of CAN automatically
will schedule the message with the highest priority for
transmission. Thus time redundancy only costs band-
width if faults really occur, which may be relatively rare
compared to the overall traffic. Therefore, very conserv-
ative fault assumptions are possible because the penalty
is low in the average. Another crucial problem is jitter.
TT-CAN (Fihrer et al., 2000) enforce the constraints
on jitter on the network level by mechanisms to guaran-
tee the start times of messages. In TT-CAN there are par-
ticularly assigned empty slots to prevent that any
ongoing non-real-time message transfer interferes with
a reserved hard real-time slot. In COSMIC, jitter is pre-
vented by defining the delivery deadline of a message.
The event channel handler which has access to the global
clock ensures that the message is delivered at that point
in time. Thus, jitter is handled on the middleware layer
rather than on the network layer. It also should be noted
that the correct reception of a HRT-message within a slot
cannot be predicted because faults may occur or not. In
TTP and TT-CAN, messages are just resend up to a cer-
tain number of times which corresponds to a specified
omission degree. This fills up the reserved slot and avoids
jitter but for the price of bandwidth.

3.2. Scheduling soft real-time- and
non-real-time-messages

The priority-based arbitration mechanism is also
exploited to schedule soft real-time (SRT) and non-real-
time (NRT) messages. SRT messages are scheduled
according to an EDF scheme while NRT messages use
fixed low-level priorities. The 8-bit explicit priority field
in the CAN message identifier enables to represent 256 pri-
ority levels. Hard real-time (HRT) messages reserve the
highest priority. The relation between the priorities of
hard real-time, soft real-time and non-real-time messages
can be expressed by the relation: Pyrt < PsrT < PNRT
(a lower numerical value represents a higher priority).
The assignment enforces that a message of a lower
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Fig. 3. Mapping of deadlines to priorities.

real-time class never will interfere with one of a higher
class during bus arbitration. SRT messages are scheduled
according to an EDF scheme which means that the as-
signed priorities reflect the deadline order of message
transmissions. We assume that we have the highest prior-
ity (0) for HRT messages and for NRT messages a small
number of fixed low priorities are used. The remaining pri-
ority levels are available for scheduling SRT messages.
They have to be mapped on a time scale to express the tem-
poral distance of a deadline. The closer the deadline, the
higher is the priority (see Fig. 3). Mapping deadlines to
priorities will cause two problems. The first problem is
that static priorities cannot express the properties of a
deadline, i.e. a point in time. A priority corresponding
to a deadline can only reflect this deadline in a static set
of messages. When time proceeds and new messages be-
come ready, a fixed priority mechanism cannot implement
the deadline order any more. It is necessary to increase the
priorities of a message when time approaches the dead-
line, i.e. with decreasing laxity.

Therefore, the priority of a message is dynamically in-
creased with a granularity of Az, which defines a priority
slot. The priority of a SRT message will reach the high-
est possible value at its transmission deadline. Secondly,
there is a trade-off between the length of a priority slot
and the quality of the derived schedule. When mapping
a transmission deadline for a message to a priority slot,
two deadlines which are close may be mapped to the
same slot and thus, to the same priority. The order be-
tween the deadlines is then arbitrarily determined by
the other fields of the CAN identifier. This would moti-
vate a very small slot length, which decreases the prob-
ability of equal priorities. However, this raises the
problem of a tight time horizon. The time horizon is gi-
ven by AH = (Ppax — Pmin) X At,. Any deadlines, which
are beyond this value, are mapped to the same priority
and thus may be scheduled incorrectly. The described
trade-off is particularly a problem when the number of
priority levels is low, e.g. in the approach of Zuberi
and Shin (1997) which use the CAN 2.0A with 11-bit
identifiers. Considering around 250 priority slots availa-
ble in our scheme and a priority slot length of approxi-
mately one CAN-message, we can accommodate 250
message transfers within the time horizon.

3.3. The real-time event layer

The event layer constitutes the interface to the appli-
cation. It provides the abstractions of events and event

channels as described in Section 2. The event layer
makes use of the message classes in the AN-layer to pro-
vide event channels of different real-time classes. Addi-
tionally, the event layer comprises the functionality to
route and filter events based on their subjects. A subject
is represented by a 64-bit unique ID specified by the
application. There are many different ways for subject-
based routing. A subject can be related to a multi-cast
group (Meier and Cahill, 2002) and the subscribers
can listen to whatever is sent to this address. In other
systems, every message is sent to the same broadcast ad-
dress and the subject is contained in the message body
(Oki et al., 1993). In the COSMIC implementation for
the CAN-Bus, we exploit the specific broadcast and
message filtering properties of CAN. A dynamic binding
protocol is performed when a publisher announces a
publication or a subscriber subscribes to a channel. It
relates the long 64-bit subject UID of an event to the
14-bit e-tag in the CAN message ID. The filtering func-
tions of the CAN controller hardware then can be
used to filter subscribed events from the message stream.
This takes a considerable burden from the embed-
ded controller which otherwise would have to examine
every message on the CAN-Bus to recognize such an
event (Kaiser and Mock, 1999; Kaiser and Brudna,
2002).

According to the message classes provided by the
AN-layer, the event channels are classified as hard
real-time (HRTEC), soft real-time (SRTEC) and non-
real-time (NRTEC) event channels. The transfer of
events through a hard real-time event channel (HRTEC)
is certain, i.e. all the necessary resources are reserved to
transmit event messages timely under specified fault
assumptions. The API for a HRTC is presented in
Fig. 4. HRTECs need to set up the infrastructure before
communication in compliance with the required guaran-
tees. This is initiated by an application through calling
the “announce” method:

channel.announce(subject, attribute_list,

exception_handler)

class hrtec {

private:
subject subject_uid;

public:

// constructor and destructor of the class
hrtec(void);
~hrtec (void);

// methods used for publication:
int announce (subject, attribute_list, exception_handler);
int publish(event);

// method used for subscription:
int subscribe (subject, attribute_list, event_queue,

notification_handler, exception_handler);

Fig. 4. Declaration of a HRTEC class in C++.
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Because reservations are statically allocated for hard
real-time event channels, event channel data structures
for HRTEC are also statically created by the Event
Channel Handler. Therefore, the announcement of a
HRTEC does not result in the creation of a new event
channel data structure. The Event Channel Handler
searches in the event channel list for a HRTEC with
the respective subject.

The announcement is accepted if the attribute list de-
clared by the publisher (deadline, data length in bytes,
omission degree) matches the static attribute list of the
channel data structure.

Soft real-time events become ready at any time and
are scheduled according to their transmission deadlines
by an earliest deadline first (EDF) algorithm. Although
the declaration of a SRTEC looks similar to the
HRTEC, the differences are crucial and primarily are
substantiated in the different attributes defined for
SRTECs. Events published to a SRTEC specify a trans-
mission deadline and a temporal validity parameter. The
transmission deadline is defined as the latest point in
time when a message has to be transmitted. This dead-
line is exploited for scheduling the event on the commu-
nication medium. Due to other messages competing for
the communication medium, a message may be delayed.
Additionally, delays may occur in the receiving node be-
cause soft real-time events are stored in a local queue
and may not be immediately delivered due to ongoing
computations and other pending events. This is the rea-
son why we consider a validity expiration time addition-
ally. The validity expiration is used to determine at the
subscriber side whether the information is still valid.
Thus, the expiration time constitutes an end-to-end tem-
poral constraint. Two exceptional situations may occur:
a missed transmission deadline and an expired validity.
When missing the transmission deadline a message will
be discarded from the sending queue and a local excep-
tion is raised. This prevents outdated messages to still
compete for the bus but allows the application to react
if necessary. The transmission deadline is defined in
the interval: fya1iq — fready> Where tyiiq is the point in time
until the event is temporally valid and #,..qy When it is
ready to be sent. The validity of an event is checked
when the respective application is notified and an excep-
tion is raised on expiration.

NRTECs are used for events that do not have
timeliness requirements. While HRTEC and SRTEC
disseminate events of restricted length to meet the
responsiveness requirements of real-time systems,
NRTEC may transfer bulk data in a sequence of mes-
sage fragments. A NRTEC has a fixed priority. The pri-
ority is specified by the application during the
announcement of the channel. NRTEC are particularly
used to configure and maintain the smart networked de-
vices of the system. This may require sending a consid-
erable amount of data over the network, like memory

images, electronic data sheets, or test patterns. Because
message frames on the CAN-Bus are limited to a pay-
load of 8 data bytes, a “fragmentation” mechanism
for NRTEC to chain individual CAN messages to a lar-
ger application specific message is provided by the
middleware.

Fig. 5 shows first results. We tested in a scenario
where hard, soft, and non-real-time channels are cre-
ated. Two PCs running the COSMIC middleware under
RT-Linux are connected to the CAN Bus (250 Kbit/s)
and an Infinion C167 micro-controller is generating
load. The measured clock skew is below 5 s if no (nor-
mal) Linux task are running, thus we are able to obtain
high precision timestamps for the measurements. There
is one publisher and one subscriber using the channel.
Every 250 ms an event is pushed to a channel.

The upper part of Fig. 5 shows the behavior of a non-
real-time channel. The micro-controller is an independ-
ent load generator and disseminates CAN messages with
a fixed priority of “2”, i.e. the third highest priority. The
load is varied continuously between 700 and 1700 mes-
sages/s. A message transfer (8 bytes) takes around 600
ps. Events are disseminated with a fixed low priority
and always are delayed when the load generator sends
a message. As expected, the jitter is low for the initial
load because there are only rare conflicts. At some point,
the probability to find a point in time when the CAN-
Bus is idle and no message from the load generator is
pending becomes low and delays rise up to 39 ms. The
situation is much better for soft real-time events. Soft
real-time messages start at some low priority but reach
a max. priority of “1”” shortly before the latest start time
thus always winning the arbitration process against the
load messages. The delay seen in the middle part of
Fig. 5 comes from the fact that there may be ongoing
message transfers which cannot be preempted. Finally,
hard real-time channels exhibit a very stable behavior.
Because ongoing message transfers are anticipated by
the reservation scheme and messages are delivered at
their specified deadline, the jitter only varies from 2 ps
to 18 ps due to load variations.

4. Comparison with related work

Our work on an event-based interaction system for
embedded systems is inspired by many research efforts
in very different areas. Event-based systems in general
have been introduced to meet the requirements of appli-
cations in which entities spontaneously generate infor-
mation and disseminate it, e.g., as in Bacon et al.
(2000), Meier and Cahill (2002) and OMG (2000). In-
tended for large systems and requiring complex infra-
structures, these event systems do not consider quality
aspects like timeliness and dependability issues. Harri-
son et al. (1997) introduced a real-time event system
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Fig. 5. Event dissemination through different channels.

for CORBA. The events are routed via a central event
server which provides scheduling functions to support
the real-time requirements. Here, a central component
is exploited to guarantee temporal requirements. Such
a component is not available in an infrastructure envis-
aged in our system architecture. Secondly, to exploit the
underlying CORBA system, event dissemination and
notification is based on the remote invocation mecha-
nism of CORBA which again introduces the problems
of control dependencies. Finally, the proposed system
needs a quite complex middleware unsuitable for di-
rectly integrate smart devices. There are efforts by Kim
et al. (2000) and Lankes et al. (2003) to implement
CORBA for the CAN-Bus. However, in these ap-
proaches no, or only very limited, timeliness or depend-
ability issues can be supported. A new scheme to
integrate smart devices in a CORBA environment is
proposed in Kopetz et al. (2001) and has lead to a pro-
posal of a standard (OMG, 2001, Smart Transducer
Interface). Smart transducers are organized in clusters
which are connected to a CORBA system by a gateway.
Hence, this standard also suggests a WAN-of-CANs
structure. The proposal is based on the concepts of an
interface file system (IFS) and a time-triggered commu-
nication protocol (TTP/A) which are intimately inter-
twined. The IFS defines a global address space within
each cluster in which the individual devices can be iden-
tified and accessed uniformly. The TTP/A provides a
low overhead efficient communication protocol in which
the sources and destinations of data are specified in

terms of the IFS. In contrast to our event channel
model, all communication inside a cluster relies on a sin-
gle synchronous communication channel. Although the
temporal behavior of a single cluster is rigorously de-
fined, no model to specify temporal properties for
cluster-to-CORBA or cluster-to-cluster interactions is
provided. Another effort to specify interactions between
smart devices is the IEEE 1451 Standard for a smart
transducer interface (Bryzek, 1996). Interfaces are spec-
ified on various levels, however, a general higher-level
interaction model is not provided. Particularly, to our
knowledge, the network interface (NCAP: Network
Capable Processor) and the inter-operability model have
not yet been specified. For the CAN-Bus various appli-
cation level protocols have been standardized such like
CAL (CiA, 1993, CAN Application Layer), SDS
(1996), and DeviceNet (Noonen et al., 1994). They are
based on fixed priority schemes which are not able to re-
flect temporal requirements. To overcome this problem,
the deadline-monotonic priority assignment of Tindell
and Burns (1994) uses an off-line feasibility test to ensure
the deadlines of periodic and sporadic messages. How-
ever, it supports only static systems and does not distin-
guish hard and soft deadlines. More flexible protocols
like the dual priority scheme Davis (1994) or the
schemes proposed by Eriksson et al. (1996) and Zuberi
and Shin (1997) support the use of both hard and soft
real-time communication on the CAN-Bus. However,
they have the disadvantage of providing a very restricted
time horizon.
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5. Conclusion

We presented the COSMIC middleware which relies
on an event channel model that supports functional
and non-functional attributes. The concept of event
channels represents a high-level programming interface
for real-time communication. It provides the abstrac-
tions to ease the programming and enables the program-
mer to reason about non-functional attributes like
temporal and reliability characteristics without being in-
volved in low-level network details. Assuming the coex-
istence of different event channel classes and the need
to consider sporadic events, substantial advantages con-
cerning a better utilization of bandwidth can be achieved
compared to other time-triggered schemes. Firstly, when
a reserved slot is not used, the priority mechanism of
CAN automatically assigns this slot to some other (lower
priority) message. Secondly, if all receivers have received
the message correctly, the sender can detect this and skip
the redundant message transmission. A first prototype
of the P/S protocol has been implemented. It is available
for Linux, RT-Linux and the small memory footprint
and efficient CAN-Bus implementation enables its use
on 16- and even 8-bit micro controllers (Infinion C167
and Motorola 68HCO08 micro-controllers). However,
the preliminary version does not fully support the real-
time properties described in this paper. A recent imple-
mentation including all real-time channel classes is
available for a CAN-Bus environment under RT-Linux.
It is currently evaluated before it is ported to the embed-
ded micro-controllers. The results presented in this paper
have been measured for this version of COSMIC.

Future work will concentrate on two main directions.
The current version of COSMIC already supports event
channels across multiple CAN-Bus and TCP/IP net-
works. This enables applications of cooperating robots
which are composed from smart sensors and actuators
locally connected by a CAN-Bus and cooperating over
a wireless TCP/IP connection. The event channel con-
cept of the COSMIC middleware hides this heterogene-
ity and allows for a dynamic interaction between the
robots. However, it is not yet possible to specify quality
attributes for these channels. Because the degree of pre-
dictability is different in a wired CAN-Bus compared to
the wireless network, awareness of the underlying net-
work structure and the respective quality of service in
the various networks has to be included. A second focus
will be on filtering mechanisms to exploit the context at-
tributes in the event description.
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