
COSMIC: A middleware for
event-based interaction on CAN

Jörg Kaiser, Carlos Mitidieri, Cristiano Brudna
Dept. of Computer Structures

University of Ulm
James-Franck-Ring

89069 Ulm, Germany
Kaiser@informatik.uni-ulm.de

Carlos.Mitidieri@informatik.uni-ulm.de
Cristiano.Brudna@informatik.uni-ulm.de

Carlos Eduardo Pereira
Dept. of Electrical Engineering

Federal University of Rio Grande do Sul
Av. Oswaldo Aranha, 103

90035-190 Porto Alegre, Brazil
CPereira@eletro.ufrgs.br

Abstract— Distributed factory automation systems benefit from
field-busses which, in general, provide support for reliable
and timely communication. These field-busses, however, provide
rather low level communication objects and their features regard-
ing quality aspects of communication are difficult to assess and
use for applications. The paper presents COSMIC (Cooperating
Smart devices), a middleware architecture which allows to use
communication abstractions appropriate for high level applica-
tions based on distributed cooperating objects. The middleware
supports an event-based communication model which enables
spontaneous dissemination of events, maintains control autonomy
of objects and allows to specify different real-time and reliability
requirements on the application level. The basic abstractions
presented at the middleware layer are events and event channels.
As an example, the paper describes how these abstractions are
mapped to the CAN-Bus which constitutes a widely used field-bus
standard.

I. I NTRODUCTION

Advanced industrial automation systems increasingly rely
on distributed computer architectures. The nodes in these
architectures may range from deeply embedded processors
to workstations which are interconnected by a large variety
of field-bus technologies. The input and output of such a
system is performed by intelligent sensors and actuators.
These smart components comprise special purpose hardware
(sometimes also mechanical elements) for signal reception
and conditioning together with a computational element and
a network interface. The smart nodes therefore constitute
autonomous entities which allow to capture sensor data at the
real-world interface, transform it to a machine readable form
and spontaneously disseminate it as a standardized message to
the distributed system. Because the message already contains
preprocessed, application related data, other smart components
can directly use it to perform some control action. On a
higher level of abstraction, the system can be viewed as
cooperating active objects which interact with each other via
the communication system.

To ease the interaction of cooperating objects, the com-
munication system also should provide an adequate level of
abstraction and the application designer should not be forced
to deal with a low level primitive message passing system

provided at the raw field-bus level. The communication model
should also reflect the requirements of a control system com-
posed from autonomous active components. The model firstly
should allow the spontaneous generation and dissemination
of events detected at the sensor interface or being triggered
by internal state changes. Secondly, many-to-many communi-
cation relations are needed to efficiently disseminate sensor
and control information. Thirdly, the data transfer should not
be coupled with a transfer of control as it is the general
case in client server interactions. These properties rule out
the remote invocation mechanism usually provided for inter
object communication [1], [2]. Additionally, it is desirable to
specify and control the quality of event dissemination also on
a high level of abstraction.

The paper describes the architecture of COSMIC (Co-
operating Smart devices), a middleware which presents an
event-based communication model. Events in COSMIC are
disseminated in a publisher/subscriber style of interaction.
Publisher/subscriber protocols are well known to support spon-
taneous, many-to-many communication relations and reflect
autonomy of communicating entities [3], [4], [5], [6]. There-
fore they meet the requirements established above.

COSMIC extends the publisher/subscriber scheme in many
respects. Firstly, it takes into account that events disseminated
in the system may represent real-world events requiring real-
time dissemination in the control system. An event in the real-
world is characterized by a context of occurrence which at
least is defined by a location and a point in time. Additionally,
the event may have quality related properties like a certain
fidelity margin reflecting a conversion process or a bounded
temporal validity. Therefore, we assign context and quality at-
tributes (sometimes called "functional" and "non-functional")
to an event which are complementary to the event data.

Secondly, we introduce event channels which allow to
specify the quality of dissemination. An event channel is an
abstraction of the communication mechanisms which provides
a publisher/subscriber interface. Events can be pushed to an
event channel which then ensures the defined dissemination
quality. Particularly, real-time and reliability requirements can

be specified for event channels.
Thirdly, COSMIC is targeted to low performance systems

with a small memory footprint. Therefore, we adopted a
number of mechanisms which allow for an efficient system
even at the cost of a slight impact on flexibility. This applies
in particular to the binding and filtering mechanisms, explained
later in the paper.

This paper advances previous work by presenting the ar-
chitecture of the distributed event middleware. It starts with
introducing the notions of events and event channels in Section
II. Section III describes the layered COSMIC architecture.
Related work is reviewed briefly in Section IV and conclusions
and future work are summarized in Section V.

II. EVENTS AND EVENT CHANNELS

An event may occur in the physical environment or in the
computing system. Hence, both, an observation of a real-
time entity and a state transition of a variable are uniformly
characterized, represented and disseminated as an event. From
an architectural perspective, sensors and actuators are not
visible as low level I/O sub-systems, but, as smart networked
components used by applications via the event middleware.
On the respective abstraction level they are represented as
active objects, taking the roles as publishers and subscribers
producing or consuming events, respectively. An architecture
which well describes and explains this model in general has
first been presented by [7] in the context of CORTEX. Verís-
simo & Casimiro describe a system architecture to disseminate
generic events. In their model, the applications interact only
via the event layer. The event layer hides the network as
well as the transformation process of the I/O subsystems. The
basic objective behind this architecture is: because all events
appear at the event layer, it is possible to order the events
consistently whether they are generated in the environment
or in the system. This can be done by making assumptions
about the properties of the respective event channels. The
generic event architecture therefore tackles the problem of
hidden channels [8] in a consistent model. The event and event
channel model introduced by COSMIC constitute a specific
way to realize such an architecture.

Events carry information from publishers to subscribers.
However, differently from simple messages, events are a typed
information carriers which include the context in which such
information has been generated and quality attributes defining
requirements for dissemination. Thus relevant aspects of the
event semantics are explicitly expressed and carried with the
event. Similarly to [6], an event instance is specified by a tuple
comprising a subject, attributes and contents:

Event:= 〈Sub ject, AttributesList,Contents〉

A subject defines a type of event and thus is related to the
event contents. The pro and cons of subject-based addressing
are discussed in detail elsewhere [3], [1], [2], [5] and are not
reviewed again in this paper. Specifically to our system, a
subject is a tag represented by a unique identifier. An event
is further characterized by a set of attributes. The attributes

related to context may comprise e.g. a location and the time
of occurrence. The non-functional attributes include quality
aspects as a validity interval (expiration time), a deadline
and a tolerated omission degree. Deadlines are employed for
scheduling events in the communication system. As explained
in Section II-A, an event may miss a (soft) deadline depending
on the event channel class. In this case, the validity interval
defines the point in time after which an event may be discarded
completely. This mechanism is helpful in a real-time system
to dispose of outdated events as early as possible. Finally, the
events’ contents comprise data specified by applications.

Events are propagated from publishers to subscribers
through event channels. We conceive event channels as ab-
stractions of network resources and therefore assign QoS re-
lated properties attributed to the utilization of these resources.
An event channel is an instance of an event channel type
characterized by a subject and quality attributes:

EventChannel:= 〈Sub ject, AttributesList〉

An event channel exclusively disseminates events that are
compatible with its own subject. As attributes, an event
channel may include e.g. a latency, dissemination constraints
and reliability parameters. An event channel may handle mul-
tiple publishers and multiple subscribers, thus implementing
a many-to-many communication channel. A data structure
representing an event channel is dynamically created in the
local middleware whenever a publisher first announces a
publication or a subscriber subscribes to a channel.

A. Real-time event channels

In a system monitoring and controlling a physical envi-
ronment, timeliness and reliability requirements have to be
met. However, not all functions of the system need the same
level of quality of service from the underlying communication
system. Therefore we introduce events channels with different
quality properties to reflect the well known trade-off between
highly predictable event channels and the associated costs.
COSMIC supports three classes of event channels: hard real-
time event channels (HRTEC), soft real-time event channels
(SRTEC) and non real-time event channels (NRTEC). HRTC
are synchronous, i.e. events sent through a HRTEC are guar-
anteed to meet their deadlines under an anticipated number of
omission faults. Events sent through a SRTEC are scheduled in
a best effort manner according to their transmission deadlines.
An event pushed to a SRTC may miss its deadline e.g.
in situations of transient overload. Events which have no
timeliness requirements (e.g. configuration and maintenance
events) are sent through a NRTEC.

Hard real-time event channels are synchronous, i.e., the
bounds of transmission latency and jitter are known and
minimal. These properties are based on a static schedule
that reserves network resources to specific event channels at
specific time slots, like in a TDMA — Time Division Multiple
Access — medium access scheme. Communication traffic
flowing through the less stringent channels can not obstruct
the transmission of any event that is going through a HRTEC.

This isolation property has been implemented for the CAN-
Bus by exploiting the CAN priority scheme. Whenever a hard
real-time event has to be sent, it has the highest priority in the
system and thus no lower priority message can interfere with
its transmission. The mechanism, however, allows to reuse
time slots reserved by a HRTC by events of lower criticality
classes in the case that no message will be sent through the
HRTC. Conflicts between two hard real-time channels are not
possible due to the static schedule that commonly rules them
all. A detailed description of the mechanism can be found in
[9].

The timeliness requirements of soft real-time channels
are expressed by deadlines and validity intervals (expiration
times). Soft real-time events are scheduled according to their
transmission deadlines by an earliest deadline first (EDF)
algorithm. The transmission deadline is defined as the latest
point in time when a message has to be transmitted. Soft
real-time channels enforce pritorities that are always lower
than hard real-time channels and higher than non real-time
channels. However, because a message can not be interrupted
during its transmission and messages may become ready at
arbitrary points in time, EDF will not always take the right
scheduling decisions (only a clairvoyant scheduler would be
able to do so) and hence, situations of temporal conflicts and
transient overload may occur. In these situations, messages
will still be transmitted at a later time in a best effort manner.
An SRT event message eventually will be discarded if its
transmission time is delayed beyond its temporal validity
specified by the expiration time.

The event channel classes supported by an event system
depend on the underlying communication infrastructure. Hard,
soft and non real-time event channels have been implemented
for the CAN-Bus [10]. Non real-time channels have been
implemented also on top of TCP/IP, both for the IEEE 802.3
and 802.11 medium access protocols [11].

B. Routing and filtering

Routing an event from a publisher to a subscriber is based
on the subject of a message rather than on a destination
address. The subscriber expresses interest in a certain subject
and every event which is published on this subject must
eventually arrive at the subscriber. Thus the implementation
of the publish/subscribe (P/S) model on top of a field-bus
infrastructure comprises the issues of getting the event to the
right destination and notifying each subscriber only of those
events to which it has subscribed. This includes the aspects of
routing and filtering. Routing and filtering are tightly related
in a subject-based addressing scheme. Conceptually, many
publisher/subscriber protocols exploit a broadcast as basic
routing mechanism. Then every node receives all messages
and then performs the task of selecting an event by applying a
filter which passes only those events to which a subscription
has been issued. In COSMIC, we take a two stage approach.
The subject is exploited for routing by dynamically bind it to
a network address. This is done on each announcement of a
publication or a subscription transparently to the publisher and

subscriber. The mechanism is described in detail in [2], [11].
Binding a subject to a network address (which e.g. can be a
multicast address) puts the task of subject filtering to the net-
work controller and thus frees the node from examining every
message. This is particularly important for the tiny components
encapsulating a smart sensor or actuator which simply do
not have enough CPU performance to analyze every message.
However, subject filtering alone does not provide an adequate
level of filtering. Consider a smart actuator in a robot which
only wants to receive information e.g. from local sensors to
perform some reactive control. The locality of events is not
expressed in the subject but in the attributes. Therefore, an
additional level of filtering based on the structural properties
of attributes is introduced. This filtering mechanism also is
designed to meet the requirements of resource constraint
systems with respect to performance and memory demands.
With the routing mechanism based on dynamic binding and
the attribute-based filtering it is ensured that, with a high
probability, the subscriber is notified only about the events
for which it actually has subscribed. The attribute-based filter
mechanism is further described in Section III-A.1.

III. A RCHITECTURE

The network architecture to be presented next has been
designed in correlation to the event model described in Section
II. The architecture is centered on a middleware layer which
has been maintained purposefully lean by including only
carefully selected semantics and services. The goal of the
design is to make quality properties of the communication
infrastructure accessible on the abstract level of events. Hence,
application objects can explicitly set the temporal and de-
pendability attributes required for event dissemination and
notification. The middleware automatically maps the attributes
to the technical parameters of the underlying infrastructure.

A comprehensive view of the proposed architecture is shown
in Figure 1. The middleware layer (with a grey background)
is show on top of an infrastructure comprising the CAN-Bus
[10]. The time service provides the abstraction of a global
clock that is needed by several layers. As can be observed,
the middleware is further subdivided in a pair of layers: the
event layer (EL) and the abstract network layer (ANL). This
separation allows the event layer to concentrate on the issues to
which it is specifically concerned, i.e., addressing, filtering and
notification of events. Then, the ANL maps the abstractions of
the event layer to the communication infrastructure. This map-
ping relates to several aspects, e.g., the conversion of events
to specific message formats and vice-versa, the enforcement
of event channels’ quality properties and semantics, etc. On
the other hand, the ANL provides awareness on infrastructure
related issues to the EL, e.g., on communication failures by
rising exceptions.

The burden assigned to the abstract network layer is a tough
challenge because of the widely varying characteristics of the
existing network infrastructures. In this paper, we tackle the
topic of mapping the event layer abstractions to the CAN-Bus

Applications

Event Layer

AN Layer

CAN-Bus Layer

messages
exceptions

RX buffer

AUTONOMOUS OBJECT1. announce

5. notify exception

G
L
O
B
A
L

T
I
M
E

S
E
R
V
I
C
E

EVENT CHANNEL

2. publish EVENT

4. notify EVENT

Configuration
Protocol

List of Local
Event Channels

(LECL)

SRT
QUEUE

NRT
QUEUE

TX buffer

ETC HANDLER

CALENDAR
DISPATCHER

TTC HANDLER

HRT-MSG
BUFFER

 Interrupts: RX, TX and Error

messages

Binding
Protocol

3. subscribe

1 2 543

EVENT CHANNEL HANDLER
(ECH)

 Read
 Write Activate

Fig. 1. Middleware layered structure, showing components, data structures
and protocols.

interface. Among fieldbus technologies, the CAN-Bus is par-
ticularly suited to implement the publish/subscribe protocol. Its
message distribution scheme is based on a message identifier,
which does not indicate the destination of the message but
rather the meaning of the transported data. Therefore, the
hardware filtering mechanism can be exploited in order to
efficiently implement a subject-based publish/subscribe pro-
tocol. Moreover, it provides advanced built-in features that
are required by the real-time applications that we intend to
support: multiple access without centralized control, priority-
based collision resolution, efficient implementation of positive
acknowledgment, automatic fail-silence enforcement with dif-
ferent fault levels, etc. In fact, some of these features have been
exploited to implement the real-time event channel classes.

The next subsections describe the abstractions, services,
components and protocols that comprise the event and the
abstract network layers. The CAN-Bus layer is presented for
completeness.

A. The Event Layer

The service provided by the event layer is the timely and
reliable dissemination of events from publishers to subscribers.
This service comprises a set of primitive operations which
are accessed through the interfaces of event channels. The
specification of the interfaces of hard and soft real-time event
channels (EC) is provided in [12]. The implementation of
the services provided by the event layer is supported by
the Event Channel Handler (ECH), shown in Figure 1. The
event channel handler creates, maintains and destroys local
representations of event channels on behalf of applications.
These local representations are needed to:

• store the dynamic binding data;
• store event dissemination attributes;
• relate the local publishers and subscribers.

The event channel handler maintains the event channels in the
"local event channels list" (LECL, see in Fig. 1). Therefore
the ECH can retrieve the local configuration data of any
event channel when it needs to handle an event. For instance,
when an event is pushed to a non real-time channel: the
ECH retrieves the corresponding entry, reads the fixed priority
assigned to the channel and adds this priority to the event
message before passing it to the abstract network layer. At this
point, before advancing the discussion on how event channel
are represented in the middleware, it is convenient to briefly
introduce the interface provided by event channels.

The interface to HRTEC’s and to SRTEC’s are summarized
in Figure 2. A publisher mustannounce()an event channel
before publishing to it. Theannounce()operation establishes
the local data structures needed to handle an event channel.
The announce()implementation includes a call to the ECH
component, which executes the binding protocol and then
creates a local representation of the event channel. During the
binding protocol, the ECH exchange some messages through
the network. A low priority is assigned to these binding
messages, because they are not comprised in a critical control
path. In fact, theannounce()operation was introduced because
no assumptions can be madea priori about the timeliness
of the binding messages. If the dynamic binding was to be
performed the first time an object is publishing an event,
the timeliness of this event would not be guaranteed. The
announce()operation enforces the separation between the
binding phase and the operation phase of an event channel. The
argumentattributes_listpassed in anannounce()specifies the
quality properties of the channel, e.g. whether the publication
is periodic or sporadic, reliability requirements and event rates.
These informations are needed to configure the access to the
required resources.

Because time slots are statically allocated to HRTEC’s, the
local representations of HRTEC’s are also statically created by
the ECH. Therefore, the announcement of a HRTEC does not
result in the creation of a new event channel data structure.
Instead, the ECH searches the LECL for a HRTEC entry with
the subject specified by the application. The announcement is
accepted if the attributes list declared by the publisher matches
the static attributes list of the retrieved HRTEC. In a positive
case, the ECH invokes the abstract network layer which creates
a hard real-time message buffer (HRT-MB) and sets the time-
triggered routine (TTC-Handler) that handles the transmission
of HRT messages. The roles of the HRT-MB and the TTC-
Handler are discussed in Sections III-B.

After a channel is announced, the application can publish
events by calling thechannel.publish(event)operation. The
semantics of thepublish()operation for hard, soft and non real-
time channels can be infered from the discussion presented in
Section II-A.

Symmetrically, thesubscribe()operation allows subscribers
to set event filters, QoS parameters of notifications and no-

class hrtec {

private:
subject subject_uid;

public:
// constructor and destructor of the class
hrtec(void);
~hrtec(void);
// methods used for publishing
int announce(subject, attributes_list, exception_handler);
int publish(event);
// methods used for subscribing
int subscribe(subject, attribute_list, event_queue, notification_handler, except_handler);
int cancelSubscription(void);
}

class srtec {

private:
subject subject_uid;

public:
// constructor and destructor of the class
srtec(void);
~srtec(void);
// methods used for publishing
int announce(subject, attribute_list, exception_handler);
int cancelPublication();
int publish(event);
// methods used for subscribing
int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler);
int cancelSubscription(void);
}

Fig. 2. Interface to a HRTEC class in C++

tification and exception handlers. Then, incoming events that
have matched the filters are stored in theevent_queuespecified
in the subscription. As is widely known, the selection of a
queuing policy is a critical issue in real-time systems [13].
Allowing subscribers to maintain private event queues for re-
ceiving events enables them to specify the queuing policy that
better matches their needs. Thenotification_handlerargument
comprises application code that is executed at-the-deadline of
an incoming event. The ECH issues the notification, upon
which the notification_handlerretrieves the event from the
event_queueand executes the required activity.

The event layer must implement its services while enforcing
timeliness and reliability. The provided abstractions of events
and real-time event channels (Section II) assist on achieving
this goal. As already said, events encapsulate a set of intrinsic
attributes and application related parameters, which are ac-
cessed through specific methods. Hence, a requirement like
a deadline can be consistently enforced at any intermediate
step when transporting an event through a CAN network.
Accordingly, announced and subscribed event channels are
explicitly represented in the event layer. Hence their quality
properties can be enforced locally. There is one entry in the
LECL (introduced above) for each event channel "connected"
to a node. That means, even if two or more publisher or/and
subscribers have locally announced and/or subscribed to a
given event channel, only one EC entry is maintained in the
LECL. The fields comprised in each LECL entry are itemized
below:

• Subject UID;
• Event tag;
• Channel class;
• Channel attributes list;
• Announcements list;
• Subscriptions list.

The subject uid — Unique Identifier —uniquely identifies
an event channel1. The event tagis obtained at runtime after
the binding protocol. It represents the subject in a form that
is related to the addressing scheme the underlying network2.
The event tag could be e.g. a multicast address. Hence, the
"binding" is actually provided by the event channel, which
keeps together these two fields. When an event is published
to an event channel, it is tagged and passed to the ANL.
Symmetrically, when an event arrival is indicated by the
ANL, its tag is matched against the channels’ entries whose
subscriptions lists are not empty. As already discussed, the
channel class attributes listdescribe the quality properties
of the channel. This list is either filled with the information
provided in theannounce()and subscribe()operations (for
SRTEC’s and NRTEC’s) or statically defined for HRTEC’s.

The announcementsandsubscriptions listsare further data
structures nested in the event channel. Each entry on the
announcements list includes the exception handlers. The ex-
ceptions supported for announcements are related to missed
transmission deadlines and to expiration of validity intervals
(Section II-A). Each entry in the subscriptions list includes a
notification handler, an exception handler and the specification
of an attribute-based filter. The notification handler comprises
application defined code which is executed upon the notifica-
tion of an event. The supported exceptions for subscriptions
are missed deadlines of periodic events. Attribute-based filters
are briefly introduced in the next section. The reader is referred
to [14] for a more comprehensive description.

1) Attribute-based filtering :When striving to filter events
there is an intrinsic tradeoff between expressiveness of filter
specification and performance of filtering execution. On one
extreme, content filters [15] try to match events based on
the evaluation of predicates defined over arbitrary contents.
This scheme allows a fine specification of events, but induces
a certain degree of unpredictability and higher computing
overheads. On the other extreme, subject filters [3] are based
on the inspection of a single event parameter, the subject,
which maps to bounded contents. Subject-based filters provide
for better predictability and lower overheads, but are less
expressive.

Attribute filters are in an intermediate position between
content and subject filters. Attribute filters try to match events
based on the presence/absence of pre-defined event attributes.
To specify an attribute filter, a programmer must specify the
minimum set of attributes that an event must present to be
matched. It means that any event presenting all the attributes

1I.e., the subject will be the same for the representation of same event
channel in any node.

2The technical usage of the event tag for filtering messages in the CAN-Bus
is explained in Section III-B.

specified for a filter, plus some others, is also matched. In the
other hand, an event that lacks any single attribute specified
for a filter is not matched by this filter. This filtering scheme is
defined formally through the structural conformance relation-
ship [16]. Hence, an attribute filter is formally defined as one
that matches all the events conforming to a specific signature.
Such signature can be as follows:

Fatt =
{

Namei : Typei , ..., Namej : Typej
}

The Namek : Typek elements are the formal definitions of
the attributes, whereNamek is a variable identifier andTypek
is a primitive type, e.g., integer, float, etc. For example, the
attribute filter Fatt = {A : f loat,B : int} matches the events
E := 〈A : f loat,B : int〉, E := 〈A : f loat〉, E := 〈B : int〉 and
E := 〈 〉, but does not matchE = 〈A : f loat,B : int,C : string〉
neitherE = 〈X : f loat,Y : int〉.

Attribute filters can be implemented by mapping the event
structures to tags (i.e., bit vectors) and then using these tags
as the keys for hashing tables. The combination of attribute
and subject filters provides a better expressiveness than pure
subject filtering, at the price of an additional table look-up.

B. The abstract network layer

Mapping P/S abstractions directly to the underlying network
is a tough challenge because the usual abstractions of the
underlying communication infra-structure are low-level mes-
sages, which do not match the requirements of subject-based
addressing and QoS specifications for channels. Therefore,
an abstract network layer is introduced which enriches the
properties of the network by exploiting the CAN-Bus built-in
mechanisms. E.g., the ANL hides the priority-based collision
resolution mechanism of the CAN-Bus and in trade it offers
the abstractions of hard, soft and non real-time messages
which can be handled by the event layer.

The services offered by the ANL are the transport of time-
triggered messages, EDF ordered messages and fixed priority
messages (i.e., hard, soft and non real-time messages). Hard
real-time messages have precedence over soft real-time mes-
sages and both have precedence over non real-time messages.
There are exceptions to inform the event layer about failures on
the message transport. This is needed e.g. when the supported
omission degree is exceeded. Exceptions are also supported
for missed deadlines and expiration of validity intervals.

The burden put on the ANL has two aspects: the enforce-
ment of quality properties when transporting messages over
the CAN-Bus and the mapping of structured messages to
the CAN-Bus frame format. Hence we organized the ANL
in two sub-layers: the message dispatching sub-layer and the
structured CAN transport sub-layer.

The message dispatching sub-layer (MD) ensures that in-
coming and outgoing messages are dispatched in accord to the
required quality properties. Hence, the MD must ensure that
soft and non real-time messages (which are event-triggered)
do not interfere with hard real-time messages (which are
time-triggered). Roughly stating, this goal is accomplished by,

firstly, assigning the highest priority to the time-triggered mes-
sages, and secondly, by accounting for the worst case durations
of priority inversions when defining the static schedule. To
implement this mechanism we have introduced two compo-
nents in the architecture: the Time-Triggered Communication
Handler (TTCH) and the Event-Triggered Communication
Handler (ETCH) (see in Figure 1). The detailed description
of the roughly mentioned mechanism is beyond the scope of
this paper and the interested reader is referred to [9].

To guarantee that event-triggered messages do not interfere
with time-triggered messages, the TTCH relies relies on the
Calendar Dispatcher(CD) component. The CD activates
the TTCH in synchronism with the static schedule of the
arrival and departure of hard real-time messages. Moreover,
the CD guarantees that the highest priority in the system is
assigned to the TTCH activation. Hence, the precedence for
the dispatching of hard real-time messages is assured. E.g.,
on the time slot assigned for receiving a message, the TTCH
reads the message from the CAN-Bus controller and writes
to the hard real-time message buffer (HRT-MB). The access
to HRT-MB is shared with the event layer. Vice-versa, for an
outgoing message the TTCH polls the corresponding HRT-MB
on the scheduled slot. If the buffer contains a fresh message
(i.e., one published since the last polling), the TTCH handles
its transmission over the CAN-Bus.

The Calendar Dispatcher is an active component that im-
plements the dispatching of time-triggered tasks. It supports
the handling of hard real-time events within the nodes. The
calendar dispatchercan be implemented on top of a real-
time operating system or as a real-time executive on small
computing elements. Its implementation only depends on the
availability of the abstractions of a calendar and a global
clock. This component can support the programming of time-
triggered tasks running in any layer e.g. in the application or
in the middleware. It can be exploited to synchronize every
step comprised in the transport of hard real-time events, from
end to end.

Soft and non real-time messages are handled by the ETCH
which passes them to the event layer by means of specific
queues. Soft real-time messages are ordered in accord to the
EDF discipline. Non real-time messages are ordered by their
relative importance. These queues also establish the ordering
of notifications in the event layer.

8 bits 7 bits 14 bits

Message:=<Priority, TxNode, EventTag, Data>

29-bits CAN
Identifier

Scheduling Uniqueness Filtering

Fig. 3. Mapping of messages to CAN identifiers.

On its turn, the structured CAN transport sub-layer relates
specifically to the CAN implementation. It maps the structured

message abstractions to the raw CAN-Bus frame format, in a
way that all quality properties established in the event layer are
finally enforced in the bus. Therefore, the abstraction provided
by the structured CAN transport sub-layer are structured
messages:

Message:= 〈Priority,TxNode,EventTag,Data〉

The mapping of structured messages to a long CAN iden-
tifier is depicted in Figure 3. TheData field, which may be
itself sub-structured, is mapped to the payload part of the CAN
message. TheEventTagfield is a short local identifier that
designates an event channel in a sub-network. TheEventTag
is maintained in the event layer, after the binding protocol, as
discussed in Section III-A. It is passed as an argument when
the EL uses the ANL services. ThePriority and theTxNode
fields are handled in the ANL.

When mapping middleware messages to the CAN layer, the
uniqueness of the CAN identifier must be assured. This is a
requirement of the CAN protocol. Uniqueness is assured by
stamping the transmitter identity in the message. However,
the CAN identifier can not accommodate a global (long) node
identifier, due to its limited size. Theconfiguration protocol
was introduced to overcome this impasse. Here, "configura-
tion" refers to the mapping of the global (long) node identifier
to a short one, theTxNode, which is local to each CAN sub-
network. The ANL executes the configuration protocol on each
node, when the node is initialized. As result, theTxNodeis
obtained and subsequently used to stamp every transmitted
message.

C. The CAN layer

The CAN Layer is composed by the CAN driver and the
CAN controller itself. The driver provides routines to read and
write CAN messages and for setting the filters for network
addresses. The protocol used in this layer is the CAN 2.0B
standard with 29-bit identifiers. "CAN identifier" refers to the
header of CAN frames, i.e., the part of the messages used for
bus arbitration and addressing purposes. CAN identifiers are
structured by the middleware in multiple fields, as depicted in
figure 3. The message’s priority is mapped to a 8-bits field,
which is aimed to enforce the bus accessschedule. Following,
a 7-bit field ensures theuniquenessof the CAN identifier. This
is a requirement of the CAN-Bus protocol. The remaining 14
bits of the message identifier constitute a short event identifier
and are employed to route and filter a message.

IV. RELATED WORK

Event channels have been mapped to CORBA services
[17]. While CORBA services are inherently centralized, the
proposed architecture is distributed. In fact, the CORBA Event
Channel retains server semantics. E.g., an application object
must have a reference to an object in order to communicate
through the event channel. If the event channel is moved from
one node to another, the application must be aware of that.
In contrast, the presented architecture provides an abstraction
of the network. Moreover, the coordination model underlying

any CORBA service is the RMI. That means, while an asyn-
chronous interface is offered to applications in the surface, the
dissemination of events is effectively accomplished by means
of point-to-point synchronous connections; exactly what is
supposed to be avoided in the P/S model.

The publish/subscribe model and the abstraction of an
information bus have been originally implemented in the
TIBCORendezvoussoftware [18], which integrates some soft
real-time features. E.g., it is possible to create several queues
and explicitly associate event types with event queues. Further-
more, it is possible to group several queues in aqueue group.
A static priority can be assigned to each queue in a group. The
dispatcher thread for a queue group dispatches events in accord
to the priority of the queues. Concerning CPU scheduling, this
architecture has two drawbacks: 1. dispatched events (call-
backs) can be not preempted by events relating to the same
queue group; 2. the middleware has no interface for handling
threads’ priorities. Hence, real-time programming can be not
handled at the same abstract level as the event programming.

NDDS is a industrial strenght P/S middleware [19], [20],
which is advertised for hard real-time applications. Its ar-
chitecture explicitly assumes theEthernetas the underlying
interface. Therefore, real-time can only be assured on a prob-
abilistic basis. It means that the communication load must be
known in advance and that deviations from the load hypothesis
are minimally tolerated. Deadlines are specified only for
subscriptions. Therefore message scheduling is supported only
in the queues maintained in the receivers side.

V. CONCLUSIONS ANDFUTURE WORK

This paper has focused on the architectural aspects of
COSMIC, a middleware for supporting real-time event-based
interaction on top of the CAN-Bus. The design of the archi-
tecture has been presented, which separates the issues relating
to the event model from the management of the quality
properties of communication. An abstract network layer has
been introduced to abstract and enrich the raw properties of the
basic communication infrastruture. The proposed architecture
provides a decoupled interaction model, which supports the
development of applications based on autonomous objects.
On the publish/subscribe abstract level, distinct event channel
classes presenting high level semantics represent a simple
programming interface for real-time communication. Future
work include the elaboration of a gateway model, for manag-
ing the connection of sub-networks presenting different QoS
capacities.

ACKNOWLEDGMENTS

This work has been supported by the European Union’s
Information Society Technology Program under contract IST-
2000.26031 (CORTEX: Cooperating real-time sentient ob-
jects: architecture and Experimental evaluation).

This work has been partly supported by CNPq

REFERENCES

[1] C. E. Pereira, J. Kaiser, C. Mitidieri, C. Villela, and L. B. Becker,
“On evaluating interaction and communication schemes for automation
applications based on real-time distributed objects,” in4th Int. Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC’01),
Magdeburg, Germany, 2001.

[2] J. Kaiser and M. Mock, “Implementing the real-time
publisher/subscriber on the controller area network (can),” in2nd
Interantional Symposium on Object-Oriented Real-time distributed
Computing, Saint-Malo, France, May 1999.

[3] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The information bus - an
architecture for extensible distributed systems,” inACM Symposium on
Operating System Pronciples, 1993, pp. 58–68.

[4] R. Rajkumar, M. Gagliard, and lui Sha, “The real-time pub-
lisher/subscriber inter-process communication model for distributed real-
time systems: Design and implementation,” inIEEE Real-Time Technol-
ogy and Applications Symposium. IEEE Real-Time Technology and
Applications Symposium, June 1995.

[5] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” EPFL, Lausanne,
Switzerland, Tech. Rep. DSC ID:200104, 2001. [Online]. Available:
citeseer.nj.nec.com/442483.html

[6] R. Meier and V. Cahill, “Steam: Event-based middleware for wireless ad
hoc networks,” inInternational Workshop on Distributed Event-Based
Systems, 2002.

[7] P. Veríssimo and A. Casimiro, “Event-driven support of real-time
sentient objects,” inEighth IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 2003), Jan 2003.

[8] H. Kopetz and P. Verissimo, “Real time and dependability concepts,” in
Distributed Systems, S. Mullender, Ed. ACM Press New York, 1993,
ch. 16, pp. 411–446.

[9] M. Livani, J. Kaiser, and W. Jia, “Scheduling hard and soft real-time
communication in the controller area network,”Control Engineering
Practice, vol. 7, no. 12, pp. 1515–1523, December 1999.

[10] CAN Specification version 2.0, Robert Bosh GmbH, September 1991.
[11] J. Kaiser and C. Brudna, “A publisher/subscriber architecture

supporting interoperability of the CAN-Bus and the internet,” in2002
IEEE International Workshop on Factory Communication Systems
(WFCS2002), Västeras, Sweden, August 2002. [Online]. Available:
citeseer.nj.nec.com/kaiser99implementing.html

[12] J. Kaiser, C. Brudna, and C. Mitidieri, “A real-time event channel model
for the CAN-Bus,” in11th Annual Workshop on Parallel and Distributed
Real-Time Systems, held in conjunction with the International Parallel
and Distributed Processing Symposium IPDPS, Nice, France, April
2003, pp. 22–26.

[13] H. Kopetz,Real-Time Systems: Design Principles for Distributed Em-
bedded Aplications. Kluwer Academic Publishers, 1997.

[14] C. Mitidieri and J. Kaiser, “Attribute-based filtering for embedded
systems,” inSecond International Workshop on Distributed Event-Based
Systems (DEBS’03), in conjunction with The ACM SIGMOD/PODS
Conference, 2003.

[15] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design of a scalable
event notification service: Interface and architecture,” Department of
Computer Science, University of Colorado, Tech. Rep., August 1998.

[16] L. Cardelli, “Structural subtyping and the notion of power type,”
in Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, San Diego, California, 1988,
pp. 70–79.

[17] OMG, “Notification service, version 1.0,” June 2000, object Manage-
ment Group, http://www.omg.org.

[18] TIBCO, “TIBCO Rendezvous Concepts, release 7.0,” TIBCO Software
Inc., Palo Alto, CA, April 2002.

[19] RTI, “Real-time inovations. network data delivery service,”
http://www.rti.com.

[20] G. Parado-Castellote, S. Schneider, and M. Hamilton, “Ndds: The real-
time publish subscribe network,” inIEEE Workshop on Middleware for
Distributed Real-Time Systems and Services, 1997, pp. 222–232.

