COSMIC: A middleware for
event-based interaction on CAN

Jorg Kaiser, Carlos Mitidieri, Cristiano Brudna Carlos Eduardo Pereira
Dept. of Computer Structures Dept. of Electrical Engineering
University of Ulm Federal University of Rio Grande do Sul
James-Franck-Ring Av. Oswaldo Aranha, 103
89069 Ulm, Germany 90035-190 Porto Alegre, Brazil
Kaiser@informatik.uni-ulm.de CPereira@eletro.ufrgs.br

Carlos.Mitidieri@informatik.uni-ulm.de
Cristiano.Brudna@informatik.uni-ulm.de

Abstract— Distributed factory automation systems benefit from provided at the raw field-bus level. The communication model
field-busses which, in general, provide support for reliable should also reflect the requirements of a control system com-
and timely communication. These field-busses, however, provide posed from autonomous active components. The model firstly

rather low level communication objects and their features regard- hould all th t fi d di inati
ing quality aspects of communication are difficult to assess and Should allow the spontaneous generation an ISsemination

use for applications. The paper presents COSMIC (Cooperating Of events detected at the sensor interface or being triggered
Smart devices), a middleware architecture which allows to use by internal state changes. Secondly, many-to-many communi-
communication abstractions appropriate for high level applica- cation relations are needed to efficiently disseminate sensor
tions based on distributed cooperating objects. The middleware 5,4 control information. Thirdly, the data transfer should not

supports an event-based communication model which enablesb led with t f f trol it is th |
spontaneous dissemination of events, maintains control autonomy °€ COUPIEd With ‘a transter or control as 1t 1s he genera

of objects and allows to specify different real-time and reliability Case in client server interactions. These properties rule out
requirements on the application level. The basic abstractions the remote invocation mechanism usually provided for inter
Kfesemed at tlhe middlewaredlayeybare ﬁVenE and egetnt Cthanne|3-0bject communication [1], [2]. Additionally, it is desirable to
s an example, the paper describes how these abstractions are ; : ; oo
mapped to th% CAN-Bpuspwhich constitutes a widely used field-bus Snglfy and control the.quallty of event dissemination also on
standard. a high level of abstraction.
The paper describes the architecture of COSMIC (Co-
|. INTRODUCTION operating Smart devices), a middleware which presents an
Advanced industrial automation systems increasingly re@vent-based communication model. Events in COSMIC are
on distributed computer architectures. The nodes in thedisseminated in a publisher/subscriber style of interaction.
architectures may range from deeply embedded processBublisher/subscriber protocols are well known to support spon-
to workstations which are interconnected by a large varietgneous, many-to-many communication relations and reflect
of field-bus technologies. The input and output of such autonomy of communicating entities [3], [4], [5], [6]. There-
system is performed by intelligent sensors and actuatofste they meet the requirements established above.
These smart components comprise special purpose hardwar@ OSMIC extends the publisher/subscriber scheme in many
(sometimes also mechanical elements) for signal recepti@spects. Firstly, it takes into account that events disseminated
and conditioning together with a computational element ama the system may represent real-world events requiring real-
a network interface. The smart nodes therefore constitutme dissemination in the control system. An event in the real-
autonomous entities which allow to capture sensor data at therld is characterized by a context of occurrence which at
real-world interface, transform it to a machine readable forteast is defined by a location and a point in time. Additionally,
and spontaneously disseminate it as a standardized messadlegcevent may have quality related properties like a certain
the distributed system. Because the message already conthifedity margin reflecting a conversion process or a bounded
preprocessed, application related data, other smart componéensporal validity. Therefore, we assign context and quality at-
can directly use it to perform some control action. On tibutes (sometimes called "functional" and "non-functional)
higher level of abstraction, the system can be viewed #@san event which are complementary to the event data.
cooperating active objects which interact with each other viaSecondly, we introduce event channels which allow to
the communication system. specify the quality of dissemination. An event channel is an
To ease the interaction of cooperating objects, the combstraction of the communication mechanisms which provides
munication system also should provide an adequate levelapublisher/subscriber interface. Events can be pushed to an
abstraction and the application designer should not be foraaeent channel which then ensures the defined dissemination
to deal with a low level primitive message passing systequality. Particularly, real-time and reliability requirements can

be specified for event channels. related to context may comprise e.g. a location and the time
Thirdly, COSMIC is targeted to low performance systemsf occurrence. The non-functional attributes include quality
with a small memory footprint. Therefore, we adopted aspects as a validity interval (expiration time), a deadline
number of mechanisms which allow for an efficient systeimnd a tolerated omission degree. Deadlines are employed for
even at the cost of a slight impact on flexibility. This appliescheduling events in the communication system. As explained
in particular to the binding and filtering mechanisms, explained Section II-A, an event may miss a (soft) deadline depending
later in the paper. on the event channel class. In this case, the validity interval
This paper advances previous work by presenting the aefines the point in time after which an event may be discarded
chitecture of the distributed event middleware. It starts wittompletely. This mechanism is helpful in a real-time system
introducing the notions of events and event channels in Sectiondispose of outdated events as early as possible. Finally, the
Il. Section Ill describes the layered COSMIC architecturevents’ contents comprise data specified by applications.
Related work is reviewed briefly in Section IV and conclusions Events are propagated from publishers to subscribers
and future work are summarized in Section V. through event channels. We conceive event channels as ab-
stractions of network resources and therefore assign QoS re-
lated properties attributed to the utilization of these resources.
An event may occur in the physical environment or in th&n event channel is an instance of an event channel type

computing system. Hence, both, an observation of a regharacterized by a subject and quality attributes:
time entity and a state transition of a variable are uniformly

characterized, represented and disseminated as an event. From EventChannel= (Sub ject AttributesLis}
an architectural perspeciive, sensors and actuators are n%n event channel exclusively disseminates events that are
visible as low level 1/0O sub-systems, but, as smart network%g

components used by applications via the event middlewar mpatible with its own subject. As attributes, an event
P . Y appiic Hhannel may include e.g. a latency, dissemination constraints
On the respective abstraction level they are represented

.) :) afid reliability parameters. An event channel may handle mul-
active pbjects, taklng_the roles as publls_hers and Subscnbﬁé?e publishers and multiple subscribers, thus implementing
prqducmg or consuming eventsz resp_ectlvely. An arch|tectuer1 many-to-many communication channel. A data structure
V.Vh'Ch well describes and gxplams this model in general h?g’presenting an event channel is dynamically created in the
first been presented by [7] in the context of CORTEX. Ver|§- cal middleware whenever a publisher first announces a
simo & Casimiro describe a system architecture to disseminrﬁ lication or a subscriber subscribes to a channel

generic events. In their model, the applications interact only '

via the event layer. The event layer hides the network #&s Real-time event channels

well as the transformation process of the 1/O subsystems. The, g system monitoring and controlling a physical envi-
basic objective behind this architecture is: because all evepigment, timeliness and reliability requirements have to be
appear at the event layer, it is possible to order the eveRtat. However, not all functions of the system need the same
consistently whether they are generated in the environmeg&je| of quality of service from the underlying communication
or in the system. This can be done by making assumptiog\istem. Therefore we introduce events channels with different
about the properties of the respective event channels. Td\@lity properties to reflect the well known trade-off between
generic event architecture therefore tackles the problem H?@hly predictable event channels and the associated costs.
hidden channels [8] in a consistent model. The event and eveysMIC supports three classes of event channels: hard real-
channel model introduced by COSMIC constitute a specifigne event channels (HRTEC), soft real-time event channels
way to realize such an architecture. (SRTEC) and non real-time event channels (NRTEC). HRTC

Events carry information from publishers to subscribergye synchronous, i.e. events sent through a HRTEC are guar-
However, differently from simple messages, events are a typggteed to meet their deadlines under an anticipated number of
information carriers which include the context in which suchmission faults. Events sent through a SRTEC are scheduled in
information has been generated and quality attributes definiggest effort manner according to their transmission deadlines.
requirements for dissemination. Thus relevant aspects of tRg event pushed to a SRTC may miss its deadline e.g.
event semantics are explicitly expressed and carried with e sjtuations of transient overload. Events which have no
event. Similarly to [6], an event instance is specified by a tupigneliness requirements (e.g. configuration and maintenance
comprising a subject, attributes and contents: events) are sent through a NRTEC.

Hard real-time event channels are synchronous, i.e., the
bounds of transmission latency and jitter are known and

A subject defines a type of event and thus is related to thenimal. These properties are based on a static schedule
event contents. The pro and cons of subject-based addressivag reserves network resources to specific event channels at
are discussed in detail elsewhere [3], [1], [2], [5] and are nepecific time slots, like in a TDMA — Time Division Multiple
reviewed again in this paper. Specifically to our system, Access — medium access scheme. Communication traffic
subject is a tag represented by a unique identifier. An evdlawing through the less stringent channels can not obstruct
is further characterized by a set of attributes. The attributdee transmission of any event that is going through a HRTEC.

Il. EVENTS AND EVENT CHANNELS

Event:= (Subject AttributesList Content$

This isolation property has been implemented for the CANubscriber. The mechanism is described in detail in [2], [11].
Bus by exploiting the CAN priority scheme. Whenever a hafinding a subject to a network address (which e.g. can be a
real-time event has to be sent, it has the highest priority in thaulticast address) puts the task of subject filtering to the net-
system and thus no lower priority message can interfere witfork controller and thus frees the node from examining every
its transmission. The mechanism, however, allows to reusessage. This is particularly important for the tiny components
time slots reserved by a HRTC by events of lower criticalitgncapsulating a smart sensor or actuator which simply do
classes in the case that no message will be sent through rtbé have enough CPU performance to analyze every message.
HRTC. Conflicts between two hard real-time channels are ndbwever, subject filtering alone does not provide an adequate
possible due to the static schedule that commonly rules théswel of filtering. Consider a smart actuator in a robot which
all. A detailed description of the mechanism can be found omly wants to receive information e.g. from local sensors to
[9]. perform some reactive control. The locality of events is not
The timeliness requirements of soft real-time channetxpressed in the subject but in the attributes. Therefore, an
are expressed by deadlines and validity intervals (expiratiadditional level of filtering based on the structural properties
times). Soft real-time events are scheduled according to thefrattributes is introduced. This filtering mechanism also is
transmission deadlines by an earliest deadline first (ED#¢signed to meet the requirements of resource constraint
algorithm. The transmission deadline is defined as the latsgstems with respect to performance and memory demands.
point in time when a message has to be transmitted. S@fith the routing mechanism based on dynamic binding and
real-time channels enforce pritorities that are always lowdte attribute-based filtering it is ensured that, with a high
than hard real-time channels and higher than non real-timebability, the subscriber is notified only about the events
channels. However, because a message can not be interrufieavhich it actually has subscribed. The attribute-based filter
during its transmission and messages may become readynathanism is further described in Section IlI-A.1.
arbitrary points in time, EDF will not always take the right
scheduling decisions (only a clairvoyant scheduler would be
able to do so) and hence, situations of temporal conflicts andThe network architecture to be presented next has been
transient overload may occur. In these situations, messagesigned in correlation to the event model described in Section
will still be transmitted at a later time in a best effort mannel. The architecture is centered on a middleware layer which
An SRT event message eventually will be discarded if its]as been maintained purposefully lean by including only
transmission time is delayed beyond its temporal validitgarefully selected semantics and services. The goal of the
specified by the expiration time. design is to make quality properties of the communication
The event channel classes supported by an event sysisfrastructure accessible on the abstract level of events. Hence,
depend on the underlying communication infrastructure. Ham@pplication objects can explicitly set the temporal and de-
soft and non real-time event channels have been implemenpethdability attributes required for event dissemination and
for the CAN-Bus [10]. Non real-time channels have beenotification. The middleware automatically maps the attributes
implemented also on top of TCP/IP, both for the IEEE 8021® the technical parameters of the underlying infrastructure.
and 802.11 medium access protocols [11].

Ill. ARCHITECTURE

A comprehensive view of the proposed architecture is shown
in Figure 1. The middleware layer (with a grey background)

Routing an event from a publisher to a subscriber is basesdshow on top of an infrastructure comprising the CAN-Bus
on the subject of a message rather than on a destinatj@f]. The time service provides the abstraction of a global
address. The subscriber expresses interest in a certain sulijlk that is needed by several layers. As can be observed,
and every event which is published on this subject mutte middleware is further subdivided in a pair of layers: the
eventually arrive at the subscriber. Thus the implementatiement layer (EL) and the abstract network layer (ANL). This
of the publish/subscribe (P/S) model on top of a field-buseparation allows the event layer to concentrate on the issues to
infrastructure comprises the issues of getting the event to tiwhich it is specifically concerned, i.e., addressing, filtering and
right destination and notifying each subscriber only of thoswtification of events. Then, the ANL maps the abstractions of
events to which it has subscribed. This includes the aspectdiu# event layer to the communication infrastructure. This map-
routing and filtering. Routing and filtering are tightly relateghing relates to several aspects, e.g., the conversion of events
in a subject-based addressing scheme. Conceptually, mémgpecific message formats and vice-versa, the enforcement
publisher/subscriber protocols exploit a broadcast as basicevent channels’ quality properties and semantics, etc. On
routing mechanism. Then every node receives all messagfes other hand, the ANL provides awareness on infrastructure
and then performs the task of selecting an event by applyingedated issues to the EL, e.g., on communication failures by
filter which passes only those events to which a subscriptiosing exceptions.
has been issued. In COSMIC, we take a two stage approachrlhe burden assigned to the abstract network layer is a tough
The subject is exploited for routing by dynamically bind it tachallenge because of the widely varying characteristics of the
a network address. This is done on each announcement axésting network infrastructures. In this paper, we tackle the
publication or a subscription transparently to the publisher atmpic of mapping the event layer abstractions to the CAN-Bus

B. Routing and filtering

« store the dynamic binding data;

announce AUTONOMDUS CBJECT « store event dissemination attributes;
publ i sh EVENT

Applications

DI SPATCHER

are represented in the middleware, it is convenient to briefly
p— introdu_ce the interface provided by event channels. _
Pr ot ocol The interface to HRTEC'’s and to SRTEC'’s are summarized
@ in Figure 2. A publisher musannounce()an event channel
before publishing to it. Th@nnounce()operation establishes
CAN-Bus Layer |'merruptsr RX, TX and Error the local data structures needed to handle an event channel.
The announce()implementation includes a call to the ECH
component, W(Pzichp executes the binding protocol and then
creates a local representation of the event channel. During the
Fig. 1. Middleware layered structure, showing components, data structutsinding protocol, the ECH exchange some messages through
and protocols. the network. A low priority is assigned to these binding
messages, because they are not comprised in a critical control

.) . , path. In fact, thennounce(pperation was introduced because
interface. Among fieldbus technologies, the CAN-Bus is paf,

cularl ited to Impl h blish/subscrib | 0 assumptions can be madepriori about the timeliness
ticularly suited to implement the publish/subscribe protocol. I ¢ binding messages. If the dynamic binding was to be

message distribution scheme is based on a message identifiels .o the first time an object is publishing an event,
which does not indicate the destination of the message timeliness of this event would not be guaranteed. The

Lathder the f_:negmng ththe. transpoged dalta_. '(I;h_erefo(;e, ounce()operation enforces the separation between the
araware _|ter|ng mechanism can be exp_0|te In order nding phase and the operation phase of an event channel. The
efficiently |mplemgnt a ;ubject—based pub_lls_h/subscnbe prQr'gumem’attributes listpassed in amnnounce(specifies the
tocol. Mqregvsr, E prov:dgs adva?ceq bunt;]m featqres Lhﬁtuality properties of the channel, e.g. whether the publication
are required by the real-time applications that we inten periodic or sporadic, reliability requirements and event rates.

support: multiple access without centralized control, priorityl‘hese informations are needed to configure the access to the
based collision resolution, efficient implementation of pOSitiVFequired resources

acknowledgment, automatic fail-silence enforcement with dif- Because time slots are statically allocated to HRTEC's, the

ferent fault levels, etc. In fact, some of these features have bggay| renresentations of HRTEC's are also statically created by
exploited to implement the real-time event channel classesy, o cH. Therefore, the announcement of a HRTEC does not
The next subsections describe the abstractions, serviGegyit in the creation of a new event channel data structure.
components and protocols that comprise the event and {Rgead, the ECH searches the LECL for a HRTEC entry with
abstract network layers. The CAN-Bus layer is presented fgfs supject specified by the application. The announcement is
completeness. accepted if the attributes list declared by the publisher matches
the static attributes list of the retrieved HRTEC. In a positive
case, the ECH invokes the abstract network layer which creates
The service provided by the event layer is the timely ar@lhard real-time message buffer (HRT-MB) and sets the time-
reliable dissemination of events from publishers to subscribendggered routine (TTC-Handler) that handles the transmission
This service comprises a set of primitive operations whiahff HRT messages. The roles of the HRT-MB and the TTC-
are accessed through the interfaces of event channels. Handler are discussed in Sections I1I-B.
specification of the interfaces of hard and soft real-time eventAfter a channel is announced, the application can publish
channels (EC) is provided in [12]. The implementation ofvents by calling thechannel.publish(eventpperation The
the services provided by the event layer is supported bgmantics of thpublish()operation for hard, soft and non real-
the Event Channel Handler (ECH), shown in Figure 1. Théme channels can be infered from the discussion presented in
event channel handler creates, maintains and destroys Id®attion II-A.
representations of event channels on behalf of applicationsSymmetrically, thesubscribe(Joperation allows subscribers
These local representations are needed to: to set event filters, QoS parameters of notifications and no-

1.
S Dubseribe G « relate the local publishers and subscribers.
5. notify exception 453)% 5| The event channel handler maintains the event channels in the
E "local event channels list" (LECL, see in Fig. 1). Therefore
Event Layer TST of Loca L the ECH can retrieve the local configuration data of any
Event Channels H i
(LEQL) @ - event channel when it needs to handle an event. For instance,
LT CHANNEL HANDLER Bi ndi ng L when an event is pushed to a non real-time c'hanneI.: t.he
(B Pr ot ocol E ECH retrieves the corresponding entry, reads the fixed priority
s i A s | assigned to the channel and adds this priority to the event
AN Layer v & | _ _ E | message before passing it to t.he abgtract network layer. At this
oo BUFFER e 1 - - v point, before advancing the discussion on how event channel
[
C
E

A. The Event Layer

class hrtec { « Subject UID;

private: « Event tag;

subject subject_uid; « Channel class:

public: « Channel attributes list;

/I constructor and destructor of the class . Announcements list:

hrtec(void); e . ’

~hrtec(void); « Subscriptions list.

/I methods used for publishing e

int announce(subject, attributes_list, exception_handler); The SUbJeCt uid — Umque Ide_nt|f|er _‘quuely |(_jent|f|es
int publish(event); an event chann&l The event tagis obtained at runtime after

/I methods used for subscribing T . .
int subscribe(subject, attribute_list, event_queue, notification_handler, except_handlet';],e blndmg prOtOCOL It represents the SUbJeCt in a form that

int cancelSubscription(void); is related to the addressing scheme the underlying nefwork
! The event tag could be e.g. a multicast address. Hence, the
"binding" is actually provided by the event channel, which

class srtec { keeps together these two fields. When an event is published

private: to an event channel, it is tagged and passed to the ANL.
subject subject_uid; Symmetrically, when an event arrival is indicated by the
public: ANL, its tag is matched against the channels’ entries whose
Canqpior and destuctor of the class subscriptions lists are not empty. As already discussed, the
~srtec(void); o channel class attributes listlescribe the quality properties
ot Annoumcatedbiact attbute.list, exception. handler): of the channel. This list is either filled with the information
int cancelPublication(); provided in theannounce()and subscribe()operations (for
o et for subscribing SRTEC's and NRTEC's) or statically defined for HRTEC's.

int subscribe(subject, attribute_list, event_queue, not_handler, exception_handler); The announcementand subscriptions listare further data
it cancelSubseriptionvolc): structures nested in the event channel. Each entry on the
announcements list includes the exception handlers. The ex-
ceptions supported for announcements are related to missed
Fig. 2. Interface to a HRTEC class in C++ transmission deadlines and to expiration of validity intervals
(Section 1I-A). Each entry in the subscriptions list includes a
notification handler, an exception handler and the specification
tification and exception handlers. Then, incoming events th§ftan attribute-based filter. The notification handler comprises
have matched the filters are stored in évent_queuspecified application defined code which is executed upon the notifica-
in the subscription. As is widely known, the selection of §on of an event. The supported exceptions for subscriptions
queuing policy is a critical issue in real-time systems [13hre missed deadlines of periodic events. Attribute-based filters
Allowing subscribers to maintain private event queues for rgre briefly introduced in the next section. The reader is referred
ceiving events enables them to specify the queuing policy thgt[14] for a more comprehensive description.
better matches their needs. Thetification_handlemrgument 1) Attribute-based filtering :‘When striving to filter events
comprises application code that is executed at-the-deadlinet@ére is an intrinsic tradeoff between expressiveness of filter
an incoming event. The ECH issues the notification, up@&pecification and performance of filtering execution. On one
which the notification_handlerretrieves the event from the extreme, content filters [15] try to match events based on
event_queuand executes the required activity. the evaluation of predicates defined over arbitrary contents.
The event layer must implement its services while enforcinthis scheme allows a fine specification of events, but induces
timeliness and reliability. The provided abstractions of evenss certain degree of unpredictability and higher computing
and real-time event channels (Section Il) assist on achieviogerheads. On the other extreme, subject filters [3] are based
this goal. As already said, events encapsulate a set of intrinsi¢ the inspection of a single event parameter, the subject,
attributes and application related parameters, which are aghich maps to bounded contents. Subject-based filters provide
cessed through specific methods. Hence, a requirement like better predictability and lower overheads, but are less
a deadline can be consistently enforced at any intermediabgressive.
step when transporting an event through a CAN network. Attribute filters are in an intermediate position between
Accordingly, announced and subscribed event channels aomtent and subject filters. Attribute filters try to match events
explicitly represented in the event layer. Hence their qualityased on the presence/absence of pre-defined event attributes.
properties can be enforced locally. There is one entry in tfie specify an attribute filter, a programmer must specify the
LECL (introduced above) for each event channel "connectegiiinimum set of attributes that an event must present to be
to a node. That means, even if two or more publisher or/angatched. It means that any event presenting all the attributes
subscribers have locally announced and/or subscribed to a _ _ _
given event channel, only one EC entry is maintained in t%;;h%éfi?\eaﬂ;bﬁﬁewnl be the same for the representation of same event
LECL. The fields comprised in each LECL entry are itemize '

2The technical usage of the event tag for filtering messages in the CAN-Bus
below: is explained in Section III-B.

specified for a filter, plus some others, is also matched. In tfiestly, assigning the highest priority to the time-triggered mes-
other hand, an event that lacks any single attribute specifigahes, and secondly, by accounting for the worst case durations
for afilter is not matched by this filter. This filtering scheme isf priority inversions when defining the static schedule. To
defined formally through the structural conformance relatioimplement this mechanism we have introduced two compo-
ship [16]. Hence, an attribute filter is formally defined as ongents in the architecture: the Time-Triggered Communication
that matches all the events conforming to a specific signaturandler (TTCH) and the Event-Triggered Communication

Such signature can be as follows: Handler (ETCH) (see in Figure 1). The detailed description
of the roughly mentioned mechanism is beyond the scope of
Far = {Name: Type, ..., Namg : Typg } this paper and the interested reader is referred to [9].

) — To guarantee that event-triggered messages do not interfere
The Name : Typg elements are the formal definitions Ofwith time-triggered messages, the TTCH relies relies on the

Fhe attr.ibL'Jt'es, wherelame? Is a variable identifier and'ypg Calendar Dispatcher(CD) component. The CD activates
Isttabptnlm:‘nl\t/e tgpe;e.i.z]'crllte?eé’_ﬂciat' eti' rl]:or fﬁample,tt%e TTCH in synchronism with the static schedule of the
g _”_ UA8_ fII ert é“_ ft{ E __OaA_ ﬂ'n }t ml? .c_esé._et eve(rjl S arrival and departure of hard real-time messages. Moreover,
E o < .b ?3’ N i t'*E<_'A_0?I>’ t Bi <t él'n i and e cD guarantees that the highest priority in the system is
= (), but does not matck = (A: float, B int,C : string) assigned to the TTCH activation. Hence, the precedence for

neitherE = (X float,¥ :int). the dispatching of hard real-time messages is assured. E.g.,

Attribute filters can be '|mplemented by mapping the eve% the time slot assigned for receiving a message, the TTCH
structures to tags (|.e_., bit vectors) and the_n using these_ 383ds the message from the CAN-Bus controller and writes
as the k_eys f_or hashmg tables. The combln_at|on of attrib the hard real-time message buffer (HRT-MB). The access
and. SUbJ.eCt _f||ters prowd_es a better EXPressIveness than RY'IRT-MB is shared with the event layer. Vice-versa, for an
subject filtering, at the price of an additional table look-up. outgoing message the TTCH polis the corresponding HRT-MB
on the scheduled slot. If the buffer contains a fresh message
(i.e., one published since the last polling), the TTCH handles

Mapping P/S abstractions directly to the underlying netwoiits transmission over the CAN-Bus.
is a tough challenge because the usual abstractions of th&he Calendar Dispatcher is an active component that im-
underlying communication infra-structure are low-level meglements the dispatching of time-triggered tasks. It supports
sages, which do not match the requirements of subject-basiedl handling of hard real-time events within the nodes. The
addressing and QoS specifications for channels. Therefarglendar dispatchercan be implemented on top of a real-
an abstract network layer is introduced which enriches thiene operating system or as a real-time executive on small
properties of the network by exploiting the CAN-Bus built-ircomputing elements. Its implementation only depends on the
mechanisms. E.g., the ANL hides the priority-based collisicvailability of the abstractions of a calendar and a global
resolution mechanism of the CAN-Bus and in trade it offefrslock. This component can support the programming of time-
the abstractions of hard, soft and non real-time messagrggered tasks running in any layer e.g. in the application or
which can be handled by the event layer. in the middleware. It can be exploited to synchronize every

The services offered by the ANL are the transport of timestep comprised in the transport of hard real-time events, from
triggered messages, EDF ordered messages and fixed priagitd to end.
messages (i.e., hard, soft and non real-time messages). Haifoft and non real-time messages are handled by the ETCH
real-time messages have precedence over soft real-time nwvelsich passes them to the event layer by means of specific
sages and both have precedence over non real-time messagesues. Soft real-time messages are ordered in accord to the
There are exceptions to inform the event layer about failures BDF discipline. Non real-time messages are ordered by their
the message transport. This is needed e.g. when the supportative importance. These queues also establish the ordering
omission degree is exceeded. Exceptions are also suppodedotifications in the event layer.
for missed deadlines and expiration of validity intervals.

The burden put on the ANL has two aspects: the enforcqpssage: =<priority, TxNode, EventTag, Data>
ment of quality properties when transporting messages over /

B. The abstract network layer

the CAN-Bus and the mapping of structured messages to
- i |
Fhe CAN-Bus frame format. Henge we _organlzed the AN TR | T Bits | T2 bits |
in two sub-layers: the message dispatching sub-layer and the
structured CAN transport sub-layer. F—+—+—%
. . | Schedul i ng 'Uni queness Filtering
The message dispatching sub-layer (MD) ensures that in-
coming and outgoing messages are dispatched in accord to the
required quality properties. Hence, the MD must ensure that Fig. 3. Mapping of messages to CAN identifiers.
soft and non real-time messages (which are event-triggered)
do not interfere with hard real-time messages (which areOn its turn, the structured CAN transport sub-layer relates
time-triggered). Roughly stating, this goal is accomplished bgpecifically to the CAN implementation. It maps the structured

29-bits CAN
Identifier

message abstractions to the raw CAN-Bus frame format, irnay CORBA service is the RMI. That means, while an asyn-
way that all quality properties established in the event layer arhronous interface is offered to applications in the surface, the
finally enforced in the bus. Therefore, the abstraction provideissemination of events is effectively accomplished by means
by the structured CAN transport sub-layer are structured point-to-point synchronous connections; exactly what is
messages: supposed to be avoided in the P/S model.

The publish/subscribe model and the abstraction of an
information bus have been originally implemented in the

The mapping of structured messages to a long CAN idehiBCORendezvousoftware [18], which integrates some soft
tifier is depicted in Figure 3. Th®ata field, which may be real-time features. E.g., it is possible to create several queues
itself sub-structured, is mapped to the payload part of the CAMd explicitly associate event types with event queues. Further-
message. Thé&ventTagfield is a short local identifier that more, it is possible to group several queues tuaue group.
designates an event channel in a sub-network. EhentTag A static priority can be assigned to each queue in a group. The
is maintained in the event layer, after the binding protocol, gispatcher thread for a queue group dispatches events in accord
discussed in Section llI-A. It is passed as an argument whienthe priority of the queues. Concerning CPU scheduling, this
the EL uses the ANL services. THeriority and theTxNode architecture has two drawbacks: 1. dispatched events (call-
fields are handled in the ANL. backs) can be not preempted by events relating to the same

When mapping middleware messages to the CAN layer, thgeue group; 2. the middleware has no interface for handling
uniqueness of the CAN identifier must be assured. This istkreads’ priorities. Hence, real-time programming can be not
requirement of the CAN protocol. Uniqueness is assured bgndled at the same abstract level as the event programming.
stamping the transmitter identity in the message. However,NDDS is a industrial strenght P/S middleware [19], [20],
the CAN identifier can not accommodate a global (long) nodehich is advertised for hard real-time applications. Its ar-
identifier, due to its limited size. Theonfiguration protocol chitecture explicitly assumes thethernetas the underlying
was introduced to overcome this impasse. Here, "configuiaterface. Therefore, real-time can only be assured on a prob-
tion" refers to the mapping of the global (long) node identifieabilistic basis. It means that the communication load must be
to a short one, th&xNode which is local to each CAN sub- known in advance and that deviations from the load hypothesis
network. The ANL executes the configuration protocol on eaene minimally tolerated. Deadlines are specified only for
node, when the node is initialized. As result, theNodeis subscriptions. Therefore message scheduling is supported only
obtained and subsequently used to stamp every transmititedhe queues maintained in the receivers side.
message.

Message= (Priority, TxNodeEventTagData)

C. The CAN layer V. CONCLUSIONS ANDFUTURE WORK

The CAN Layer is composed by the CAN driver and the
CAN controller itself. The driver provides routines to read an
write CAN messages and for setting the filters for networ,
addresses. The protocol used in this layer is the CAN 2.(#
standard with 29-bit identifiers. "CAN identifier" refers to th

This paper has focused on the architectural aspects of
OSMIC, a middleware for supporting real-time event-based
%teraction on top of the CAN-Bus. The design of the archi-
ecture has been presented, which separates the issues relating

. the event model from the management of the quality
Eﬁzd:rrbictiact:ig\rl:l ;rnadm:;(,j:ées.éire pl?rrtcc));et:e én:l\slsiadge?\?if?esrid r%perties of communication. An abstract network layer has
g purp : &en introduced to abstract and enrich the raw properties of the

gtructured by the m|ddl?war§ n ”?“'“p'e fields, as dep|ctgd fhsic communication infrastruture. The proposed architecture
figure 3. The message’s priority is mapped to a 8-bits fiel

S . fovides a decoupled interaction model, which supports the
which is aimed to enforce the bus accesheduleFollowing, development of applications based on autonomous obiects
a 7-bit field ensures theniquenessf the CAN identifier. This P P) '

is a requirement of the CAN-Bus protocol. The remaining 1 n the publish/subscribe abstract level, distinct event channel

. . o . . Classes presenting high level semantics represent a simple
glrt\zl (;fr;hznT?ﬁsggi;dgﬁze;:do?ﬁggf;eri;:s; :vent Id(_:‘m'f'perrogramming interface for real-time communication. Future
ploy ge. work include the elaboration of a gateway model, for manag-

IV. RELATED WORK ing the connection of sub-networks presenting different QoS

Event channels have been mapped to CORBA servicce%oac't'es‘
[17]. While CORBA services are inherently centralized, the
proposed architecture is distributed. In fact, the CORBA Event ACKNOWLEDGMENTS
Channel retains server semantics. E.g., an application object
must have a reference to an object in order to communicatelhis work has been supported by the European Union’s
through the event channel. If the event channel is moved frdAformation Society Technology Program under contract IST-
one node to another, the application must be aware of th&00.26031 (CORTEX: Cooperating real-time sentient ob-
In contrast, the presented architecture provides an abstraciiggts: architecture and Experimental evaluation).
of the network. Moreover, the coordination model underlying This work has been partly supported by CNPq

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(28]

[19]

[20]

REFERENCES

C. E. Pereira, J. Kaiser, C. Mitidieri, C. Villela, and L. B. Becker,
“On evaluating interaction and communication schemes for automation
applications based on real-time distributed objectsAtim Int. Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC'01)
Magdeburg, Germany, 2001.

J. Kaiser and M. Mock, “Implementing the real-time
publisher/subscriber on the controller area network (can),”2id
Interantional Symposium on Object-Oriented Real-time distributed
Computing Saint-Malo, France, May 1999.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The information bus - an
architecture for extensible distributed systems,A@GM Symposium on
Operating System Pronciple$993, pp. 58-68.

R. Rajkumar, M. Gagliard, and lui Sha, “The real-time pub-
lisher/subscriber inter-process communication model for distributed real-
time systems: Design and implementation,1HEE Real-Time Technol-
ogy and Applications Symposium IEEE Real-Time Technology and
Applications Symposium, June 1995.

P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” EPFL, Lausanne,
Switzerland, Tech. Rep. DSC 1D:200104, 2001. [Online]. Available:
citeseer.nj.nec.com/442483.html

R. Meier and V. Cahill, “Steam: Event-based middleware for wireless ad
hoc networks,” ininternational Workshop on Distributed Event-Based
Systems2002.

P. Verissimo and A. Casimiro, “Event-driven support of real-time
sentient objects,” inEighth IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 2088)2003.

H. Kopetz and P. Verissimo, “Real time and dependability concepts,” in
Distributed SystemsS. Mullender, Ed. ACM Press New York, 1993,
ch. 16, pp. 411-446

M. Livani, J. Kaiser, and W. Jia, “Scheduling hard and soft real-time
communication in the controller area networlControl Engineering
Practice vol. 7, no. 12, pp. 1515-1523, December 1999.

CAN Specification version 2.®Robert Bosh GmbH, September 1991.

J. Kaiser and C. Brudna, “A publisher/subscriber architecture
supporting interoperability of the CAN-Bus and the internet,”2002
IEEE International Workshop on Factory Communication Systems
(WFCS2002) Vasteras, Sweden, August 2002. [Online]. Available:
citeseer.nj.nec.com/kaiser99implementing.html

J. Kaiser, C. Brudna, and C. Mitidieri, “A real-time event channel model
for the CAN-Bus,” in11th Annual Workshop on Parallel and Distributed
Real-Time Systems, held in conjunction with the International Parallel
and Distributed Processing Symposium IPDR@ce, France, April
2003, pp. 22-26

H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Aplications Kluwer Academic Publishers, 1997.

C. Mitidieri and J. Kaiser, “Attribute-based filtering for embedded
systems,” inSecond International Workshop on Distributed Event-Based
Systems (DEBS’03), in conjunction with The ACM SIGMOD/PODS
Conference2003.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design of a scalable
event notification service: Interface and architecture,” Department of
Computer Science, University of Colorado, Tech. Rep., August 1998.
L. Cardelli, “Structural subtyping and the notion of power type,’
in Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming LanguageSan Diego, California, 1988,
pp. 70-79.

OMG, “Notification service, version 1.0,” June 2000, object Manage-
ment Group, http://www.omg.org.

TIBCO, “TIBCO Rendezvous Concepts, release 7.0,” TIBCO Software
Inc., Palo Alto, CA, April 2002.

RTI, “Real-time inovations. network data delivery service,
http://www.rti.com.

G. Parado-Castellote, S. Schneider, and M. Hamilton, “Ndds: The real-
time publish subscribe network,” iEEEE Workshop on Middleware for
Distributed Real-Time Systems and Servid&97, pp. 222-232.

