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Abstract 

The paper describes a publisher/subscriber protocol 
and the respective system support tailored for systems 
which comprise a large number of smart sensors and 
actuators. These components directly interact to form a 
reactive control layer. To support large systems 
structured in clusters of tightly interacting components, 
we provide interoperability between the fieldbus (CAN) 
level and a TCP/IP network to allow cooperation 
between these "islands of control" over a larger area 
and wireless connections. This requires middleware 
support which enables the seamless integration of the 
different networks and provide a uniform 
communication interface. Finally, the system support 
requires lightweight mechanisms achieving a memory 
footprint and performance requirements suitable to run 
on a  wide range of controllers. 

 

1. Introduction 

Future control systems may include a large number 
of cooperating smart devices which may comprise 
sensor components, computational devices and a 
network interface. The built-in computational 
component enables the implementation of a well-
defined high level interface that does not just provide 
raw transducer data, but a pre-processed, application-
related set of process variables. Consequently, the 
interfaces and the functions of these smart components 
may include functions related to overall control, 
supervision, and maintenance issues. Perhaps the most 
interesting and challenging property of these intelligent 
devices is their ability to spontaneously interact with 
the overall system. This enables a modular system 
architecture in which smart autonomous components 
co-operate to control physical processes without the 
need of a central co-ordination facility.  

Our system model assumes smart components 
which may range from powerful workstations to low-
end micro controllers. They cooperate over a hierarchy 
of networks. In general, the communication 
infrastructure structure can be viewed as a WAN-of-

CANs1 [VCC02], in which a wide area network 
(WAN) connects "islands of tight control". The control 
clusters are interconnected by a controller area network 
in a general sense.  There are a number of goals which 
we want to reach for the control system architecture: 
1.Components of the network are autonomous. 

Autonomy means that each component is in its 
own sphere of control and no control signal 
crosses the boundary of a component. Hence, 
components only interact on the basis of shared 
information as e.g. proposed in the data field 
architecture in Autonomous Decentralized 
Systems [MOR93].  

2.The architecture should support many-to-many 
communication patterns. A typical situation is that 
the information gained from a sensor can be used 
and analyzed in more than one place, e.g., the 
output of a distance on a mobile robot is 
interesting for reactive motor control implemented 
on a small micro-controller as well as for long 
term navigation strategies implemented on a more 
powerful device.  

3.Communication is spontaneous rather than initiated 
by a client request.  The smart components have to 
react to external events or are periodically 
triggered by a local clock. This is well captured by 
a generative communication model.  

     A direct consequence of the spontaneous 
communication is the producer/consumer style of 
interaction. While popular high level communication 
models are often based on the request/reply style of a 
client/server relation, this seems to be less appropriate 
in a control environment [PBV01]. We developed a 
publisher/subscriber protocol which supports a 
producer/consumer model and reflects the requirements 
defined above. The benefits of a publisher/subscriber 
protocol for control applications have been pointed out  
in [OPS93],[PAR97] and [RAJ95]. They centre around 
the ease of programming, extensibility and scalability 
arguments. To support  interoperability between mobile 
entities across multiple networks, it is most important 
that in such a protocol it is content-based routing of 
messages, i.e. the subscriber has to specify what kind 
of information it wants to receive rather than 

                                                           
1 CAN is used in a general sense here. Later in the paper we refer to 

the CAN-Bus , a specific fieldbus for automotive and industrial 
applications. 



specifying a particular producer which may not be 
known at design time.  However, content-based routing 
has a substantial drawback concerning the overhead. 
There is in general no simple way for a controller to 
filter the message stream for the information it has 
subscribed for. Therefore, a binding mechanism 
between the contents of a message and the respective 
addressing mechanism of the network has to be 
introduced, i.e. the content of a message has to be 
related to a network address. This allows the filtering 
to be performed by the respective communication 
controller hardware. Because different network 
addresses have to be bound to the same message 
content (when delivered by multiple producers)  and 
different networks may use different addressing 
mechanisms, this binding has to be performed 
dynamically. A description of the basic problems of 
implementing the publisher/subscriber protocol on 
CAN (CAN 2.0 [BOS91]) has been published in 
[KaM99]. In this paper we focus on: 

1.  The problems to accommodate a single high 
level communication paradigm in a 
decentralized system composed from nodes 
with widely differing computational 
capabilities.  

2.  The problem of integrating networks with 
different properties concerning network 
topology and the addressing mechanisms. 

3. Assessing the basic performance and memory 
requirements for the protocol.  

We will present the components of the middleware 
architecture which provide interoperability between 
CAN-BUS and TCP/IP networks. The protocol runs 
under Linux and RT-Linux for more powerful 
computers and on a proprietary kernel for a 16-Bit 
micro controller.  

In the next chapter, we compare related work . Then 
we will introduce the basic architecture for the our 
proposed publisher/subscriber protocol which we 
called UPS (Ulm Publisher/Subscriber protocol) in 
chapter 3. Chapter 4 describes the implementation of 
the communication infrastructure. In chapter 5 we 
present measurements to assess the basic performance 
and memory characteristics of the implementation. 
Finally, chapter 6 concludes the paper. 

2. Related Work 

There are many elaborated concepts and mechanisms 
to provide predictable MAC-layer protocols for the 
CAN-Bus [TiB94],  [ZuS95], [AFF99], [LKJ99], 
[FMD02],  [TTC02]. However, less work is available 
for the higher level communication and for the 
interoperability between different networks. 
Concerning interoperability, there is work on 
integrating wireless communication media and field 
busses [KVA02], [ATV02]. This work however, 
maintains the basic fieldbus protocols (CAN [KVA02] 
and ProfiBus  [ATV02]) and adapts the temporal 

characteristics to a wireless link. Therefore, this is 
more intended as a replacement for wired connections 
than for a integration with wider area networks and 
their standard protocols. The company IXXAT 
[IXX02] provides a product which links a CANopen 
network to TCP/IP. But also in this approach the 
CANopen master handles all communications for its 
slaves. Thus, there is no seamless integration of smart 
sensor or actor components in a general wide area 
communication scheme.  

In the area of  publisher/subscriber protocols there is 
also a substantial amount of research ranging from 
experimental systems [HLS97], [Maf97], to 
commercial products [OPS93], [PAR97], [TAL02], 
and standards [NSS00]. Most of them are devoted to 
dynamic large scale distributed systems. They are not 
suited nor intended for real-time applications in which 
tiny smart components directly interact. Particularly, 
they do not meet the requirements coming from the 
restrictions in processor performance and network 
bandwidth which are principal design constraints for 
our protocol. The publisher/subscriber protocols which 
specifically have been developed for real time 
applications are the real-time publisher/subscriber 
protocol [RAJ95], the commercial NDDS [PAR97] and 
a protocol for the CAN-Bus [KIM00]. None of the 
protocols supports a direct interoperability between the 
CAN-Bus and the Internet world.  

Rajkumar et al. [RAJ95] present a subject-based 
Publisher/ Subscriber protocol  which handles all inter-
process communications in the distributed system. The 
target systems for the real-time P/S protocol are more 
powerful computing nodes with a standard operating 
system and a IP network. A migration path or an 
interaction model with respect to smaller systems is not 
addressed.  

A CORBA for CAN-based systems is presented in 
[KIM00]. It supports both subscription-based group 
communication as well as point-to-point 
communication with the CAN 2.0A standard. Here an 
application object subscribes and publishes to channels, 
which are related to a certain subject and identified by 
a unique binary number. This implementation has the 
disadvantage of having a special version of the inter-
ORB (GIOP) protocol developed for CAN that is not 
compatible with other ORB implementations, thus 
compromising the interoperability of the system. 

The Network Data Delivery Service (NDDS) 
[PAR97] is a commercial implementation of the (real-
time) publisher/subscriber model. Again, the protocol 
is intended to run on PC-workstations over an IP-
network rather than on small controllers. 

3. The UPS Architecture 

The UPS architecture is based on the concept of 
event channels [KaM99]. An event channel is related to 
the content of an event represented by the subject of 
this event [OPS93]. Applications can publish to a 



channel related to the respective subject and they may 
subscribe to such a channel. Channels are identified by 
a unique identifier (UID), which in our case is a 64-bit 
binary number. This UID is used by the application to 
communicate. A UID is independent of any addressing 
mechanism and identifies a specific event channel 
independent of any network specific issues. Although 
this is a desirable feature because it allows an 
unambiguous identification of an event channel also in 
a wide area network, it puts some challenges to a 
realization under the anticipated system constraints. It 
is hardly feasible on a micro-controller to read every 
message which occurs on the network and analyse its 
content. Therefore, we developed a scheme specifically 
for systems composed from low performance 
controllers. The basic idea is to map an event channel, 
characterized by its UID to the low level addressing 
mechanisms of the network. This enables event routing 
and filtering on the level of the communication 
controllers and frees the CPU from the time consuming 
task to examine every message and decide whether a 
local application needs this message or not. The CAN-
Bus already supports this concept because the principle 
of operation is close to  subject-based addressing, i.e. 
CAN message identifiers are related to the content of a 
message rather than to a sender or receiver address. In 
a TCP/IP network a more complex approach, based on 
subscription lists has to be adopted. This is described in 
chapter 4.2. 

Our architecture is based on decentralized 
middleware for the publisher/subscriber architecture. 
On every node exists a local Event Channel Handler 
(ECH), which performs filtering for messages and is 
responsible for maintaining and handling event 
channels on the node (see fig.1). The ECH manages the 
local communication controller, filters the message 
stream on the bus and notifies applications on the 
arrival of the respective messages.  

 
 

Figure 1 - UPS Architecture Overview 
  
The ECH also initiates the binding protocol. 

Whenever an application object publishes or 
subscribes, it uses the event channel UID. The ECH 

checks whether this event channel already exists in the 
node and if not, creates the respective data structure. 
Subsequently, the binding to the network related 
addressing mechanism has to be performed.  This 
binding has to be consistent, i.e. all identical UIDs 
which may be used in different nodes should be bound 
to the same low level address in a specific network. For 
this purpose a service called Event Channel Broker 
(ECB) is available. The ECH issues a binding request 
and the ECB returns a network address. The details of 
this operation are network specific and are described in 
the following chapters. It should be noted that the low 
level network address has only to be valid in the local 
network, e.g. the CAN. Therefore, the ECB residing in 
other networks do not need to maintain consistent 
binding information. The ECB also provides a dynamic 
configuration service for CAN to enable a dynamic 
inclusion of new devices in the network. Because low 
level message IDs must be unique in CAN, the ECH  
dynamically assigns unique node IDs. The respective 
configuration protocol is not presented here. The 
principle of operation is described in [KaM99], a more 
detailed technical description can be found in [Cas02].  

4. Implementation for CAN and 
TCP/IP 

The current implementation (see fig. 2) is basically 
composed by a CAN part, a TCP/IP part, and by 
gateways that connect the networks. Note that our 
architecture allows to have many CAN sub-networks 
interconnected by a TCP/IP network resulting in a 
WAN-of-CANs network structure. 
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Figure 2 - Implementation Overview 

 
From the point of view of an application the 

communication infrastructure provides the same 
services both for application objects running on TCP/IP 
nodes and CAN nodes. There is an ECH (Event 
Channel Handler) in each node that provides all the 
support for local objects and an ECB (Event Channel 
Broker) running on a TCP/IP node that provides 
binding information for the TCP/IP nodes. There is 
also an ECB for the CAN network which in our 
implementation is provided by the gateway. Thus, the 
gateway is a special component that can be seen as a 
"two-faced" ECH, one side for the CAN network and 



one for the TCP/IP network. It has to be noted that an 
ECB is required in every network which is separated 
by a gateway to cope with different, independent 
addressing schemes. However, there is no 
communication needed between the ECBs to keep 
binding information consistent. Because a gateway 
always acts like an ECH for every network, 
publications and subscriptions are automatically 
routed. 

4.1 UPS on CAN 
The communication over the CAN bus is supported 

by the local ECH and the CAN-ECB, which in our 
approach is performed by the gateway. A 29-bit CAN 
message identifier (CAN 2.0 B specification) is divided 
in three fields for event messages. One of the fields, 
which is a 14-bit field called etag, identifies the event 
channel. A second field (TxNode with 7 bits), which 
contains a node identification, is added to ensure the 
uniqueness of the CAN identifier. Additionally, there is 
the 8 bit priority field with that is reserved for message 
scheduling. UPS allows the dynamic binding of CAN 
message IDs to event UIDs and the dynamic 
configuration of the CAN nodes. On start up or when 
integrated in a CAN system, each node connected to 
CAN needs a unique node identifier to assure the 
uniqueness of CAN messages. A specific configuration 
protocol assigns this short node ID (the TxNode). The 
details of the protocol can be found in [Wal01]. Once 
the CAN node has its TxNode-ID, it can start 
subscribing and publishing to event channels. To 
subscribe to an event channel an application object 
uses the subscribe primitive (see section 5.3), where 
the event channel identifier (a 64-bit unique identifier) 
must be provided.  

 
 

Figure 3 - Event Message 
 
In a similar way, an application object can use 

unsubscribe to remove its subscription. Finally, to 
publish an event to a certain channel, an application 
uses the publish primitive, where the event channel 
identifier and the optional data (at most 8 bytes) related 
to the event are provided.  

 
The publish, subscribe, and unsubscribe requests are 

handled by the local ECH. If a request is made upon a 
channel that has not been locally used before, the ECH 
first requests an etag to the ECB. After this, the ECH is 
able to recognize (by the etag field of the CAN 
identifier) and filter out relevant messages broadcasted 
on the CAN bus. Filtering may exploit the filter mask 
mechanism which is available on most CAN-
controllers. However, due to largely different 
properties of the CAN controllers, the problem of 

configuring the arbitration and mask registers has to be 
performed in an application and hardware specific way. 
If an application needs to subscribe to a large number 
of channels, we therefore do not use the specific 
controller features for hardware filtering. Because these 
applications usually run on more powerful controllers, 
it is feasible to examine every message and perform the 
filtering in the ECH as indicated by our measurements 
in chapter 6. Smart sensors or actuators however may 
have rather restricted CPU performance and may need 
to selectively receive only the specific CAN messages. 
On the other hand, they only require to subscribe to a 
few channels. In this case, subscription and all bindings 
have to be performed eagerly during the configuration 
phase as part of an initialization procedure. For 
notification, the ECH maintains a local subscriber list.  
Whenever a new event is published the ECH checks 
whether the related channel is in the list and takes the 
respective actions.  

When a message is published by an application 
object, the ECH checks its subscriber list for other 
local objects interested in the respective event channel 
and sends a copy of the event to them. Furthermore, all 
events published by a local application object are 
broadcasted on CAN bus, so that other CAN nodes and 
the TCP/IP part will be able to receive this event 
messages (as it is explained in the section 5.1.3).  

 

4.2 UPS on TCP/IP 
As in the CAN specific part, the communication in 

the TCP/IP part of the network is supported by the 
local ECH and also by a TCP/IP-ECB. Since the 
TCP/IP is a point-to-point protocol, nodes are 
identified by their IP numbers and event channels by 
their UID's. An application uses the same interface, 
namely subscribe, unsubscribe, and publish  to 
respectively request a subscription, to cancel a 
subscription, and to publish to an event channel. As 
before, the local ECH handles all these operations. 
Whenever an application object subscribes to a channel 
the local ECH adds the application in the list of 
interested applications for the specified channel. The 
ECH sends a message to the TCP/IP-ECB requesting 
the subscription to a channel. Then, the TCP/IP-ECB 
adds the IP number of the subscribing node in a global 
list that relates publishers and subscribers with event 
channels. There is a list for every event channel which 
contains all subscribers. Thus, when an application 
publishes an event, the local ECH uses its local channel 
list to send the event message to every node on the list.  

Priority TxNode etag Unspecified
CAN Identifier DATA 0 ... DATA 7

4.3 The Gateway 
The gateway enables applications to receive event 

messages published to the respective event channel 
anywhere in the WAN-of-CANs network. This 
capability must be provided transparently by the 
communication architecture. The gateway has to 
support two directions of event flow: TCP/IP-to-CAN-



Bus and CAN-Bus-to-TCP/IP. The gateway behaves 
exactly like an ECH to the CAN-Bus and the TCP/IP 
network. In the direction TCP/IP-to-CAN-Bus, the 
gateway maintains a list of all event channels serviced 
by publishers in the TCP/IP network for which there 
are subscriptions from objects residing in the CAN 
system. The gateway hence appears like an ordinary 
ECH in all registries of the respective event channels. 
For event flows from CAN-Bus to the TCP/IP network, 
the gateway maintains an ECH registry for each event 
channel serviced by a publisher on the CAN-Bus. A 
benefit from this scheme is that event messages 
published on the TCP/IP part only will be broadcasted 
to the CAN bus when a CAN node has subscribed to 
the respective event channel. Similarly, event messages 
broadcasted on CAN bus will be disseminated by the 
gateway only for  subscribers on the TCP/IP network. 
Hence the gateway also acts as a filter preventing the 
CAN clusters from being flooded by the messages on 
the TCP/IP network. 

4.4 Versions of the UPS middleware 
Our current implementation of the communication 

middleware is available for Linux, RTLinux 3.1 
[RTL02], and for the 16-bit Siemens C167 
microcontroller [SIE96]. On the C167 two versions are 
provided: one running on a simple executive developed 
on our department and a standalone version on the bare 
silicon. The Linux version supports both TCP/IP and 
CAN networks, however, no real-time behaviour is 
enforced. For the CAN-Bus, where we intend to 
provide scheduling capabilities and increased 
communication predictability we developed the 
middleware for RTLinux and the C167. The Linux and 
RTLinux implementations are currently running in 
desktop PCs, laptops and Compaq iPAQ. Wireless 
802.11 connections are used for mobile operation. Our 
CAN implementations currently uses SJA1000 CAN 
controllers2.  

4.5 The Application Programmable Interface (API) 
An API composed by a set of functions and 

structures is provided for applications. Since there are 
implementations for three different systems the API 
has two slightly different forms: one for Linux and 
another for RTLinux/C167. This is because there are 
no sockets available in RTLinux and on the C167 
implementations So, since all tasks (or threads) share 
the same address space in this operating systems the 
objects and the local ECH communicate each other 
trough direct addressing provided by an special 
interface. Because these details are not relevant for this 
paper, we only present the Linux API. The interested 
reader is referred to [Cas02]. The Linux Interface 
consists of a set of 4 functions: 

                                                           
2 The hardware consists of "CAN-dongles" (www.phytec.de) which 

are connected to the parallel port. Linux drivers for this hardware 
was also developed and are available from the authors. 

1.  int publish(msg_obj *message 
2. int subscribe(u_int64_t channel) 
3. int unsubscribe(u_int64_t channel) 
4. msg_obj *get_msg(msg_obj *message)). 
The function 1. used to publish and event.  The 

event channel and the message content is described in a 
msg_obj structure which is described below: The 
functions subscribe and unsubscribe are similar. The 
msg_obj structure is composed from a 64-bit channel 
identifier, the data length, and the message data 
part(max. 8 bytes due to CAN restrictions). 

typedef struct { 
 u_int64_t channel;  
 int len;  
 unsigned char data[8];  
 } msg_obj; 
 

4.6 Test Environment 
One of the motivations of the prototype 

implementation was to use it in a mobile robot scenario 
and obtain quantitative results with respect to memory 
footprint and performance parameters. No optimization 
of the implementation has been done yet. Our current 
test environment is composed by a set of hardware 
platforms running different versions of the 
publisher/subscriber implementation. There are PCs 
with Linux connected by 100Mbit Ethernet and 
Compaq iPAQ's with wireless Ethernet PC-Cards that 
can use an access point to communicate with the local 
network. There is also a gateway connected both to a 
TCP/IP network and a CAN network where a set of 
C167 boards can be attached. A view of this 
environment is shown on the Fig.4. 

 
 

Fig. 4 -Environment Overview 
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6.  Measurements 

To better estimate the suitability of  UPS, we needed 
to perform measurements. Particularly interesting were 
the time the protocol requires on the different platforms 
supporting UPS. The performance of the current 



implementations for Linux, RTLinux, and the C167 
have been assessed by measurements of local and end-
to-end latencies and round-trip delays. All 
measurements for Linux and RTLinux have been done 
in Pentium III computers (800 MHz) and 
measurements for C167 on a micro-controller board 
with a 20Mhz clock. 

We first measured the local latencies for CAN bus, 
defined by the delay between the message arrival at the 
node and the delivery of the event by all the local 
subscribers. This delay includes the processing time 
used by the CAN driver and the ECH as well as the 
time necessary for scheduling and all the necessary 
context switches. Measurements use the system clock 
for timestamps in the RTLinux version and a hardware 
timer in the case of the C167. The measurements on 
CAN were performed with maximum transmission rate 
of 1Mbit/s and messages with a payload of 1 data byte. 
Results were obtained taking 100 samples (see table 3) 
and calculating the average, the best case, and the 
worst case. From the results on table 3, we can see that 
an additional subscriber adds around additional 5µs in 
RTLinux, and ~ 800µs on the C167. The observed jitter 
is around 15µs for RTLinux, 47µs for C167 stand 
alone, and 35µs on the C167 with executive.  The 
larger times in the stand-alone version comes from the 
busy waiting loop rather than a notification by the OS 
in the other C167 version. Additionally, in the C167 
version, the CAN driver needs around 90µs and 
because we use the interrupt of a successful 
transmission on the CAN-Bus, another 70µs for the 
transmission time have to be considered for the results. 
Thus, to obtain the time which is spent in the ECH 
these latencies have to be subtracted. Most of the ECH 
time is used for the sequential table look-up for e-
tag/UID matching. 

Since the transmission of a CAN message takes an 
amount of time in the order of 100us, the RTLinux is 
able to handle every message published on the bus. 
However, in the case of the C167 on both versions, 
stand alone and with executive, some constraints are 
visible. In the stand alone version only around 1400 
messages per second can be handled and 540 messages 
per second in the version with executive. In a worst 
case scenario, where event messages are broadcasted to 
CAN bus with maximum rate, the C167 will not be 
able to handle and/or timely deliver every event to 
local subscribers. 

 
# of  

subscribers 

RTLinux 

min/average/max 

[µs] 

C167 stand alone 

min/average/max 

 [µs] 

C167 with executive 

min/average/max 

 [µs] 

1 15.8 / 17.5 / 30.4 674 / 697 / 721 1815 / 1849 / 1851 

2 20.5 / 22.6 / 36.1 - 2604 / 2629 / 2640 

3 25.4 / 27.9 / 42.1 - 3396 / 3419 / 3424 

4 30.9 / 34.3 / 48.9 - 4183 / 4212 / 4223 

Table 3 - Local latency (Notification) 

The local latency for publishing, which is the delay 
between a publish request and the actual transmission 
to the CAN-Bus is depicted in table 4. Again, the  
latencies were calculated using the system clock as 
reference in the case of the RTlinux and a specific 
timer in the C167. The results show a small jitter on 
RTLinux (7us), C167 stand alone (79us), and C167 
with executive (19us).  The relative large worst case 
time on the C167 stand alone version seems to be an 
artefact of the implementation. As can be concluded 
from the low variation between the best case and the 
average case, the worst case only rarely occurs. At the 
moment, we do not have an explanation and further 
investigate the reasons for that. As in the previous 
measurement, the driver latency and the transmission 
time on the CAN-Bus are comprised in the measured 
times for the C167. 

 
RTLinux 

min/average/max 
[µs] 

C167 stand alone 
min/average/max [µs] 

C167 with executive 
min/average/max [µs] 

150 / 153 / 157 375 / 376 / 454 822 / 823 / 841 
Table 4 - Local "Publish" latency for CAN  

Because the lack of a sufficiently precise global 
time, we were not able to measure  end-to-end latencies 
between CAN and TCP/IP directly. Thus, to assess the 
delays between CAN bus and TCP/IP we used round-
trip measurements. Fig. 5 sketches the measurement 
set-up.  For comparison reasons a local round-trip and 
a round trip involving two different TCP/IP nodes and 
the network delay are presented.  
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Figure 5 - Measurement Environment 

 
As can be seen from the table, the best case and the 

average case are pretty close together. The worst case 
for a CAN to TCP/IP round-trip sometimes exhibits 
substantial deviations. From this, we can conclude that 
the worst case is due to some rare events, which, 
however, have to be considered when aiming at a 
predictable system. Because there was no additional 
load on the bus during the measurements, the large 
variations result from the low predictability of the 
communication through TCP/IP under the (normal) 
Linux operating system. This is particularly obvious in 
the case where the gateway is involved. The average 
time is about four times as long as the case where no 
gateway has to be crossed which is reasonable because 
the gateway just behaves as an additional node which is 
involved in both direction of the roundtrip.  



 
 
 
 
 

Publisher on host Crossing the 

Gateway 

Subscriber on 

host 

Round trip 

min/average/max 

[µs] 

PC1 no PC1 361 / 421 / 493 

PC1 no PC2 981 / 1020 / 1083 

PC1 yes C167-1 4060 / 4099 / 4323 

C167-1 yes PC1 4204 / 4350 / 6068 

C167-1 no PC3 (RTLinux) 3757 / 3769 / 3772 

PC3 (RTLinux) No C167-1 3781 / 3808 / 3821 

PC1 yes PC3 (RTLinux) 1103 / 1248 / 2910 

 
Table 5 - Round trip latencies  

 
6.1 Code Size 
The table 6 shows the code size of each of the 

implementations. Although not being a restriction in 
PC's, code size is an important issue for micro-
controller based applications. As can be seen in table 6, 
the implementations for the C167, both with and 
without executive have very small code size. 
Considering a C167 board with a 256KB ROM, for 
instance, the full publisher/subscriber implementation 
would occupy only 2% of the available memory. 

 
 ECB for  

TCP/IP 

ECH for  

TCP/IP 

ECH for 

 CAN 

Gateway 

Linux 47.1KB 52.8KB 44.9KB 177.1KB 

RTLinux - - 308.3KB  (1) - 

C167  

stand alone 

- - 5.7KB  (2) - 

C167  

with executive 

- - 7.1KB (3) - 

Table 6 - Code Size 

(1) This includes 161.2KB of the main part and 
147.1KB of the ring buffer. 

(2) A ROMmable file with CAN driver is around 
10.7KB. 

(3) A complete system for the C167 results in a 
ROMmable file with approx. 13KB, including CAN 
driver and the small OS. 

7 Conclusion 

The paper describes an architecture and system 
support for a publisher subscriber protocol which 
allows to seamlessly integrate smart sensors and 
actuators in a large network. Clusters of such 
components, internally using a CAN-Bus are 
interconnected via a TCP/IP network resulting in a 
WAN-of-CAN structure. Applications can 
communicate via a uniform interface allover the 

network. As a test scenario, we use the protocol in 
our mobile robots which communicate over TCP/IP 
in a wireless IEEE 802.11 network. Smart devices 
can just subscribe to any sensor, like speed sensors, 
distance sensors, acceleration sensors or to smart  
optical devices [KaS01]. We use handheld Linux 
palmtops to monitor and remotely control these 
robots. In the future, we intend to exploit the 
protocol features for distributed sensor fusion, 
including multiple robots. One of the requirements 
for the protocol was the suitability for connecting 
embedded controllers. The measurements show the 
memory footprint and performance characteristics 
of the protocol. The memory footprint is 
sufficiently small to use the middleware also in 
small micro-controllers. We currently investigate 
the feasibility of the protocol for 8-Bit embedded 
controllers. Latencies and delays of messages will 
be a problem, when they exceed the minimum 
message transfer time. This means, that the node is 
no longer able to receive messages at the maximum 
transfer rate. This problem occurs for the micro-
controller version of the middleware. However, this 
problem is not unique for our protocol and has to be 
solved by appropriate planning and scheduling 
mechanisms.  
At present, there are no such mechanisms like 
timeliness guarantees included in UPS. For the 
CAN networks, we intend to integrate the 
scheduling and fault-tolerance mechanisms which 
we developed previously [LKJ99], [KaL99]. The 
way in which we use the CAN-Bus by UPS, 
particularly the structure of the CAN-IDs, allows an 
orthogonal treatment of naming and scheduling 
issues. For the communication over a wide area 
network, we plan to replace the TCP/IP protocol by 
a timely reliable broadcast for a tight cooperation of 
clusters and awareness mechanisms [CMV01] for 
wide area communication. 
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