
A Publisher/Subscriber Architecture Supporting Interoperability of the CAN-

Bus and the Internet
Jörg Kaiser

University of Ulm
Dept. of Computer Structures

Ulm, Germany
kaiser@informatik.uni-ulm.de

Cristiano Brudna
University of Ulm

Dept. of Computer Structures
Ulm, Germany

Cristiano.brudna@informatik.uni-ulm.de

Abstract

The paper describes a publisher/subscriber protocol
and the respective system support tailored for systems
which comprise a large number of smart sensors and
actuators. These components directly interact to form a
reactive control layer. To support large systems
structured in clusters of tightly interacting components,
we provide interoperability between the fieldbus (CAN)
level and a TCP/IP network to allow cooperation
between these "islands of control" over a larger area
and wireless connections. This requires middleware
support which enables the seamless integration of the
different networks and provide a uniform
communication interface. Finally, the system support
requires lightweight mechanisms achieving a memory
footprint and performance requirements suitable to run
on a wide range of controllers.

1. Introduction

Future control systems may include a large number
of cooperating smart devices which may comprise
sensor components, computational devices and a
network interface. The built-in computational
component enables the implementation of a well-
defined high level interface that does not just provide
raw transducer data, but a pre-processed, application-
related set of process variables. Consequently, the
interfaces and the functions of these smart components
may include functions related to overall control,
supervision, and maintenance issues. Perhaps the most
interesting and challenging property of these intelligent
devices is their ability to spontaneously interact with
the overall system. This enables a modular system
architecture in which smart autonomous components
co-operate to control physical processes without the
need of a central co-ordination facility.

Our system model assumes smart components
which may range from powerful workstations to low-
end micro controllers. They cooperate over a hierarchy
of networks. In general, the communication
infrastructure structure can be viewed as a WAN-of-

CANs1 [VCC02], in which a wide area network
(WAN) connects "islands of tight control". The control
clusters are interconnected by a controller area network
in a general sense. There are a number of goals which
we want to reach for the control system architecture:
1.Components of the network are autonomous.

Autonomy means that each component is in its
own sphere of control and no control signal
crosses the boundary of a component. Hence,
components only interact on the basis of shared
information as e.g. proposed in the data field
architecture in Autonomous Decentralized
Systems [MOR93].

2.The architecture should support many-to-many
communication patterns. A typical situation is that
the information gained from a sensor can be used
and analyzed in more than one place, e.g., the
output of a distance on a mobile robot is
interesting for reactive motor control implemented
on a small micro-controller as well as for long
term navigation strategies implemented on a more
powerful device.

3.Communication is spontaneous rather than initiated
by a client request. The smart components have to
react to external events or are periodically
triggered by a local clock. This is well captured by
a generative communication model.

 A direct consequence of the spontaneous
communication is the producer/consumer style of
interaction. While popular high level communication
models are often based on the request/reply style of a
client/server relation, this seems to be less appropriate
in a control environment [PBV01]. We developed a
publisher/subscriber protocol which supports a
producer/consumer model and reflects the requirements
defined above. The benefits of a publisher/subscriber
protocol for control applications have been pointed out
in [OPS93],[PAR97] and [RAJ95]. They centre around
the ease of programming, extensibility and scalability
arguments. To support interoperability between mobile
entities across multiple networks, it is most important
that in such a protocol it is content-based routing of
messages, i.e. the subscriber has to specify what kind
of information it wants to receive rather than

1 CAN is used in a general sense here. Later in the paper we refer to

the CAN-Bus , a specific fieldbus for automotive and industrial
applications.

specifying a particular producer which may not be
known at design time. However, content-based routing
has a substantial drawback concerning the overhead.
There is in general no simple way for a controller to
filter the message stream for the information it has
subscribed for. Therefore, a binding mechanism
between the contents of a message and the respective
addressing mechanism of the network has to be
introduced, i.e. the content of a message has to be
related to a network address. This allows the filtering
to be performed by the respective communication
controller hardware. Because different network
addresses have to be bound to the same message
content (when delivered by multiple producers) and
different networks may use different addressing
mechanisms, this binding has to be performed
dynamically. A description of the basic problems of
implementing the publisher/subscriber protocol on
CAN (CAN 2.0 [BOS91]) has been published in
[KaM99]. In this paper we focus on:

1. The problems to accommodate a single high
level communication paradigm in a
decentralized system composed from nodes
with widely differing computational
capabilities.

2. The problem of integrating networks with
different properties concerning network
topology and the addressing mechanisms.

3. Assessing the basic performance and memory
requirements for the protocol.

We will present the components of the middleware
architecture which provide interoperability between
CAN-BUS and TCP/IP networks. The protocol runs
under Linux and RT-Linux for more powerful
computers and on a proprietary kernel for a 16-Bit
micro controller.

In the next chapter, we compare related work . Then
we will introduce the basic architecture for the our
proposed publisher/subscriber protocol which we
called UPS (Ulm Publisher/Subscriber protocol) in
chapter 3. Chapter 4 describes the implementation of
the communication infrastructure. In chapter 5 we
present measurements to assess the basic performance
and memory characteristics of the implementation.
Finally, chapter 6 concludes the paper.

2. Related Work

There are many elaborated concepts and mechanisms
to provide predictable MAC-layer protocols for the
CAN-Bus [TiB94], [ZuS95], [AFF99], [LKJ99],
[FMD02], [TTC02]. However, less work is available
for the higher level communication and for the
interoperability between different networks.
Concerning interoperability, there is work on
integrating wireless communication media and field
busses [KVA02], [ATV02]. This work however,
maintains the basic fieldbus protocols (CAN [KVA02]
and ProfiBus [ATV02]) and adapts the temporal

characteristics to a wireless link. Therefore, this is
more intended as a replacement for wired connections
than for a integration with wider area networks and
their standard protocols. The company IXXAT
[IXX02] provides a product which links a CANopen
network to TCP/IP. But also in this approach the
CANopen master handles all communications for its
slaves. Thus, there is no seamless integration of smart
sensor or actor components in a general wide area
communication scheme.

In the area of publisher/subscriber protocols there is
also a substantial amount of research ranging from
experimental systems [HLS97], [Maf97], to
commercial products [OPS93], [PAR97], [TAL02],
and standards [NSS00]. Most of them are devoted to
dynamic large scale distributed systems. They are not
suited nor intended for real-time applications in which
tiny smart components directly interact. Particularly,
they do not meet the requirements coming from the
restrictions in processor performance and network
bandwidth which are principal design constraints for
our protocol. The publisher/subscriber protocols which
specifically have been developed for real time
applications are the real-time publisher/subscriber
protocol [RAJ95], the commercial NDDS [PAR97] and
a protocol for the CAN-Bus [KIM00]. None of the
protocols supports a direct interoperability between the
CAN-Bus and the Internet world.

Rajkumar et al. [RAJ95] present a subject-based
Publisher/ Subscriber protocol which handles all inter-
process communications in the distributed system. The
target systems for the real-time P/S protocol are more
powerful computing nodes with a standard operating
system and a IP network. A migration path or an
interaction model with respect to smaller systems is not
addressed.

A CORBA for CAN-based systems is presented in
[KIM00]. It supports both subscription-based group
communication as well as point-to-point
communication with the CAN 2.0A standard. Here an
application object subscribes and publishes to channels,
which are related to a certain subject and identified by
a unique binary number. This implementation has the
disadvantage of having a special version of the inter-
ORB (GIOP) protocol developed for CAN that is not
compatible with other ORB implementations, thus
compromising the interoperability of the system.

The Network Data Delivery Service (NDDS)
[PAR97] is a commercial implementation of the (real-
time) publisher/subscriber model. Again, the protocol
is intended to run on PC-workstations over an IP-
network rather than on small controllers.

3. The UPS Architecture

The UPS architecture is based on the concept of
event channels [KaM99]. An event channel is related to
the content of an event represented by the subject of
this event [OPS93]. Applications can publish to a

channel related to the respective subject and they may
subscribe to such a channel. Channels are identified by
a unique identifier (UID), which in our case is a 64-bit
binary number. This UID is used by the application to
communicate. A UID is independent of any addressing
mechanism and identifies a specific event channel
independent of any network specific issues. Although
this is a desirable feature because it allows an
unambiguous identification of an event channel also in
a wide area network, it puts some challenges to a
realization under the anticipated system constraints. It
is hardly feasible on a micro-controller to read every
message which occurs on the network and analyse its
content. Therefore, we developed a scheme specifically
for systems composed from low performance
controllers. The basic idea is to map an event channel,
characterized by its UID to the low level addressing
mechanisms of the network. This enables event routing
and filtering on the level of the communication
controllers and frees the CPU from the time consuming
task to examine every message and decide whether a
local application needs this message or not. The CAN-
Bus already supports this concept because the principle
of operation is close to subject-based addressing, i.e.
CAN message identifiers are related to the content of a
message rather than to a sender or receiver address. In
a TCP/IP network a more complex approach, based on
subscription lists has to be adopted. This is described in
chapter 4.2.

Our architecture is based on decentralized
middleware for the publisher/subscriber architecture.
On every node exists a local Event Channel Handler
(ECH), which performs filtering for messages and is
responsible for maintaining and handling event
channels on the node (see fig.1). The ECH manages the
local communication controller, filters the message
stream on the bus and notifies applications on the
arrival of the respective messages.

Figure 1 - UPS Architecture Overview

The ECH also initiates the binding protocol.

Whenever an application object publishes or
subscribes, it uses the event channel UID. The ECH

checks whether this event channel already exists in the
node and if not, creates the respective data structure.
Subsequently, the binding to the network related
addressing mechanism has to be performed. This
binding has to be consistent, i.e. all identical UIDs
which may be used in different nodes should be bound
to the same low level address in a specific network. For
this purpose a service called Event Channel Broker
(ECB) is available. The ECH issues a binding request
and the ECB returns a network address. The details of
this operation are network specific and are described in
the following chapters. It should be noted that the low
level network address has only to be valid in the local
network, e.g. the CAN. Therefore, the ECB residing in
other networks do not need to maintain consistent
binding information. The ECB also provides a dynamic
configuration service for CAN to enable a dynamic
inclusion of new devices in the network. Because low
level message IDs must be unique in CAN, the ECH
dynamically assigns unique node IDs. The respective
configuration protocol is not presented here. The
principle of operation is described in [KaM99], a more
detailed technical description can be found in [Cas02].

4. Implementation for CAN and
TCP/IP

The current implementation (see fig. 2) is basically
composed by a CAN part, a TCP/IP part, and by
gateways that connect the networks. Note that our
architecture allows to have many CAN sub-networks
interconnected by a TCP/IP network resulting in a
WAN-of-CANs network structure.

TCP/
IP network

Gateway

CAN bus
Node

NodeNode

Node

Node

NodeNode

Gateway

CAN bus
Node

NodeNode

Node

A P O

N o d e

N o d e

N e t w o r k

A P O

E C H

E CE C E C

E C B

C o n f i g u r a t i o n
r e q u e s t

B i n d i n g
r e q u e s t

N o d e

N o d e

E C B : E v e n t C h a n n e l B r o k e r
E C H : E v e n t C h a n n e l H a n d l e r
E C : E v e n t C h a n n e l
A P O : A p p l i c a t i o n O b j e c t

Figure 2 - Implementation Overview

From the point of view of an application the

communication infrastructure provides the same
services both for application objects running on TCP/IP
nodes and CAN nodes. There is an ECH (Event
Channel Handler) in each node that provides all the
support for local objects and an ECB (Event Channel
Broker) running on a TCP/IP node that provides
binding information for the TCP/IP nodes. There is
also an ECB for the CAN network which in our
implementation is provided by the gateway. Thus, the
gateway is a special component that can be seen as a
"two-faced" ECH, one side for the CAN network and

one for the TCP/IP network. It has to be noted that an
ECB is required in every network which is separated
by a gateway to cope with different, independent
addressing schemes. However, there is no
communication needed between the ECBs to keep
binding information consistent. Because a gateway
always acts like an ECH for every network,
publications and subscriptions are automatically
routed.

4.1 UPS on CAN
The communication over the CAN bus is supported

by the local ECH and the CAN-ECB, which in our
approach is performed by the gateway. A 29-bit CAN
message identifier (CAN 2.0 B specification) is divided
in three fields for event messages. One of the fields,
which is a 14-bit field called etag, identifies the event
channel. A second field (TxNode with 7 bits), which
contains a node identification, is added to ensure the
uniqueness of the CAN identifier. Additionally, there is
the 8 bit priority field with that is reserved for message
scheduling. UPS allows the dynamic binding of CAN
message IDs to event UIDs and the dynamic
configuration of the CAN nodes. On start up or when
integrated in a CAN system, each node connected to
CAN needs a unique node identifier to assure the
uniqueness of CAN messages. A specific configuration
protocol assigns this short node ID (the TxNode). The
details of the protocol can be found in [Wal01]. Once
the CAN node has its TxNode-ID, it can start
subscribing and publishing to event channels. To
subscribe to an event channel an application object
uses the subscribe primitive (see section 5.3), where
the event channel identifier (a 64-bit unique identifier)
must be provided.

Figure 3 - Event Message

In a similar way, an application object can use

unsubscribe to remove its subscription. Finally, to
publish an event to a certain channel, an application
uses the publish primitive, where the event channel
identifier and the optional data (at most 8 bytes) related
to the event are provided.

The publish, subscribe, and unsubscribe requests are

handled by the local ECH. If a request is made upon a
channel that has not been locally used before, the ECH
first requests an etag to the ECB. After this, the ECH is
able to recognize (by the etag field of the CAN
identifier) and filter out relevant messages broadcasted
on the CAN bus. Filtering may exploit the filter mask
mechanism which is available on most CAN-
controllers. However, due to largely different
properties of the CAN controllers, the problem of

configuring the arbitration and mask registers has to be
performed in an application and hardware specific way.
If an application needs to subscribe to a large number
of channels, we therefore do not use the specific
controller features for hardware filtering. Because these
applications usually run on more powerful controllers,
it is feasible to examine every message and perform the
filtering in the ECH as indicated by our measurements
in chapter 6. Smart sensors or actuators however may
have rather restricted CPU performance and may need
to selectively receive only the specific CAN messages.
On the other hand, they only require to subscribe to a
few channels. In this case, subscription and all bindings
have to be performed eagerly during the configuration
phase as part of an initialization procedure. For
notification, the ECH maintains a local subscriber list.
Whenever a new event is published the ECH checks
whether the related channel is in the list and takes the
respective actions.

When a message is published by an application
object, the ECH checks its subscriber list for other
local objects interested in the respective event channel
and sends a copy of the event to them. Furthermore, all
events published by a local application object are
broadcasted on CAN bus, so that other CAN nodes and
the TCP/IP part will be able to receive this event
messages (as it is explained in the section 5.1.3).

4.2 UPS on TCP/IP
As in the CAN specific part, the communication in

the TCP/IP part of the network is supported by the
local ECH and also by a TCP/IP-ECB. Since the
TCP/IP is a point-to-point protocol, nodes are
identified by their IP numbers and event channels by
their UID's. An application uses the same interface,
namely subscribe, unsubscribe, and publish to
respectively request a subscription, to cancel a
subscription, and to publish to an event channel. As
before, the local ECH handles all these operations.
Whenever an application object subscribes to a channel
the local ECH adds the application in the list of
interested applications for the specified channel. The
ECH sends a message to the TCP/IP-ECB requesting
the subscription to a channel. Then, the TCP/IP-ECB
adds the IP number of the subscribing node in a global
list that relates publishers and subscribers with event
channels. There is a list for every event channel which
contains all subscribers. Thus, when an application
publishes an event, the local ECH uses its local channel
list to send the event message to every node on the list.

Priority TxNode etag Unspecified
CAN Identifier DATA 0 ... DATA 7

4.3 The Gateway
The gateway enables applications to receive event

messages published to the respective event channel
anywhere in the WAN-of-CANs network. This
capability must be provided transparently by the
communication architecture. The gateway has to
support two directions of event flow: TCP/IP-to-CAN-

Bus and CAN-Bus-to-TCP/IP. The gateway behaves
exactly like an ECH to the CAN-Bus and the TCP/IP
network. In the direction TCP/IP-to-CAN-Bus, the
gateway maintains a list of all event channels serviced
by publishers in the TCP/IP network for which there
are subscriptions from objects residing in the CAN
system. The gateway hence appears like an ordinary
ECH in all registries of the respective event channels.
For event flows from CAN-Bus to the TCP/IP network,
the gateway maintains an ECH registry for each event
channel serviced by a publisher on the CAN-Bus. A
benefit from this scheme is that event messages
published on the TCP/IP part only will be broadcasted
to the CAN bus when a CAN node has subscribed to
the respective event channel. Similarly, event messages
broadcasted on CAN bus will be disseminated by the
gateway only for subscribers on the TCP/IP network.
Hence the gateway also acts as a filter preventing the
CAN clusters from being flooded by the messages on
the TCP/IP network.

4.4 Versions of the UPS middleware
Our current implementation of the communication

middleware is available for Linux, RTLinux 3.1
[RTL02], and for the 16-bit Siemens C167
microcontroller [SIE96]. On the C167 two versions are
provided: one running on a simple executive developed
on our department and a standalone version on the bare
silicon. The Linux version supports both TCP/IP and
CAN networks, however, no real-time behaviour is
enforced. For the CAN-Bus, where we intend to
provide scheduling capabilities and increased
communication predictability we developed the
middleware for RTLinux and the C167. The Linux and
RTLinux implementations are currently running in
desktop PCs, laptops and Compaq iPAQ. Wireless
802.11 connections are used for mobile operation. Our
CAN implementations currently uses SJA1000 CAN
controllers2.

4.5 The Application Programmable Interface (API)
An API composed by a set of functions and

structures is provided for applications. Since there are
implementations for three different systems the API
has two slightly different forms: one for Linux and
another for RTLinux/C167. This is because there are
no sockets available in RTLinux and on the C167
implementations So, since all tasks (or threads) share
the same address space in this operating systems the
objects and the local ECH communicate each other
trough direct addressing provided by an special
interface. Because these details are not relevant for this
paper, we only present the Linux API. The interested
reader is referred to [Cas02]. The Linux Interface
consists of a set of 4 functions:

2 The hardware consists of "CAN-dongles" (www.phytec.de) which

are connected to the parallel port. Linux drivers for this hardware
was also developed and are available from the authors.

1. int publish(msg_obj *message
2. int subscribe(u_int64_t channel)
3. int unsubscribe(u_int64_t channel)
4. msg_obj *get_msg(msg_obj *message)).
The function 1. used to publish and event. The

event channel and the message content is described in a
msg_obj structure which is described below: The
functions subscribe and unsubscribe are similar. The
msg_obj structure is composed from a 64-bit channel
identifier, the data length, and the message data
part(max. 8 bytes due to CAN restrictions).

typedef struct {
 u_int64_t channel;
 int len;
 unsigned char data[8];
 } msg_obj;

4.6 Test Environment
One of the motivations of the prototype

implementation was to use it in a mobile robot scenario
and obtain quantitative results with respect to memory
footprint and performance parameters. No optimization
of the implementation has been done yet. Our current
test environment is composed by a set of hardware
platforms running different versions of the
publisher/subscriber implementation. There are PCs
with Linux connected by 100Mbit Ethernet and
Compaq iPAQ's with wireless Ethernet PC-Cards that
can use an access point to communicate with the local
network. There is also a gateway connected both to a
TCP/IP network and a CAN network where a set of
C167 boards can be attached. A view of this
environment is shown on the Fig.4.

Fig. 4 -Environment Overview

Gateway

C167 C167 C167

IPAQ

PC

IPAQ

Ethernet

CAN- Bus

802.11

TCP/IP

PC PC

PCPC

6. Measurements

To better estimate the suitability of UPS, we needed
to perform measurements. Particularly interesting were
the time the protocol requires on the different platforms
supporting UPS. The performance of the current

implementations for Linux, RTLinux, and the C167
have been assessed by measurements of local and end-
to-end latencies and round-trip delays. All
measurements for Linux and RTLinux have been done
in Pentium III computers (800 MHz) and
measurements for C167 on a micro-controller board
with a 20Mhz clock.

We first measured the local latencies for CAN bus,
defined by the delay between the message arrival at the
node and the delivery of the event by all the local
subscribers. This delay includes the processing time
used by the CAN driver and the ECH as well as the
time necessary for scheduling and all the necessary
context switches. Measurements use the system clock
for timestamps in the RTLinux version and a hardware
timer in the case of the C167. The measurements on
CAN were performed with maximum transmission rate
of 1Mbit/s and messages with a payload of 1 data byte.
Results were obtained taking 100 samples (see table 3)
and calculating the average, the best case, and the
worst case. From the results on table 3, we can see that
an additional subscriber adds around additional 5µs in
RTLinux, and ~ 800µs on the C167. The observed jitter
is around 15µs for RTLinux, 47µs for C167 stand
alone, and 35µs on the C167 with executive. The
larger times in the stand-alone version comes from the
busy waiting loop rather than a notification by the OS
in the other C167 version. Additionally, in the C167
version, the CAN driver needs around 90µs and
because we use the interrupt of a successful
transmission on the CAN-Bus, another 70µs for the
transmission time have to be considered for the results.
Thus, to obtain the time which is spent in the ECH
these latencies have to be subtracted. Most of the ECH
time is used for the sequential table look-up for e-
tag/UID matching.

Since the transmission of a CAN message takes an
amount of time in the order of 100us, the RTLinux is
able to handle every message published on the bus.
However, in the case of the C167 on both versions,
stand alone and with executive, some constraints are
visible. In the stand alone version only around 1400
messages per second can be handled and 540 messages
per second in the version with executive. In a worst
case scenario, where event messages are broadcasted to
CAN bus with maximum rate, the C167 will not be
able to handle and/or timely deliver every event to
local subscribers.

of

subscribers

RTLinux

min/average/max

[µs]

C167 stand alone

min/average/max

 [µs]

C167 with executive

min/average/max

 [µs]

1 15.8 / 17.5 / 30.4 674 / 697 / 721 1815 / 1849 / 1851

2 20.5 / 22.6 / 36.1 - 2604 / 2629 / 2640

3 25.4 / 27.9 / 42.1 - 3396 / 3419 / 3424

4 30.9 / 34.3 / 48.9 - 4183 / 4212 / 4223

Table 3 - Local latency (Notification)

The local latency for publishing, which is the delay
between a publish request and the actual transmission
to the CAN-Bus is depicted in table 4. Again, the
latencies were calculated using the system clock as
reference in the case of the RTlinux and a specific
timer in the C167. The results show a small jitter on
RTLinux (7us), C167 stand alone (79us), and C167
with executive (19us). The relative large worst case
time on the C167 stand alone version seems to be an
artefact of the implementation. As can be concluded
from the low variation between the best case and the
average case, the worst case only rarely occurs. At the
moment, we do not have an explanation and further
investigate the reasons for that. As in the previous
measurement, the driver latency and the transmission
time on the CAN-Bus are comprised in the measured
times for the C167.

RTLinux

min/average/max
[µs]

C167 stand alone
min/average/max [µs]

C167 with executive
min/average/max [µs]

150 / 153 / 157 375 / 376 / 454 822 / 823 / 841
Table 4 - Local "Publish" latency for CAN

Because the lack of a sufficiently precise global
time, we were not able to measure end-to-end latencies
between CAN and TCP/IP directly. Thus, to assess the
delays between CAN bus and TCP/IP we used round-
trip measurements. Fig. 5 sketches the measurement
set-up. For comparison reasons a local round-trip and
a round trip involving two different TCP/IP nodes and
the network delay are presented.

PC 1

Gateway

C167- 1

TCP/IP

CAN- Bus

PC 2

C167- 2

PC 3

Figure 5 - Measurement Environment

As can be seen from the table, the best case and the

average case are pretty close together. The worst case
for a CAN to TCP/IP round-trip sometimes exhibits
substantial deviations. From this, we can conclude that
the worst case is due to some rare events, which,
however, have to be considered when aiming at a
predictable system. Because there was no additional
load on the bus during the measurements, the large
variations result from the low predictability of the
communication through TCP/IP under the (normal)
Linux operating system. This is particularly obvious in
the case where the gateway is involved. The average
time is about four times as long as the case where no
gateway has to be crossed which is reasonable because
the gateway just behaves as an additional node which is
involved in both direction of the roundtrip.

Publisher on host Crossing the

Gateway

Subscriber on

host

Round trip

min/average/max

[µs]

PC1 no PC1 361 / 421 / 493

PC1 no PC2 981 / 1020 / 1083

PC1 yes C167-1 4060 / 4099 / 4323

C167-1 yes PC1 4204 / 4350 / 6068

C167-1 no PC3 (RTLinux) 3757 / 3769 / 3772

PC3 (RTLinux) No C167-1 3781 / 3808 / 3821

PC1 yes PC3 (RTLinux) 1103 / 1248 / 2910

Table 5 - Round trip latencies

6.1 Code Size
The table 6 shows the code size of each of the

implementations. Although not being a restriction in
PC's, code size is an important issue for micro-
controller based applications. As can be seen in table 6,
the implementations for the C167, both with and
without executive have very small code size.
Considering a C167 board with a 256KB ROM, for
instance, the full publisher/subscriber implementation
would occupy only 2% of the available memory.

 ECB for

TCP/IP

ECH for

TCP/IP

ECH for

 CAN

Gateway

Linux 47.1KB 52.8KB 44.9KB 177.1KB

RTLinux - - 308.3KB (1) -

C167

stand alone

- - 5.7KB (2) -

C167

with executive

- - 7.1KB (3) -

Table 6 - Code Size

(1) This includes 161.2KB of the main part and
147.1KB of the ring buffer.

(2) A ROMmable file with CAN driver is around
10.7KB.

(3) A complete system for the C167 results in a
ROMmable file with approx. 13KB, including CAN
driver and the small OS.

7 Conclusion

The paper describes an architecture and system
support for a publisher subscriber protocol which
allows to seamlessly integrate smart sensors and
actuators in a large network. Clusters of such
components, internally using a CAN-Bus are
interconnected via a TCP/IP network resulting in a
WAN-of-CAN structure. Applications can
communicate via a uniform interface allover the

network. As a test scenario, we use the protocol in
our mobile robots which communicate over TCP/IP
in a wireless IEEE 802.11 network. Smart devices
can just subscribe to any sensor, like speed sensors,
distance sensors, acceleration sensors or to smart
optical devices [KaS01]. We use handheld Linux
palmtops to monitor and remotely control these
robots. In the future, we intend to exploit the
protocol features for distributed sensor fusion,
including multiple robots. One of the requirements
for the protocol was the suitability for connecting
embedded controllers. The measurements show the
memory footprint and performance characteristics
of the protocol. The memory footprint is
sufficiently small to use the middleware also in
small micro-controllers. We currently investigate
the feasibility of the protocol for 8-Bit embedded
controllers. Latencies and delays of messages will
be a problem, when they exceed the minimum
message transfer time. This means, that the node is
no longer able to receive messages at the maximum
transfer rate. This problem occurs for the micro-
controller version of the middleware. However, this
problem is not unique for our protocol and has to be
solved by appropriate planning and scheduling
mechanisms.
At present, there are no such mechanisms like
timeliness guarantees included in UPS. For the
CAN networks, we intend to integrate the
scheduling and fault-tolerance mechanisms which
we developed previously [LKJ99], [KaL99]. The
way in which we use the CAN-Bus by UPS,
particularly the structure of the CAN-IDs, allows an
orthogonal treatment of naming and scheduling
issues. For the communication over a wide area
network, we plan to replace the TCP/IP protocol by
a timely reliable broadcast for a tight cooperation of
clusters and awareness mechanisms [CMV01] for
wide area communication.

References

 [AFF99] L. Almeida, P. Fonseca, J.A. Fonseca, Z.
Mammeri - "Scheduling and Synchronization
in CAN-based Distributed Systems" ICC'99,
Int. CAN Conference, Turin, Italy, November
1999.

[ATV02] Mário Alves, Eduardo Tovar, Francisco
Vasques, Klaus Roether, Gerhard Hammer:
"Real-Time Communications over Hybrid
Wired/WirelessPROFIBUS-based Networks",
http://www.hurray.isep.ipp.pt/asp/list_docs.as
p

[BOS91] Robert Bosch GmbH, CAN Specification
Version 2.0, September 1991.

[CIA99] Can in Automation (CiA). Canopen -
Application Layer and Communication
Profile. CiA Draft Standard 301, V4.0, 1999

 [Cas02] A. Casimiro (ed.): "Preliminary Definition of
the CORTEX System Architecture",

http://cortex.di.fc.ul.pt/deliverables/WP3-
D4.pdf

[CKI02] CAN Kingdom, http://www.can-
cia.org/cankingdom/

[CMV01] António Casimiro, Pedro Martins, Paulo
Veríssimo and Luís Rodrigues, "Measuring
Distributed Durations with Stable Errors",
Proceedings of the 22nd IEEE Real-Time
Systems Symposium, London, UK,
December 2001.

[FMD02] T. Führer, B. Müller, W. Dieterle, F.
Hartwich, R. Hugel, M. Walther: "Time
Triggered Communication on CAN",

 http://www.can-cia.org/can/ttcan/fuehrer.pdf
[HLS97] T.H. Harrison, D.L. Levine, D.C. Schmidt.

The Design and performance of a Real-time
CORBA Event Service. Proc. of the 12th
Ann. Conference on Object-oriented
Programming, Systems, Languages and
Applications, OOPSLA, Atlanta, USA, 1997.

[KaL99] J. Kaiser, M. A. Livani, "Achieving Fault-
Tolerant Ordered Broadcasts in CAN", Proc.
of the Third European Dependable
Computing Conference (EDCC-3),
Prague,Sep. 1999

[KaM99] Kaiser, J. and M. Mock : "Implementing the
Real-Time Publisher/Subscriber Model on the
Controller Area Network (CAN)", 2nd Int'l
Symposium on Object-Oriented Distributed
Real-Time Computing Systems, San Malo,
May 1999

[KIM00] K. Kim, G. Jeon, S. Hong, T. Kim, and S.

Kim. Integrating Subscription-Based and
Connection-Oriented Communications into
the Embedded CORBA for the CAN Bus. In
IEEE Real-time Technology and Application
Symposium, May 2000.

[KVA02] KVASER: "CAN on Bluetooth",
http://www.kvaser.com/

[LKJ99] M.A. Livani, J. Kaiser, W. Jia : "Scheduling
Hard and Soft Real-Time Communication in
the Controller Area Network (CAN)",
Control Engineering Practice, Vol. 7 Number
12 pp. 1515-1523, Dec. 1999.

[MAF97] S. Maffeis: "iBus - The Java Intranet
Software Bus", Olsen&Associates,
www.olsen.ch, 1997.

[Mor93] K. Mori, " Autonomous decentralized
Systems: Concepts, Data Field Architectures,
and Future Trends", Int. Conference on
Autonomous Decentralized Systems
(ISADS93), 1993.

[NSS00] OMG: CORBA Notification Service
Specification, V1.0, June 2000

[OPS93] B. Oki, M. Pfluegl, A. Seigel, D. Skeen. The
Information Bus® An Architecture for
Extensible Distributed Systems. 14th ACM
Symposium on Operating System Principles,
Ashville, NC, Dec 1993, pp.58-68.

[PAR97] Parado-Castellote, G., Schneider, S., and
Hamilton, M. Ndds. The Real-Time Publish
Subscribe Network. In IEEE Workshop on
Middleware for Distributed Real-Time
Systems and Services, San Francisco, CA,
1997.

[RAJ95] R. Rajkumar, M. Gagliardi, L Sha. The Real-
Time Publisher/Subscribe Inter-Process
Communication Model for Distributed Real-
Time Systems: Design and Implementation.
IEEE Real-time Technology and Applications
Symposium, June 1995.

[RTL02] FSMLabs. The Real Time Linux Project.
www.fsmlabs.com.

[SDS96] Smart Distributed Systems, Application
Layer Protocol Version 2, Honeywell Inc,
Micro Switch Specification GS 052 103 Issue
3, USA, 1996

[SIE96] Siemens AG. C167 Derivatives User's
Manual 03.96 Version 2.0, 1996.

[TAL02] Talarian Corporation. Smart Sockets®,
www.talarian.com.

[TiB94] Tindell, K. and A. Burns : "Guaranteed
Message Latencies for Distributed Safety-
Critical Hard Real-Time Control Networks",
Report YCS229, Department of Computer
Science, University of York, May 1994.

[TTC02] Time-Triggered CAN (TTCAN), CiA (CAN
in Automation), http://www.can-
cia.org/can/ttcan/

[VCC02] P. Verissimo, V. Cahill, A. Casimiro, K.
Cheverest, A. Friday, J. Kaiser: " CORTEX:
Towards Supporting Autonomous an
Cooperating Sentient Entities," in Proc. Of
the European Wireless Conference, Florence,
Italy, March 2002

[ZuS95] Zuberi, K.M., and K.G. Shin:"Non-
Preemptive Scheduling of messages on the
Controller Area Network for Real-Time
Control Applications", Tech. Report,
University of Michigan, 1995

[PBV01] C.E.Pereira, L.B. Becker, C. Villela, C.
Mitidieri, J. Kaiser: "On Evaluating
Interaction and Communication Schemes
for Automation Apllications based on
Real-Time Distributed Objects", Proc. of
the IEEE 4th International Symp. on
Object-Oriented Real-Time Distributed
Computing (ISORC 2001), Magdeburg,
Germany, May 2001

http://Www.fsmlabs.com/

	1. Introduction
	2. Related Work
	3. The UPS Architecture
	4. Implementation for CAN and TCP/IP
	4.1 UPS on CAN
	4.2 UPS on TCP/IP
	4.3 The Gateway
	4.4 Versions of the UPS middleware
	4.5 The Application Programmable Interface (API)
	4.6 Test Environment

	6. Measurements
	7 Conclusion

