
On Evaluating Interaction and Communication Schemes for Automation
Applications based on Real-Time Distributed Objects

Carlos Eduardo Pereira
DELET/UFRGS

Porto Alegre - Brazil
cpereira@delet.ufrgs.br

Joerg Kaiser
University of Ulm
Ulm - Germany

kaiser@informatik.uni-ulm.de

Carlos Mitidieri Claudio Villela
Informatics Institute/PPGC/UFRGS1

Porto Alegre - Brazil
{miti,lbecker,villela}@inf.ufrgs.br

Leandro Buss Becker1;2

OvG Universität Magdeburg2

Institute for Distributed Systems (IVS)
Magdeburg - Germany

Abstract

This paper compares interaction and communication
mechanisms used in distributed control systems, focusing
on object-oriented and component-based development. The
standard communication model used in distributed object-
oriented systems is the remote method invocation. We argue
that this client/server oriented model has some severe draw-
backs when used in a control system where objects may have
to broadcast information, spontaneously communicate envi-
ronmental changes and where control autonomy is a crucial
requirement. Therefore, we compare the traditional way of
object invocation with a port-based scheme and the model
of event channels. An application scenario from robot con-
trol is used to highlight similarities and differences among
these mechanisms.

1 Introduction

Smart sensors and actuators, powered by micro-
controllers and connected via a communication network
support in many ways extensibility, reliability, and cost ef-
fectiveness of large control systems. The built-in compu-
tational component enables the implementation of a well-
defined high level interface that does not just provide raw
transducer data, but a pre-processed, application-related set
of process variables. The communication network repre-
sents on a physical level a standardized interface over which
the devices can exchange information. It can be foreseen
that the technological advances will allow the integration of
such smart devices as a single system-on-a-chip, which may

comprise hardware, software and even mechanical com-
ponents. In essence, each device becomes a configurable
building block, which encapsulates data and behavior, can
be configured by process specific parameters and commu-
nicates process relevant data. Consequently, the interfaces
and the functions of these smart components are not just re-
lated to the raw physical values of the controlled device but
they may include functions related to overall control, super-
vision, and maintenance issues. In such a system, multiple
different sensors will co-operate to augment perception of
the environment and actuators will co-ordinate actions to
increase speed, power and quality of actuation thus forming
virtual sensor and actuator networks. Perhaps the most chal-
lenging property of these intelligent devices is their abil-
ity to spontaneously interact with the overall system. This
enables a modular system architecture in which smart au-
tonomous components co-operate to control a physical pro-
cess without a central co-ordination facility. This property
matches a vital requirement of many real-time systems for
modularity and easy configuration to enable incremental
system evolution. Particularly because the lifetime of real-
time systems is much longer than the fast cycles of tech-
nology, it is of utmost importance that components can be
replaced without changing the entire system. Additionally,
due to the continuous and uninterrupted operation require-
ment of large real-time systems, this reconfiguration should
be made on-line.

The advantages of having such autonomous but co-
operative components should be complemented by design
methods able to exploit the envisaged distributed structure.
Object-oriented design has proven to be one of the key tech-
nologies for the development of large and complex systems.



The key concepts of modularization, information hiding,
and inheritance gave decisive advantages over other soft-
ware design methods. The emphasis is on the development
process, incremental system extension, and better maintain-
ability of software.

Among the existing methods for developing such dis-
tributed, usually embedded, computer-based systems, the
adoption of the concept of distributed objects have been
frequently mentioned in the literature as particularly ade-
quate, particularly due to their modularization and encapsu-
lation characteristics, leading objects to be relatively self-
contained and autonomous. This has an impact on how the
interaction between entities has to be organized. The inter-
action between components comprises communication and
co-ordination and is usually related to the overall system de-
sign method. In object-oriented systems, a prevailing way
of interaction is through remote message invocation. Inter-
action thus is concerned with higher level issues and should
provide an adequate abstraction from the underlying com-
munication network. Since real-time aspects are a key issue
when developing such systems, careful attention has to be
paid to aspects related to their temporal behavior, which is
strongly influenced by the communication patterns adopted.

Another attractive approach to promote flexibility and
adaptability in distributed systems is the use of multi-agent
systems. Like an object, an agent encapsulates state and
methods, but different from it, an intelligent agent has the
autonomy to decide at what time it attends to a request
or even not to attend, although it could be forced by de-
sign to reply to pre-defined query types from particular
agents. This introduces new dimensions to all aspects of
system development, specially regarding communication.
Agents work in a cycle of sensing-knowledge, processing-
reasoning, and reaction-actuation. Messages from other
agents should be accepted through internally controlled per-
ceptual channels, in order to achieve a predictable timing.
Furthermore, to enable the interaction among agents of dif-
ferent capabilities, communication must be defined at sev-
eral levels, with less capable agents using more restrictive
mechanisms. Others factors that influence interaction in
multi-agent systems and may rise different needs are legacy
software and system architecture. In the first case, a trans-
ducer agent could be implemented to translate agent queries
into requests to existing programs. Finally, depending on
the system architecture, agents can communicate directly
or through an inter-mediator, with impact on the binding.

In this paper, three frequently adopted strategies for de-
veloping distributed real-time applications based on the
concept of distributed objects are compared: remote method
invocation [10, 15], port-based communication [3, 8, 14],
and publisher-subscriber [1, 2, 6, 12, 9, 7]. Some additional
comparisons concerning the content based communication
scheme [1, 2, 6, 12, 9, 7] are also found in section 4. The

paper aims to discuss the strengths and weaknesses of each
approach both in terms of their adequacy for modeling as
well as for implementing real-time systems based on dis-
tributed objects.

This paper is organized as follows: next section provides
a more comprehensive description of each of the above
mentioned communication strategies. A case study has
been selected for comparing the different approaches. The
case study and the obtained results are presented on section
three. Section four summarizes a comparison among the
different strategies from the viewpoint of their adequacy to
the development of distributed real-time systems. Section
Five draws the conclusions and outlines directions of future
work.

2 Brief overview on selected communication
mechanisms

When designing an interaction mechanism for a dis-
tributed object-oriented control system where distributed
objects are considered as autonomous and concurrent pro-
cessing units, some important features that should be sup-
ported by the underlying communication infra-structure are:

� Many-to-many communication - This is particularly
important for control systems composed from intelli-
gent sensors and actuators because the output of a sen-
sor may be used by many entities.

� Spontaneous generation of messages triggered by a
timer or by an external event.

� Control autonomy, i.e. co-ordination of activities is
orthogonal to communication.

� Independent design and easy extensibility.

� Long term system evolution with incremental compi-
lation possibilities.

In this section, we evaluate and compare different methods
of high-level object interaction along this line. At first, the
impact of many-to-many communication relations is exam-
ined. After that, it is discussed how spontaneous generation
of messages is realized in the different methods. This is
strongly related to the question of control autonomy. E.g.
in a model relying on a request/reply scheme of interac-
tion, communication and co-ordination are generally more
strictly coupled as in a mechanism which supports an event
driven model. Finally, design issues are discussed, with
emphasis on at what time in the design process and how
communication relationships (sender/receiver) have to be
defined. This can be at design time, configuration time,
run time or even can be omitted at all. Clearly, specifying



communication relationships at design time makes it diffi-
cult to cope with a dynamically changing environment with
respect to these relations because of the need to adapt to
unanticipated events occurring during the mission of a sys-
tem. Additionally, long term system evolution usually re-
quires the modification of old components or the creation
of new ones. Therefore, it would be desirable to accommo-
date these changes "on-the-fly" on a running system without
disturbing existing components.

2.1 Remote method invocation

In this communication pattern, as usually proposed by
object-oriented languages such as C++ and Java, a client
object must know (or using programming terminology must
have a reference to) a server object. Remote method invo-
cations (RMI) are similar to remote procedure calls [4] in
conventional distributed programming, with the difference
that in object-oriented languages the called methods exist
within the context of a given instance of a class.

This implies that an explicit bind - at design time - must
be created between those elements that will interact. A
sender object must know his receiver counterpart in order
to be able to communicate. Internally, a remote method
call is usually translated to a message, containing infor-
mation related to the receiver object, the method to be in-
voked, and the method parameters. Message exchange then
occurs using the underlying communication infrastructure.
In order to have this mapping of method calls to messages
as transparent as possible to applications, existing middle-
ware based on distributed objects like CORBA, DCOM and
Java RMI introduce communication-specific objects, such
as stubs, object adapters or proxies.

The remote method invocation thus characterizes a
point-to-point (p2p) communication, in a client/server style,
where the client object interface maintains a reference to the
server object.

This interaction mechanism can execute either in a syn-
chronous or in an asynchronous fashion. In the first case,
a request-reply scheme is adopted, derived from the syn-
chronous remote procedure call. Thereby, when one ob-
ject invokes a method on another object, its execution flow
is blocked and the control is transferred to the invoked
method. On the other hand, when the interaction is asyn-
chronous, an unblocking method call occurs, i.e. both
sender and receiver objects may continue execution.

One of the advantages of having the communication de-
fined explicitly at design time is that a more rigorous con-
sistency checking regarding the number and type of param-
eters transferred from sender to receiver can be performed.
This can avoid some typical errors of distributed program-
ming using only message passing mechanisms.

2.2 Port-based communication

Port based communication supports a component-
oriented development. Objects are interconnected and may
communicate by exchanging messages through the so called
ports, which are part of the object interface. Related con-
cepts are protocols, which specify the set of valid messages
on each port as well as their direction (i.e. incoming and
out-coming messages). In this case, the whole behavior of
a given class can be specified without any prior knowledge
about which objects are going to receive or send messages.
According to many authors [3, 14] this may leads to a more
modular design process, on which the reuse of pre-defined
components is encouraged.

When using ports, an object (also called component [14]
or actor [3]) is not restricted to dealing with other objects
by way of their interfaces rather than their internals, but
is also restricted to dealing with only certain segments of
interfaces, as defined by ports. This means that a port ex-
poses a partial set of the receiver methods to the sender,
thus allowing an object to present different "faces" to the
objects with which it interacts by way of different ports.
Some methodologies, like ROOM, have stronger protocol
policies and demand that binding between ports can only
occur between conjugated ports. Input and output ports are
called conjugated when outgoing messages from a port are
accepted as incoming messages in the connected port on the
another object. In general, the establishment of such a con-
nection occurs at design time prior to system execution.

Considering the component-oriented communication
model [14], each component should define precise input and
output interfaces. The component interface defines its ac-
cess points. These points allow clients of a component, usu-
ally components themselves, to access the services provided
by the component. Since a component can have multiple
interfaces, corresponding to different access points, one can
consider that a component interface is logically equivalent
to a port. Anyway, it should be pointed out that there is no
necessity for the use of protocols, once the component will
not send messages to specific elements.

2.3 Publisher/Subscriber

This model adopts a content-based producer-consumer
oriented style of communication. An object as a producer
of a message may spontaneously publish this message. The
message can be identified by its content. Other objects in-
terested in this content may subscribe. All objects that have
subscribed to a certain content are notified when the respec-
tive message is published. Because messages are not routed
by address, the communication relation can be determined
at run time. The respective local communication subsys-
tems filter the message stream to identify all messages to



which local objects have subscribed.
The Publisher/Subscriber (P/S) communication ap-

proach reflects an event-based style of object interaction.
A publisher spontaneously sends a message that is going to
be delivered to all objects which have subscribed. A sub-
scription refers to a message class which is related to the
content of the message. The subscriber is then notified,
whenever a message of the respective class is sent by the
publisher. Therefore, rather than names or addresses, the
content of a message is used to route the message. As a
consequence, a publisher does not have to know which will
be the receivers of its message. Vice versa, an object inter-
ested in a certain content can receive the requested informa-
tion without knowing the publisher. In this way, communi-
cation is anonymous and the producers and consumers are
completely decoupled.

Clearly, many of the above mentioned goals for a com-
munication and interaction scheme are met by the P/S
model. However, the mapping of the content-based ap-
proach to a physical network may not be straightforward.
As described in [11], depending on the network structure
there are different ways to implement the scheme. Roughly,
there is a trade-off between efficiency and flexibility. If
the properties of the underlying network are completely
neglected, the content-based approach requires that every
message is examined by every node to decide whether an
object on the node has subscribed to the respective content.

Therefore, event channels are introduced in [11] which
allow the late binding of message content to addresses. This
binding happens at run time just before communicating the
first time, i.e. when subscribing to a content class or when
publishing the first time. It should be noted that the way
this binding is performed is dependent on the underlying
network structure. A more detailed review of possibilities
can be found in [11].

3 Case study

To highlight the different properties of the interaction
schemes in a realistic scenario, the JANUS robotic system
has been adopted as a test bench. JANUS is a stationary
robotic system consisting of a vision system and two com-
plex arms as manipulators. The vision system is mounted
on a neck with two degrees of freedom. To manipulate or
grab objects, JANUS is equipped with two arms with eight
degrees of freedom each. All joints are monitored by opti-
cal encoders which together with the vision system form a
complex sensor network. Figure 1 shows the proposed con-
trol architecture which rises the interaction scheme used in
the case study.

The distributed model of control used in this example
is based on a multi-agent approach [5]. In this model, the
system is hierarchically partitioned in two levels:

Figure 1. Interaction scheme.

1. a reactive level, where an agent (or object, or compo-
nent) is associated with each joint, having the sensor
and actuator capabilities shown in Figure 1;

2. a planning level, where a planner must communicate
with the agents in the reactive level in order to give
then directives and goals. For our purposes, a goal is
simply a Cartesian position to be reached by the effec-
tor, e.g. grabber, mounted at the end of an arm.

Once a plan is ready, it is communicated to all agents com-
pounding a member, as illustrated in figure 1, and the dis-
tributed control algorithm is executed. This algorithm will
be briefly explained here for the 2 dimensional case (see
Figure 2). The cycle starts at the end-effector related to
the joints, which minimizes the angle defined by the lines
connecting the respective joint and the effector and the line
connecting the joint and the Cartesian coordinates of the
goal, as in Figure 2 (a). Once this is done, the new position
of the joint is communicated to all other joints, and a token
must be passed to the neighbor joint. The token circulates
through all joints, each one performing the minimization
criterion, until the goal is reached. Off course, the algo-
rithm is over simplified here and some additional constraints
were taken into account. Focusing on the adopted commu-
nication pattern, it should be emphasized that all software
modules related to the joints need to exchange information.

(a) (b)

Figure 2. Algorithm description.

In order to highlight the differences between the com-



munication strategies presented in the previous section, the
JANUS robot system was implemented using the three alter-
native and results are presented in the next sub-sections.

3.1 RMI communication model

The general components of JANUS robot system are pre-
sented in the class diagram in Figure 3. However, the
class diagram does not represent the communication rela-
tions that we want to analyze. The communication relations
which are necessary during run-time are depicted in the in-
stance diagram of Figure 4. Because the RMI has to es-
tablish point-to-point connections between every joint, we
obtain a total number of 64 connections for one arm. To
improve the figure’s readability only connections from the
first joint are depicted. The other joints have similar con-
nections.

Figure 3. Object-oriented model for the JANUS

Robot System.

Figure 4. Instances connections in the RMI
communication model.

In this communications model each connection repre-
sent a sender/receiver pair. If a joint wants to broadcast its
new position to the others joints, it explicitly has to send
an RMI to each specific joint. In the JANUS approach the
arm is moved in steps and each step requires one move for
each joint. As a result 56 messages with a similar infor-
mation and addresses have to be sent. This way, a control
plane change will lead to sending hundreds of synchroniza-
tion messages. Hence, the RMI model of communication is
not well suited for this scenario because broadcast, a com-
monly needed communication pattern in many control ap-
plications, has to be explicitly modeled as point-to-point
connections by the programmer. Secondly, because refer-
ences are used to identify the communication target, mod-
ules cannot be developed independently. The knowledge
of the object (and its interface) to which a communication
relation is maintained is required at design time.

3.2 Port-based model

A way to better support modular design and active com-
ponents from the communication point of view is the intro-
duction of ports. As discussed in subsection 2.2 a port is
an abstraction of a communication channel and is part of
the object’s interface. Rather than defining a communica-
tion relation explicitly in terms of object references, a port
reference is a declaration of a component in some higher
class definition. Thus, in a way it defines what information
is communicated over a port rather than which object is the
communication target. That means that the binding of the
objects involved in a communication relation are deferred
from design time to a later stage of system development,
e.g. to the time when the system is configured. From a pro-
grammer’s point of view, a port clearly removes the prob-
lem of programming a broadcast as an explicit sequence of
RMIs. Additionally, ports support active behavior of an ob-
ject. Although the class diagram from both models look like
the same, the instance diagram (runtime configuration) from
the port-based model is characterized by the presence of the
virtual port, as depicted in Figure 5. This way, the main dif-
ference between them concerns the object implementation.
In the RMI, the sender is responsible for providing the mes-
sages recipient. In the port-based scheme, the sender does
not know the receiver, it just writes to an output port, and
all connected input ports will receive this message. There-
fore although not explicitly written by the programmer, both
models have the same number of send/received messages.

3.3 Publisher/Subscriber model

In the P/S model, the event channel is an explicit system
component. Therefore the event channel has to be added



Figure 5. Port-based configuration.

to the class diagram as showed in Figure 6. Also the Fig-
ure 7 shows the instance diagram of the JANUS robot using
event channels. The advantages for the system designer to
the previous modeling techniques become obvious immedi-
ately. There is an event channel "LeftArmChannel" which
handles all communication in the left arm of the robot (the
right arm is modeled correspondingly). All joints publish
their positions in this channel. At the same time, all joints
have subscribed to messages handled by this channel. The
many-to-many communication relation explicit in the RMI
model is now collapsed to a single broadcast channel. As a
consequence will have just 18 Member to Joints and Joint
to Joints connections in the instance diagram. One step
movement of the arm represents just 8 messages. As a con-
sequence the number of synchronization messages which
need to be modeled for a complete plane move will be one
magnitude lower than in the RMI model.

Figure 6. P/S object model.

4 Comparison

The previous section dealt with a comparison from a de-
sign level perspective. The main goal was to show that
broadcast communication patterns often needed in control
systems are not well supported by the RMI model. Let’s

Figure 7. Instances of event channel model.

consider now modularity, extensibility, and autonomy as-
pects of the communication models.

As described earlier in the paper, RMI usually couples
the transfer of data with a transfer of control thus violating
the principle of control autonomy which is crucial in a dis-
tributed control system. Additionally, when using remote
method invocations it is necessary to know which object to
address. Thus, the programmer cannot design an object in-
dependently from other objects. As a result, any changes in
the communication relations will affect a number of objects
that may be difficult to trace.

In a port-based communication model, a port just defines
outgoing and incoming messages for an object. Thus, the
designer of an object does not need to know which other
objects are involved in the communication as it is the case
when using remote invocation. This supports the important
feature of anonymity, i.e. the producer of an information
instance does not need to know which are the consumers of
this information and vice versa. Anonymity is an additional
isolation property that supports modularity and eases mod-
ifications. To establish a communication relation between
objects, a connection between ports has to be defined in an
extra binding step. Usually this binding is performed as part
of the configuration when composing the system out of the
individual objects. Clearly, this extra step supports modu-
larity, extensibility and modifiability of the system because
now the individual objects are not affected or must be modi-
fied when changing the communication relations. Concern-
ing autonomy of objects, ports do not force any form of
control transfer as it is done in remote invocation.

It should be noted, however, that although ports de-
couple the design of a component from the definition of
its communication relations, connections between ports are
statically configured. This means that during run-time com-
munication relations cannot be changed, added or removed



dynamically. Sometimes however, it is necessary to provide
uninterrupted control, which requires on-line modifications
or extensibility of the system [2]. If this is the case, commu-
nication relations have to be changed or added during run-
time. As described earlier, the publisher/subscriber com-
munication model has been designed to meet this require-
ment. In its most general form it uses a broadcast to all sites
that then have to examine the complete stream of messages
to filter those messages which are needed locally. Thus,
this mechanism provides a content-based routing scheme.
It avoids any binding at the price of a substantial overhead
for the filtering function. The introduction of event chan-
nels that bind a message content to a network address over-
comes this problem. Event channels are in many respects
similar to ports. The difference is that the binding is dy-
namically performed during run-time when an object wants
to communicate the first time. Therefore the binding has
not to be specified at any instance during the design or con-
figuration process. Clearly, dynamic binding needs some
effort during run-time what is to a certain extent dependent
on the underlying network structure. In [13] a distributed
set of IPC-demons keep track of the binding between chan-
nels and network addresses. In [11] a central broker holds
the binding tables. Whenever an object communicates via
an event channel the first time, this event channel broker
is involved in resolving the channel to address binding. It
should be noted that the binding has only be performed once
and does not necessarily happen in the real-time loop or the
"steady state path" [13]. The binding could e.g. be per-
formed in a initialization phase for a new component when
it is integrated in the system. The properties discussed along
the article are summarized in table 1, which allows a direct
comparison from the different communication schemes.

Table 1. Summary of communication charac-
teristics.

RMI Port Content Channel

model client-
server

producer-
consumer

producer-
consumer

producer-
consumer

routing obj. name
or address

port name
or address

message
content

channel
type

binding design
time

configura-
tion time

no
binding

run time

control
transfer

yes no no no

topology point-to-
point

point-to-
point

broadcast multicast-
broadcast

filtering sender sender receiver receiver

5 Experimental results

In order to evaluate the temporal characteristics of the
communication schemes being compared, some measure-
ments based on three different implementations have been
performed. To eliminate the variation that could arise from
different basic implementations, the three schemes were
implemented from scratch using connectionless commu-
nication with datagrams as the underlying communication
mechanism. Therefore it can be assured that the communi-
cation workload was tantamount to the maximum extent in
the three cases. Although the UDP protocol of connection-
less datagrams does not support any kind of end-to-end QoS
assurance, a good understanding of the empirical communi-
cation characteristics can be achivied if access to the com-
munication medium is rigorously controlled and the data
produced is properly analyzed with statistical tools.

The testbed was an isolated network consisting of 4 PCs
Pentium 133 MHz fully interconnected through an Ethernet
medium. Eachjoint instance ran as an active object (i.e.,
in its own thread of control) and the load was equally dis-
tributed among the hosts, i.e., twojoint instances per host.
It should be remarked that as long as the implementation is
concerned, there are minor differences in the load between
RMI and event channels on the one side and the port-based
scheme. RMI and P/S models have an extra object partici-
pating in the execution of the algorithm: thearm object in
the case of RMI and theevent channel object in the case
of P/S. Although thearm object is present in the Port model
(aggregating thejoints and sending objectives to them when
necessary), it does not participate in the execution of the
algorithm as long as in this case the control is transferred
directly from onejoint instance to the next in the chain.

At each round of the applied distributed algorithm, a
chain of events is triggered, which propagates fromjoint
0 to joint 7. The end-to-end requirements related to the oc-
currence of the trigger event atjoint 0 and the end of the ac-
tion at joint 7 related to this has been chosen for empirical
comparison of the schemes. The setup for the experiments
exist of defining one of the active objects as trigger, which
is executed as a periodic process. The other objects just re-
spond in the chained events triggered by the periodic one.
For example, in the case of port-based and event channel
implementations,joint 0 was such triggering object, while
in the RMI implementation, thearm played this role. Sys-
tem calls were included in the code (the load of this system
call was determined to be 2�sec in the worst case) to mea-
sure the time elapsed from the beginning of the round to
its conclusion on the lastjoint of the chain, taking care to
run both objects (the trigger and the completion one) in the
same host to avoid the necessity for clock synchronization.

From the experimental data it was possible to determine
that the time periods measured followed a normal distribu-



tion with the means and the standard deviations depicted in
table 2. The sample size for each experiment was 3000 mea-
surements and for a confidence level of 90% this resulted in
the confidence interval for the mean estimation presented in
the third column of the table.

Table 2. Results from experimentation.

mean stand. dev. conf. interv.(90%)

RMI 535 milisec 45 milisec 533.6< � <536.4
Port 485 milisec 68 milisec 482.9< � <487.1
P/S 536 milisec 75 milisec 533.7< � < 538.3

The data is in compliance with the analysis and the
considerations about the implementation above. Firstly, it
is showed that for distributed applications with intensive
broadcast, the three schemes have very similar end-to-end
requirements. Secondly, the slightly better results for the
port-based scheme are a consequence of the fact that RMI
and the event channel model need one additional participat-
ing object, as explained above.

6 Conclusions and future work

The paper has compared different strategies for inter-
acting and communicating distributed real-time objects.
From the developed case study one can clearly observe
that the remote method invocation concept, the most
frequently adopted communication model in distributed
object-oriented systems has several drawbacks when com-
pared to other approaches. Not only the fact that commu-
nication binding must be done explicitly at design time ,
thus decreasing the re-usability of the same class in different
contexts, the adopted point-to-point communication leads
to ineffective way of communication in distributed control
systems.

Further time measurements of the implemented alterna-
tive solutions for the JANUS case study are being performed.
They will allow a comparison of the obtained real-time
properties, such as execution time, cyclical activation jit-
ter, and specially the differences in the temporal behavior
caused by the overhead imposed by the different communi-
cation schemes.

References

[1] D. R. A. Carzaniga and A.L.Wolf. Achieving scalability and
expressiveness in an internet scale event notification service.
In Nineteenth ACM Symposium on Principles of Distributed
Computing (PODC2000), Portland OR., July 2000.

[2] A. S. B. Oki, M. Pfluegl and D. Skeen. The information bus-
an architecture for extensible distributed systems.14th ACM

Symposium on Operating System Principles, Asheville, NC,
pages 58–68, December 1993.

[3] B. G. B. Selic and P. Ward.Real Time Object Oriented Mod-
elling. John Wiley and Sons, Inc., 1994.

[4] A. Birrell. Implementing remote procedure calls.ACM
Transactions on Computers Systems.

[5] P. Bohner and R. Lppen. Redundant manipulator con-
trol based on multi-agents. In3rd IFAC Symp. on Intelli-
gent Components and Instruments for Control Applications,
pages 357–362, June 1997.

[6] N. Carriero and D. Gelernter. Linda in context.Commun. of
the ACM, 32(4):444–458, April 1989.

[7] R. G. D. Estrin and J. Heidemann. Scalable coordination in
sensor network. InProc. ACM/IEEE MobiCom, 1999.

[8] R. V. D.B. Stewart and P. Khosla. Design of dynamically
reconfigurable real-time software using port-based objects.
IEEE TC on Software Engineering, 23(12), December 1997.

[9] W. R. J. Kulik and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In
Proc. of the ACM/IEEE MobiCom, 1999.

[10] Javasoft. Java rmi enhancements since jdk 1.2. Tech-
nical report, Javasoft, www.javasoft.com/products/jdk/1.2/
docs/guide/rmi/index.html, 1999.

[11] J. Kaiser and M. Mock. Implementing the real-time pub-
lisher/subscriber model on the controller area network (can).
In Proceedings of the 2nd Int. Symp. on Object-oriented
Real-time distributed Computing (ISORC99), Saint-Malo,
France, May 1999.

[12] K. Mori. Autonomous decentralized systems: Concepts,
data field architectures, and future trends.Int. Conference
on Autonomous Decentralized Systems (ISADS93), 1993.

[13] M. G. R. Rajkumar and L. Sha. The real-time pub-
lisher/subscribe inter-process communication model for dis-
tributed real-time systems: Design and implementation.
IEEE Real-time Technology and Applications Symposium,
June 1995.

[14] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, London, 1999.

[15] S. Vinoski. Advanced CORBA Programming with C++.
Addison-Wesley, Massachusetts, 1999.


