
Proceedings of the 4th IFAC International Symposium on Intelligent Components and
Instruments for Control Applications - SICICA 2000,

Buenos Aires, Argentina.

REAL-TIME COM M UNICATION ON THE CAN-BUS FOR DISTRIBUTED APPLICATI ONS WITH
DECENTRALIZED CONTROL

Jörg K aiser

University of Ulm
Dept. of Computer Structures
kaiser@informatik.uni-ulm.de

http://www.informatik.uni-ulm.de/rs/core/

Abstract: The paper discusses a transport protocol for the CAN-Bus (CAN: Controller Area Network) for
distributed control systems. The protocol supports synchronous hard real-time traffic and best effort soft real-time
traffic. Furthermore, the protocol guarantees the same order of messages in all nodes and allows synchronized
delivery of messages in all nodes even in the presence of overload and transmission errors. The protocol is
tailored for a CAN-Bus environment and needs very low overhead by exploiting the specific CAN features.

Keywords: Real-time communication, Fieldbus, Decentralized control, Resource allocation, Consistency.

1. INTRODUCTION

Smart sensors and actuators, powered by
microcontrollers and connected via a communication
network support in many ways extensibility, reliablity
and cost effectiveness of control systems. The built-
in computational component enables the
implementation of a well defined higher level
interface which does not just provide raw (sometiems
analogue) transducer data, but a preprocessed,
application related set of process variables. The
communication network represents on a physical level
a standardized interface over which the devices can
exchange information. In essence, the device can be
used as a building block, a black box which can be
configured by process specific parameters and
communicates process relevant data. Consequently,
the interfaces and the functions of these smart
components are not just related to the raw physical
values of the controlled device but they may include
functions related to overall control, supervision and
maintenance issues. Perhaps the most challenging

property of these intelligent devices is their ability to
spontaneously interact with the overall system. This
leads to a modular system architecture in which smart
autonomous components cooperate to control a
physical process without a central coordination
facility.

Many of the today's control systems and the respective
field-bus protocols maintain a centralized, cyclic model
of control like the (CiA Draft Standards 301,1999),
(DeviceNet Specification 2.0),(Smart Distributed
Systems, 1996), and (PROFIBUS). A central master
periodically polls its peripheral sensory I/O
components, makes decisions and distributes
commands to the actuators. At a first glance, this
model has many advantages concerning predictability.
However, when systems are becoming more complex,
latency issues arise with the increasing number of
components, which have to be accommodated.
Secondly, the master constitutes a single point of
failure which result in reliability or even safety
problems for many advanced applications. Perhaps

The most important for the long term development of
complex control systems is the fact that distributed
processing power in the devices cannot be exploited
properly by the centralized, cyclic model. As an
example, consider a smart inclination sensor which
allows to determine the slope of the terrain for a robot.
It can not only give the actual inclination of the robot
but also calculate a gradient along the robot's track.
This sensor could generate alarm and warning
messages, which are directly interpreted by smart
actuators which stop the robot or move it backward.
The underlying computational model is based on
spontaneous events related to some physical process,
which are sensed, processed and propagated by the
autonomous components of the control system.

To meet the communication requirements of such
systems, it is necessary to depart from the
conventional field busses and master/slave-based
protocols and move to networks, which support an
event driven communication model. The problem here
is to maintain the timeliness properties, the reliability,
and the simplicity dictated by the cost/performance
restrictions in control applications. Protocols using
fixed priority mechanisms like rate monotonic
message scheduling have been proposed by Tindell
and Burns (1994). Although these protocols meet
timeliness properties, they poorly support sporadic
events and the coexistence of hard and soft real-time
requirements. In this paper, we present a
communication protocol for the CAN-Bus
(CAN=Controller Area Network) (Robert Bosch
GmbH, 1991). This protocol firstly schedules the
messages according to their deadlines. Secondly, it
provides transmission guarantees for hard real-time
traffic, and thirdly gurantees that the order of
messages delivered to the application is the same in
all nodes and all messages are delivered at the same
point of time. This is achieved in a completely
decentralized way and supports periodic and sporadic
messages. By carefully exploiting the properties of
the CAN standard and the functionality of the CAN
controller, the load for the host microcontroller is
comparitively low.

The rest of the paper is organized as follows. First we
will introduce some basic CAN properties necessary
to introduce our protocol. Then we will describe our
network scheduling mechanism based on a least laxity

first approach. We will show how this mechanim is
used to guarantee transmission of hard real-time
traffic. Finally, we describe how a consistent order is
achieved and a summary concludes the paper.

2. CAN PROPERTIES

CAN handles arbitration, message validation, error
detection and error signaling in a very specific way.
The properties of the CAN-Bus can be summarized in
two points:
- Efficient use of available network bandwidth by

providing a non-destructive priority-based
arbitration of the bus. The arbitration mechanism
schedules the messages which are competing for
the bus according their priorities. The priority of a
message is indicated in the message header.

- Immediate error detection, signaling and
automatic retransmission of messages. The
validation mechanisms of CAN achieves a
consistent view about the status of a message at
the end of every individual message transfer.
Every message will be accepted or rejected by all
participants. There are some very rare cases in
which inconsistencies may occur. These cases are
treated in detail in (Kaiser and Livani, 1999) and
(Rufino et al 1998).

For a further detailed description of the CAN-
protocol, the reader is refered to (Robert Bosch
GmbH, 1991).

3. ACHIEVING TIMELINESS AND ORDER

Cooperative real-time actions need consensus about
which action to be performed and when to perform
the action. Consider the simple example depicted in
fig.1. Two motors spin synchronously driving a
workpiece. The main objective is to guarantee
synchronism of the motors. For this purpose the motor
controllers (µC) communicate sending actual speed
and, in case of a serious local problem an alarm
message. Additionaly, the speed of the motors can be
adjusted externally by defining a new setpoint. Even
if the command to adjust the speed to the actual
setpoint may not be considered to be a hard real-time

 control:
 set point

 µC µC µC

 motor 1 motor 2

CAN-Bus

Fig. 1 Example of a control system

message, it is obvious that it has to be delivered to
both motor controllers at the same time. This firstly
requires that the command actually arrives at both
nodes, a problem of reliable message transfer, and
secondly, that there is a very small relative jitter for
the delivery of messages at the distinct controllers.

If a new set point can be defined by multiple sources,
or, more general, multiple messages which influence
the motor speed are possible, it also has to be
guaranteed, that the order of messages is the same for
the two motor controllers. If messages have
deadlines, they can be delivered at the deadline thus
fulfi lling the requirement of low jitter. However, soft
real-time messages may miss their deadlines. Even in
these situations, the order of messages has to be
maintained as sketched in the example. We now first
introduce our mechanism to schedule hard real-time
messages and then present the ordering scheme.

3.1 Message Scheduling

In a real-time control system, a message has to be
delivered at its deadline. We assume the co-existence
of critical hard real-time messages and less critical
soft real-time messages. The former have to meet
their deadlines otherwise the system fails
unpredictably. Soft real-time messages may miss
their deadlines under transient overload. The priority
mechanism provided by CAN is used as a basis to
enforce deadline constraints. The basic idea is to
dynamically increase the priority of a message the
closer it comes to its transmission deadline1. This
corresponds to a least-laxity-first scheduling scheme
and is depicted in Fig. 2.

Fig. 2 Scheduling of messages

The entire CAN arbitration field defines a priority
according to which messages are scheduled. In our
protocol, the 8 most significant bits are used to
explicitely define a priority level. The rest of the
arbitration field (we use the extended 29-bit-format)
is divided into two additional fields. One of them
carries a node identifier which is necessary to
guarantee uniqueness of the message ID as required
by the basic CAN protocol and one field is exploited
as a specific tag identifying the content of the

1 We distinguish between a transmission deadline and
a delivery deadline. The transmission deadline is
defined as the delivery deadline minus the time to
transmit the message.

message (Kaiser and Mock, 1999). These fields only
implicetely participate in the priority scheme
discriminating messages with the same high order
priority bits.

For hard real-time messages, we have to guarantee
that they are received before their deadlines even in
case of transmission errors or overload situations.
EDF alone cannot provide predictability under these
assumptions. Therefore, for hard real-time messages
we reserve fixed time slots like in a TDMA (Maruti-
3, 1995) or TTP (Kopetz and Grünsteidl, 1992)
approach. Conflicting resource requirements between
hard real-time messages are resolved off-l ine, i.e. at
run-time two hard real-time messages never will
compete for the CAN-bus. If a time slot for a specific
hard real-time message arrives, the dynamic priority
mechanism assures that the message has the highest
priority of all messages currently competing for the
bus. To cope with ongoing message transfers and
communication failures the reserved time slot must
include additonal time margins to handle these
situations.

Soft real-time messages and non-real-time messages
share the portion of time that is not preallocated. Non
real-time messages have a fixed low prioirity that
does not conflict with any real-time message. Soft
real-time messages are straightforwardly scheduled
according to the LLF (Least Laxity First) algorithm.
This means that in overload situations deadlines may
be missed. A detailed description of the scheduling
scheme is provided in (Livani and Kaiser, 1999a). An
evaluation of the scheme can be found in (Livani and
Kaiser, 1999c).

Fig. 3 Example of a message schedule

An example of a message schedule for the setting
depicted in Fig. 1 is sketched in Fig. 3. The
prescheduled slots are dedicated to specific hard real-
time messages. The dynamic priority scheme
prevents that the message which communicates the
event "set speed" is transmitted immediately because
this would affect the transmission of the prescheduled
periodic exchange of motor parametres as speed,
torque etc.

t

prescheduled time slots for hard real-time messages:

reserved slots for alarm messages

periodic exchange of motor params.

event: set speed (from controller)

deadline for set speed
ready transmitted

aperiodic set speed message.

ready time latest start time (LST) deadline

 time needed to t ransmit a message
 laxity

 Dynamic priority

The dynamic priority scheme, obviously, requires a
certain overhead during run-time to update the
priorities according to the laxity. However, it has to be
noted that on each node, only the message currently
competing for the bus has to be maintained. The other
messages in the send queue remain untouched until
they are transferred to the transmit buffer of the CAN
controller. We calculated the CPU time needed to
update the dynamic priority on a Siemens C167 16-Bit
microcontroller (Siemens, 1996). It is about 13 µsec or
5% total overhead in a typical setting (Livani and
Kaiser, 1999c).

3.2 Order of messages

The mechanism to achieve order relies on the reliable
message transfer and on the knowledge about the
message transmission deadlines. The transmission
deadline (TD) of a message denotes the point of time,
at which the message must be successfully
transmitted to all non-faulty destination nodes. The
transmission deadline is tightly related to the point in
time, where the message delivery to all receiving
application objects is expected. Therefore, the
ordering mechanism reflects an application specific
order related to temporal requirements. Let m and m’
be two real-time messages with deadlines dm and
dm'. Then the deadline-based ordering algorithm
implements the following rule: dm < dm’ � delj(m)
→ delj(m’). This means that if the deadline of the
message m is before the deadline of the message m’ ,
then m must be delivered to destination objects before
m’ . For hard real-time messages this is easy to show.
Because hard real-time messages are scheduled off-
l ine and are transmitted in reserved time slots, the
above rule follows immediately. The order between
hard real-time messages can straightforwardly be
formulated by the following delivery rule: Every hard
real-time message is delivered at its deadline. Total
order of hard real-time messages is guaranteed
according to their deadlines.

To establish a total order between soft real-time
messages is more complicated. Soft real-time
messages can become ready for transmission at any
point in time. No a priori reservation or conflict
resolution is performed. We may have messages with
different and identical transmission deadlines. This
results in the same laxity that is mapped on the same
priority. Under transient overload, multiple messages
that already have missed their deadlines end up with
the same laxity. In both cases we cannot use the
priority field (8 most significant bits) in the CAN
message ID alone to establish the order. However,
because CAN IDs all must be different (to enable an
unambiguous arbitration decision), some arbitrary
order is determined by the implicit priority defined by
the node ID and the content tag (cf. 3.1). Let us
denote this least significant portion of the CAN-ID as
message-IDm. Note, that in case of equal deadlines
and in the situation that all laxities are “0” , no causal
relationship between the messages can exist because
none of the messages has yet been sent. The

following rule is used to ensure a global decision on
the delivery order of messages of m and m': dm =
dm’ � (delj(m)→delj(m’) ⇔ message-IDm <
message-IDm’).

The consistent order is based on the following
observation: A CAN controller automatically resends
a message in case of a transmission error until all
receivers have correctly received it. If a node has
received a message m, and then another message with
lower priority is observed on the CAN bus, or the bus
is idle, then the sender of m will not retransmit it in
the future. Hence, in this case, the receiver can be
sure that the higher priority message has been
received by all other nodes. To deliver this message,
the receiver must also be sure that it is delivered in
the same order in all nodes. This order should be
based on the transmission deadline. Therefore, we
now must first clarify the question whether a message
with an earlier deadline stil l can arrive. Based on our
previous considerations we can conclude that a soft
real-time message with a higher priority has an earlier
deadline than a soft real-time message with a lower
priority. If after the transmission deadline of a soft
real-time message m another message with lower
priority is transmitted on the CAN bus, or the bus is
idle, then there is no other soft real-time message m’
with an earlier or equal deadline, which is pending for
transmission. Therefore, we can state the condition
for total order as:

Every received soft real-time message can be
delivered in total order as soon as either another
message with later deadline, or an idle time on the
bus is observed after its transmission deadline.

A formal proof for this theorem can be found in
(Livani and Kaiser, 1999b). It should be noted that
these events are detected synchronously by all nodes
so that the delivery of the respective message happens
at the same point in time.

In situations which are not affected by overload, soft
real-time messages are transmitted and delivered in
strict deadline order. In overload situations, by
definition, no temporal guarantees can be given. The
deadlines cannot be used for ordering the messages.
However, total order between soft real-time messages
is stil l preserved. It should be noted that the
consistent order of messages is established without
extra communication overhead.

Related work considering order in a CAN-Bus system
is presented by Zuberi and Shin (1995) and Rufino et
al., (1998). In (Zuberi and Shin, 1996) a CAD-tool is
used to determine off-line, which messages in an
application may be causally related. The deadlines of
related messages are adjusted according to this
analysis. Then, they use a dynamic priority scheme
(Zuberi and Shin, 1995) which is similar to our
scheme to schedule the messages on the CAN-bus
according to the fixed deadlines. The approach is
only valid in systems in which all causal relationships

can be determined off-line. Secondly, the approach
treats all messages as hard real-time messages. In
(Rufino et al., 1998) a protocol called TOTCAN is
proposed which uses a two phase approach to achieve
total order of messages. This approach results in a
considerable overhead compared to our scheme.
Particularly, this approach needs many additional
messages for the establishment of a consistent order.

4 CONCLUSION

The paper presents a transport level protocol for the
CAN-Bus. The goal was to provide a protocol which
maintains the essential predictability features found in
centralized approaches like master/slave
configurations but works in a event-based control
system in a completely dynamic, decentralized way.
This is possible because the underlying CAN-Bus
was just designed to support distributed control and
thus represents a good starting basis for the efficient
realization of decetralized mechanisms. The priority-
based arbitration mechanism of CAN is exploited to
realize a dynamic LLF message scheduling scheme.
Combined with off-line reservation, the protocol
enforces transmission guaranties for hard real-time
messages. Soft real-time messages are usually
delivered at their deadlines but may miss their
deadlines in overload situations. However the
protocol guarantees that they are delivered at the
same order and at the same point in time in all nodes.
The protocol carefully exploits the features provided
by CAN controller hardware. As a result the overhead
of the protocol is low. It needs some local effort in
every node to maintain dynamic priorities but no
additional communication bandwidth is needed to
achieve consistent order.

5 REFERENCES

CiA Draft Standards 301: „CANopen Application
Layer and Communication Profile“ , Version 4.0,
June1999

DeviceNet Specification 2.0 Vol. 1, Published by
ODVA, 8222 Wiles Road - Suite 287 - Coral
Springs, FL 33067 USA.

Kaiser, J. amd M.A. Livani:"Achieving Fault-
Tolerant Broadcasts in CAN", Proc. of the 3rd
European Dependable Computing Conference,
(EDCC-3), Prague, Sept. 1999

Kaiser, J. and M. Mock : "Implementing the Real-
Time Publisher/Subscriber Model on the
Controller Area Network (CAN)", 2nd Int’ l
Symposium on Object-Oriented Distributed Real-
Time Computing Systems, San Malo, May 1999

Kopetz, H. and and G. Grünsteidl (1992): „TTP - A
Time-Triggered Protocol for Fault-Tolerant Real-
Time Systems“ , Res. Report 12/92, Inst. f. Techn.
Informatik, Tech. Univ. of Vienna, 1992.

Livani, M.A. and J. Kaiser (1999a): "Scheduling
Hard and Soft Real-Time Communication in the
Controller Area Network (CAN)", Control
Engineering Practice, Vol 7, No. 12, pp.1515-
1523, Dec. 1999

Livani, M.A. and J. Kaiser (1999b):"A Total
Ordering Scheme for Real-Time Multicasts in
CAN", Proc. of the Joint 24th IFAC/IFIP
Workshop on Active and Real-Time Database
Systems, Schloß Dagstuhl, Germany, May 1999

Livani, M.A. and J. Kaiser (1999c): „Evaluation of a
Hybrid Real-time Bus Scheduling Mechanism for
CAN“, 7th Int’ l Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS’99),
San Juan, Puerto Rico, Apr. 1999.

Maruti 3, Design Overview 1st Edition, System
Design and Analysis Group, Dept. of Comp.
Science, Univ. of Maryland, 1995.

PROFIBUS: Technical Overview
http://www.profibus.com/data/technic/index.html

ROBERT BOSCH GmbH: „CAN Specification
Version 2.0“ , Sep. 1991

Rufino, J. , P.J. Verisimo, C. Almeida and L.
Rodrigues:"Fault-Tolerant Broadcasts in CAN",
Proc. FTCS-28, Munich, Germany, June 1998

Siemens AG: „C167 User’s Manual 03.96“ ,
Published by Siemens AG, Bereich Halbleiter,
Marketing-Kommunikation, 1996.

Smart Distributed Systems, Application Layer
Protocol Version 2, Honeywell Inc, Micro Switch
Specification GS 052 103 Issue 3, USA, 1996

Tindell, K. and A. Burns : „Guaranteed Message
Latencies for Distributed Safety-Critical Hard
Real-Time Control Networks“ , Report YCS229,
Department of Computer Science, University of
York, May 1994.

Zuberi, K.M., and K.G. Shin:"Non-Preemptive
Scheduling of messages on the Controller Area
Network for Real-Time Control Applications",
Tech. Report, University of Michigan, 1995

Zuberi, K.M., and K.G. Shin:" A Causal Message
Ordering Scheme for Distributed Embedded Real-
Time Systems", Proc. Symp. on Reliable and
Distributed Systems, Oct. 1996

