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Abstract: The paper discusses a transport protocol for the CAN-Bus (CAN: Controller Area Network) for 
distributed control systems. The protocol supports synchronous hard real-time traffic and best effort soft real-time 
traffic. Furthermore, the protocol guarantees the same order of messages in all nodes and allows synchronized 
delivery of messages in all nodes even in the presence of overload and transmission errors. The protocol is 
tailored for a CAN-Bus environment and needs very low overhead by exploiting the specific CAN features. 
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1. INTRODUCTION 
  
Smart sensors and actuators, powered by 
microcontrollers and connected via a communication 
network support in many ways extensibility, reliablity 
and cost effectiveness of control systems.  The built-
in computational component enables the 
implementation of a well defined higher level 
interface which does not just provide raw (sometiems 
analogue) transducer data, but a preprocessed, 
application related set of process variables. The 
communication network represents on a physical level 
a standardized interface over which the devices can 
exchange information. In essence, the device can be 
used as a building block, a black box which can be 
configured by process specific parameters and 
communicates process relevant data. Consequently, 
the interfaces and the functions of these smart 
components are not just related to the raw physical 
values of the controlled device but they may include 
functions related to overall control, supervision and 
maintenance issues. Perhaps the most challenging 

property of these intelligent devices is their ability to 
spontaneously interact with the overall system. This 
leads to a modular system architecture in which smart 
autonomous components cooperate to control a 
physical process without a central coordination 
facility. 
 
Many of the today's control systems and the respective 
field-bus protocols maintain a centralized, cyclic model 
of control like the (CiA Draft Standards 301,1999), 
(DeviceNet Specification 2.0),(Smart Distributed 
Systems, 1996), and (PROFIBUS). A central master 
periodically polls its peripheral sensory I/O 
components, makes decisions and distributes 
commands to the actuators. At a first glance, this 
model has many advantages concerning predictability. 
However, when systems are becoming more complex, 
latency issues arise with the increasing number of 
components, which have to be accommodated. 
Secondly, the master constitutes a single point of 
failure which result in reliability or even safety 
problems for many advanced applications. Perhaps 



 

The most important for the long term development of 
complex control systems is the fact that distributed 
processing power in the devices cannot be exploited 
properly by the centralized, cyclic model. As an 
example, consider a smart inclination sensor which 
allows to determine the slope of the terrain for a robot. 
It can not only give the actual inclination of the robot 
but also calculate a gradient along the robot's track. 
This sensor could generate alarm and warning 
messages, which are directly interpreted by smart 
actuators which stop the robot or move it backward. 
The underlying computational model is based on 
spontaneous events related to some physical process, 
which are sensed, processed and propagated by the 
autonomous components of the control system. 
 
To meet the communication requirements of such 
systems, it is necessary to depart from the 
conventional field busses and master/slave-based 
protocols and move to networks, which support an 
event driven communication model. The problem here 
is to maintain the timeliness properties, the reliability, 
and the simplicity dictated by the cost/performance 
restrictions in control applications. Protocols using 
fixed priority mechanisms like rate monotonic 
message scheduling have been proposed by Tindell 
and Burns (1994). Although these protocols meet 
timeliness properties, they poorly support sporadic 
events and the coexistence of hard and soft real-time 
requirements. In this paper, we present a 
communication protocol for the CAN-Bus 
(CAN=Controller Area Network) (Robert Bosch 
GmbH, 1991). This protocol firstly schedules the 
messages according to their deadlines. Secondly, it 
provides transmission guarantees for hard real-time 
traffic, and thirdly gurantees that the order of 
messages delivered to the application is the same in 
all nodes and all messages are delivered at the same 
point of time. This is achieved in a completely 
decentralized way and supports periodic and sporadic 
messages. By carefully exploiting the properties of 
the CAN standard and the functionality of the CAN 
controller, the load for the host microcontroller is 
comparitively low.  
 
The rest of the paper is organized as follows. First we 
will introduce some basic CAN properties necessary 
to introduce our protocol. Then we will describe our 
network scheduling mechanism based on a least laxity 

first approach. We will show how this mechanim is 
used to guarantee transmission of hard real-time 
traffic. Finally, we describe how a consistent order is 
achieved and a summary concludes the paper. 
 
 

2.  CAN PROPERTIES 
 
CAN handles arbitration, message validation, error 
detection and error signaling in a very specific way. 
The properties of the CAN-Bus can be summarized in 
two points: 
-  Efficient use of available network bandwidth by 

providing a non-destructive priority-based 
arbitration of the bus. The arbitration mechanism 
schedules the messages which are competing for 
the bus according their priorities. The priority of a 
message is indicated in the message header. 

- Immediate error detection, signaling and 
automatic retransmission of messages. The 
validation mechanisms of CAN achieves a 
consistent view about the status of a message at 
the end of every individual message transfer. 
Every message will be accepted or rejected by all 
participants. There are some very rare cases in 
which inconsistencies may occur. These cases are 
treated in detail in (Kaiser and Livani, 1999) and 
(Rufino et al 1998). 

For a further detailed description of the CAN-
protocol, the reader is refered to (Robert Bosch 
GmbH, 1991). 
 
 

3. ACHIEVING TIMELINESS AND ORDER 
 
Cooperative real-time actions need consensus about 
which action to be performed and when to perform 
the action. Consider the simple example depicted in 
fig.1. Two motors spin synchronously driving a 
workpiece. The main objective is to guarantee 
synchronism of the motors. For this purpose the motor 
controllers (µC) communicate sending actual speed 
and, in case of a serious local problem an alarm 
message. Additionaly, the speed of the motors can be 
adjusted externally by defining a new setpoint. Even 
if the command to adjust the speed to the actual 
setpoint may not be considered to be a hard real-time    
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Fig. 1 Example of a control system 

 



 

 
message, it is obvious that it has to be delivered to 
both motor controllers at the same time. This firstly 
requires that the command actually arrives at both 
nodes, a problem of reliable message transfer, and 
secondly, that there is a very small relative jitter for 
the delivery of messages at the distinct controllers. 
 
If a new set point can be defined by multiple sources, 
or, more general, multiple messages which influence 
the motor speed are possible,  it also has to be 
guaranteed, that the order of messages is the same for 
the two motor controllers. If messages have 
deadlines, they can be delivered at the deadline thus 
fulfi lling the requirement of low jitter. However, soft 
real-time messages may miss their deadlines. Even in 
these situations, the order of messages has to be 
maintained as sketched in the example. We now first 
introduce our mechanism to schedule hard real-time 
messages and then present the ordering scheme. 
 
3.1  Message Scheduling 
 
In a real-time control system, a message has to be 
delivered at its deadline. We assume the co-existence 
of critical hard real-time messages and less critical 
soft real-time messages. The former have to meet 
their deadlines otherwise the system fails 
unpredictably. Soft real-time messages may miss 
their deadlines under transient overload. The priority 
mechanism provided by CAN is used as a basis to 
enforce deadline constraints. The basic idea is to 
dynamically increase the priority of a message the 
closer it comes to its transmission deadline1. This 
corresponds to a least-laxity-first scheduling scheme 
and is depicted in Fig. 2.  
 

 
 

Fig. 2 Scheduling of messages 
 
The entire CAN arbitration field defines a priority 
according to which messages are scheduled. In our 
protocol,  the 8 most significant bits are used to 
explicitely define a priority level. The rest of the 
arbitration field (we use the extended 29-bit-format) 
is divided into two additional fields. One of them 
carries a node identifier which is necessary to 
guarantee uniqueness of the message ID as required 
by the basic CAN protocol and one field is exploited 
as a specific tag identifying the content of the 

                                                 
1 We distinguish between a transmission deadline and 
a delivery deadline. The transmission deadline is 
defined as the delivery deadline minus the time to 
transmit the message. 

message (Kaiser and Mock, 1999). These fields only 
implicetely participate in the priority scheme 
discriminating messages with the same high order 
priority bits. 
 
For hard real-time messages, we have to guarantee 
that they are received before their deadlines even in 
case of transmission errors or overload situations. 
EDF alone cannot provide predictability under these 
assumptions. Therefore, for hard real-time messages 
we reserve fixed time slots like in a TDMA (Maruti-
3, 1995) or TTP (Kopetz and Grünsteidl, 1992) 
approach. Conflicting resource requirements between 
hard real-time messages are resolved off-l ine, i.e. at 
run-time two hard real-time messages never will 
compete for the CAN-bus. If a time slot for a specific 
hard real-time message arrives, the dynamic priority 
mechanism assures that the message has the highest 
priority of all messages currently competing for the 
bus. To cope with ongoing message transfers and 
communication failures the reserved time slot must 
include additonal time margins to handle these 
situations.  
 
Soft real-time messages and non-real-time messages 
share the portion of time that is not preallocated. Non 
real-time messages have a fixed low prioirity that 
does not conflict with any real-time message. Soft 
real-time messages are straightforwardly scheduled 
according to the LLF (Least Laxity First) algorithm. 
This means that in overload situations deadlines may 
be missed. A detailed description of the scheduling 
scheme is provided in (Livani and Kaiser, 1999a). An 
evaluation of the scheme can be found in (Livani and 
Kaiser, 1999c). 
 
 

 
 

Fig. 3 Example of a message schedule 
 
 
An example of a message schedule for the setting 
depicted in Fig. 1 is sketched in Fig. 3. The 
prescheduled slots are dedicated to specific hard real-
time messages. The dynamic priority scheme 
prevents that the message which communicates the 
event "set speed"  is transmitted immediately because 
this would affect the transmission of the prescheduled 
periodic exchange of motor parametres as speed, 
torque etc.  
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The dynamic priority scheme, obviously, requires a 
certain overhead during run-time to update the 
priorities according to the laxity. However, it has to be 
noted that on each node, only the message currently 
competing for the bus has to be maintained. The other 
messages in the send queue remain untouched until 
they are transferred to the transmit buffer of the CAN 
controller. We calculated the CPU time needed to 
update the dynamic priority on a Siemens C167 16-Bit 
microcontroller (Siemens, 1996). It is about 13 µsec or 
5% total overhead in a typical setting (Livani and 
Kaiser, 1999c). 
 
3.2 Order of messages 
 
The mechanism to achieve order relies on the reliable 
message transfer and on the knowledge about the 
message transmission deadlines. The transmission 
deadline (TD) of a message denotes the point of time, 
at which the message must be successfully 
transmitted to all non-faulty destination nodes. The 
transmission deadline is tightly related to the point in 
time, where the message delivery to all receiving 
application objects is expected. Therefore, the 
ordering mechanism reflects an application specific 
order related to temporal requirements. Let m and m’  
be two real-time messages with deadlines dm and 
dm'. Then the deadline-based ordering algorithm 
implements the following rule: dm < dm’   �  delj(m) 
→ delj(m’ ). This means that if the deadline of the 
message m is before the deadline of the message m’ , 
then m must be delivered to destination objects before 
m’ . For hard real-time messages this is easy to show. 
Because hard real-time messages are scheduled off-
l ine and are transmitted in reserved time slots, the 
above rule follows immediately. The order between 
hard real-time messages can straightforwardly be 
formulated by the following delivery rule: Every hard 
real-time message is delivered at its deadline. Total 
order of hard real-time messages is guaranteed 
according to their deadlines. 
 
To establish a total order between soft real-time 
messages is more complicated. Soft real-time 
messages can become ready for transmission at any 
point in time. No a priori reservation or conflict 
resolution is performed. We may have messages with 
different and identical transmission deadlines. This 
results in the same laxity that is mapped on the same 
priority. Under transient overload, multiple messages 
that already have missed their deadlines end up with 
the same laxity. In both cases we cannot use the 
priority field (8 most significant bits) in the CAN 
message ID alone to establish the order. However, 
because CAN IDs all must be different (to enable an 
unambiguous arbitration decision), some arbitrary 
order is determined by the implicit priority defined by 
the node ID and the content tag (cf. 3.1). Let us 
denote this least significant portion of the CAN-ID as 
message-IDm. Note, that in case of equal deadlines 
and in the situation that all laxities are “0” , no causal 
relationship between the messages can exist because 
none of the messages has yet been sent. The 

following rule is used to ensure a global decision on 
the delivery order of messages of m and m': dm = 
dm’   �  (delj(m)→delj(m’ ) ⇔ message-IDm < 
message-IDm’ ). 
 
The consistent order is based on the following 
observation: A CAN controller automatically resends 
a message in case of a transmission error until all 
receivers have correctly received it. If a node has 
received a message m, and then another message with 
lower priority is observed on the CAN bus, or the bus 
is idle, then the sender of m will not retransmit it in 
the future. Hence, in this case, the receiver can be 
sure that the higher priority message has been 
received by all other nodes. To deliver this message, 
the receiver must also be sure that it is delivered in 
the same order in all nodes. This order should be 
based on the transmission deadline. Therefore, we 
now must first clarify the question whether a message 
with an earlier deadline stil l can arrive. Based on our 
previous considerations we can conclude that a soft 
real-time message with a higher priority has an earlier 
deadline than a soft real-time message with a lower 
priority. If after the transmission deadline of a soft 
real-time message m another message with lower 
priority is transmitted on the CAN bus, or the bus is 
idle, then there is no other soft real-time message m’  
with an earlier or equal deadline, which is pending for 
transmission. Therefore, we can state the condition 
for total order as: 
 
Every received soft real-time message can be 
delivered in total order as soon as either another 
message with later deadline, or an idle time on the  
bus is observed after its transmission deadline.  
 
A formal proof for this theorem can be found in 
(Livani and Kaiser, 1999b). It should be noted that 
these events are detected synchronously by all nodes 
so that the delivery of the respective message happens 
at the same point in time. 
 
In situations which are not affected by overload, soft 
real-time messages are transmitted and delivered in 
strict deadline order. In overload situations, by 
definition, no temporal guarantees can be given. The 
deadlines cannot be used for ordering the messages. 
However, total order between soft real-time messages 
is stil l preserved.  It should be noted that the 
consistent order of messages is established without 
extra communication overhead. 
 
Related work considering order in a CAN-Bus system 
is presented by Zuberi and Shin (1995) and Rufino et 
al., (1998). In (Zuberi and Shin, 1996) a CAD-tool is 
used to determine off-line, which messages in an 
application may be causally related. The deadlines of 
related messages are adjusted according to this 
analysis. Then, they use a dynamic priority scheme 
(Zuberi and Shin, 1995) which is similar to our 
scheme to schedule the messages on the CAN-bus 
according to the fixed deadlines. The approach is 
only valid in systems in which all causal relationships 



 
can be determined off-line. Secondly, the approach 
treats all messages as hard real-time messages. In 
(Rufino et al., 1998) a protocol called TOTCAN is 
proposed which uses a two phase approach to achieve 
total order of messages. This approach results in a 
considerable overhead compared to our scheme. 
Particularly, this approach needs many additional 
messages for the establishment of a consistent order. 
 
 
4  CONCLUSION 
 
The paper presents a transport level protocol for the 
CAN-Bus. The goal was to provide a protocol which 
maintains the essential predictability features found in 
centralized approaches like master/slave 
configurations but works in a event-based control 
system in a completely dynamic, decentralized way. 
This is possible because the underlying CAN-Bus 
was just designed to support distributed control and 
thus represents a good starting basis for the efficient 
realization of decetralized mechanisms. The priority-
based arbitration mechanism of CAN is exploited to 
realize a dynamic LLF message scheduling scheme. 
Combined with off-line reservation, the protocol 
enforces transmission guaranties for hard real-time 
messages. Soft real-time messages are usually 
delivered at their deadlines but may miss their 
deadlines in overload situations. However the 
protocol guarantees that they are delivered at the 
same order and at the same point in time in all nodes. 
The protocol carefully exploits the features provided 
by CAN controller hardware. As a result the overhead 
of the protocol is low. It needs some local effort in 
every node to maintain dynamic priorities but no 
additional communication bandwidth is needed to 
achieve consistent order. 
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