
A Symmetric MAC Protocol for CSMA Busses
in Dynamic Distributed Real-time Systems

Mohammad Ali Livani, Jörg Kaiser
University of Ulm, Department of Computer Structures, 89069 Ulm, Germany

{Mohammad, Kaiser}@informatik.uni-ulm.de

Abstract
By using a hybrid scheduling algorithm consisting of
static offline scheduling and dynamic online scheduling,
hard deadlines can be guaranteed, while achieving opti-
mal resource utilization by soft real-time activities. This
paper introduces a medium access control (MAC) proto-
col for a CSMA bus, which supports the hybrid schedul-
ing of hard and soft real-time messages on the bus. The
key issues considered here, are distinguishing hard and
soft real-time constraints, achieving high resource utili-
zation, and avoiding single points of failure by a sym-
metric distributed medium access control scheme.

1. Introduction

The application domain of real-time computing systems
is growing into areas, where cost-effectiveness is a man-
datory requirement. Typical examples are drive-by-wire,
vehicle body electronics, intelligent home, and multime-
dia. The demand for cost-effective real-time solutions
and the availability of inexpensive microprocessors with
integrated network interface, have led to the high popu-
larity of distributed real-time systems, which are based
on field busses and LAN’s with a real-time communica-
tion protocol.

In contrast to non real-time systems that are optimized
for high throughput, real-time systems must primarily
exhibit temporal predictability. This means that real-time
computing results must be provided within a specified
response time. Temporal specification of computing
activities can be roughly categorized as follows: hard
real-time activities must always meet their (hard) dead-
lines, otherwise it comes to a serious or even fatal system
failure. Soft real-time activities should meet their (soft)
deadlines whenever possible, but they may be completed
later, too. Non real-time activities do not have a deadline,
and must proceed whenever no real-time activities need
the computing resources.

Dynamic distributed real-time systems are character-
ized by a mixture of periodic, sporadic, and aperiodic
real-time transactions, which may have hard or soft
deadlines. A real-time transaction consists of several
tasks with precedence relations among them. Data and
control flow between tasks is usually realized by message
exchange (cf. Figure 1). Tasks and messages inherit the
period and deadline characteristics of the respective real-
time transactions.

In order to guarantee hard deadlines, the minimum
invocation period and the maximum execution times of
hard real-time activities must be known. This implies
that only periodic and sporadic activities may have hard
deadlines. There are mature research results, which en-
able the calculation of the maximum execution time of
tasks [13],[14], and the generation of a feasible offline
schedule [3], assuming a TDMA protocol on the system

T4

T1

T3T2

T5 T6

T7

M1

M2

M3

M4

M5

M6 M7

Initiating event (Stimulus)

Resulting event (Response)

Figure 1. A real-time transaction consisting of
tasks and messages

bus. By using these methods, adequate resources are
reserved to meet hard deadlines even in worst-case an-
ticipated fault and load scenarios.

Since resource reservation is based on pessimistic as-
sumptions, reserved resources are often unused. Moreo-
ver, there are usually some non-reserved resources re-
maining. In a strictly time-triggered system like MARS
[4],[1], it is not possible to exploit system resources,
without reserving them by the offline scheduler. In con-
trast, a dynamic system, e.g. MARUTI [8], can achieve
optimal resource utilization by Earliest Deadline First
(EDF) scheduling mechanism.

In a complex real-time application, like drive-by-wire,
different distributed computations with hard and soft
deadlines co-exist. Periodic hard real-time activities like
motor management and by-wire steering must be per-
formed periodically with minimal jitter, and critical
sporadic activities like anti-lock brake control or elec-
tronic stabilization program have to be guaranteed with
their highest occurrence rates. But activities like gear
change are less critical, and may be delayed under cer-
tain circumstances, e.g. when electronic stabilization
program is activated.

Thus there are distributed computations, which must
be performed by best effort without guarantee, and their
deadlines are considered soft. These computations must
use non-reserved resources. If sporadic service requests
with hard deadlines do not occur with their highest an-
ticipated frequency, then some reserved resources remain
idle, and can be used for soft real-time computation. If
less errors occur than anticipated by the system’s design,
then probably some redundantly reserved resources for
hard real-time activities remain unused, and may also be
exploited by soft real-time activities. To optimally utilize
the system resources for soft real-time distributed com-
putations while guaranteeing hard deadlines, a hybrid
scheduling mechanism must be applied, which features
resource reservation as well as dynamic deadline sched-
uling. Such a scheduling mechanism must be supported
by an appropriate MAC protocol, which implements the
system scheduling policy on the bus resource. such a
MAC protocol must guarantee the timely transmission of
hard real-time messages by offline resource reservation,
while utilizing the bus resource optimally for the best-
effort transmission of soft real-time messages, e.g. by
EDF. An example of coexistence of offline and online
bus scheduling in the Controller Area Network, has been
presented in [10].

This paper introduces a scheme to merge both static
(calendar-based) and dynamic (deadline-based) schedul-
ing mechanisms into a common priority scheme, which

enables common scheduling of hard and soft real-time
messages by a priority-based bus arbitration mechanism.

While a priority-based dispatcher is included in al-
most every real-time executive, a priority-based access
regulation in a CSMA bus must be achieved with addi-
tional effort. For this reason, we propose a derivative of
the Virtual Time CSMA [12],[16], which enables com-
mon dispatching of hard and soft real-time messages on
a CSMA network. The key issues considered in this pa-
per are 1) distinguishing hard real-time, soft real-time,
and non real-time constraints, 2) achieving high resource
utilization, and 3) enabling fault-tolerance by avoiding
single points of failure in the distributed medium access
scheme.

The paper is organized as follows: section 2 intro-
duces the system model. Section 3 provides a brief de-
scription of the Virtual Time (VT) CSMA. In section 4
we describe a hybrid approach for real-time scheduling of
messages with different criticality classes in Ethernet,
using the VTCSMA approach. In section 5 some simula-
tion results are presented. A summary concludes the
paper.

2. The system model

We consider a system hardware consisting of a set of
processing nodes, all attached to a CSMA bus (e.g.
Ethernet), as illustrated in Figure 2. The system is het-
erogeneous, i.e. the nodes may have different architec-
tures, from low-cost 8-bit micro-controllers to multiproc-
essor workstations. Low-cost micro-controllers are at-
tached to sensors and actuators, building up smart sen-
sors and actuators with well-defined and vendor-
independent functional interface, and capable to commu-
nicate over the system bus. By attaching sensor-actuator
combinations to micro-controllers, elementary control
loops can be realized as a local functionality, and only
monitoring and control information of higher levels have
to be communicated on the bus. This reduces the expen-
sive cabling and simplifies the applications system’s
design.

...
PNP1 P2 P3

Figure 2. A distributed system based on a
bus

As already mentioned in section 1, a real-time trans-
action (RT) consists of several tasks with precedence
relations, exchanging data and control by messages. The
starting task of a RT is triggered by at least one event,
e.g. an external signal or a clock interrupt.

Scheduling distributed real-time activities requires lo-
cal scheduling of tasks at each node as well as global
scheduling of messages on the bus. In order to guarantee
the timely completion of a hard real-time RT, all its
associated messages must be scheduled as hard real-time.
Similarly, messages associated with a soft real-time RT,
must be scheduled with soft deadlines. Treating such
messages as hard real-time is unnecessary, and may lead
to bandwidth shortage.

In a completely static system, a global calendar is
available and each node has its relevant entries referring
to its message transmission times in a global time scale.
A message may only be transmitted according to this
schedule [4],[1],[6]. In a more dynamic system where
hard real-time, soft real-time, and non-real-time mes-
sages coexist, things are more complicated. If the bus is
free, a soft real-time message may be sent. In this case, it
must be guaranteed that it does not cause a timing failure
of a hard real-time message.

3. The VTCSMA protocols

The basic idea of the VTCSMA scheme [12] is that dif-
ferent priorities can be realized in a CSMA bus by differ-
ent contention periods. The higher the priority of a mes-
sage, the shorter its contention period must be. The
VTCSMA algorithm is a general approach, which can
map different message parameters (e.g. deadline or arri-
val time) onto a contention period, hence prioritizing
messages and scheduling them according to different
strategies (e.g. earliest-deadline-first or first-come-first-
serve) [16]. In following, we briefly describe the dead-
line-based variant of the algorithm, which is called
VTCSMA-D.

3.1. The VTCSMA-D protocol

Each time the bus becomes free, the virtual start time of
messages is determined by taking their deadlines. The
current virtual time is set equal to the current real time,
and the virtual clock is started with a speed higher than
the real time (i.e. at a rate η>1). If the bus remains free
until the virtual time reaches the virtual start time of a
message, then the message is started. If the bus becomes
busy before a node starts sending a message, the virtual
clock is stopped. If a collision occurs while a node is

trying to send a message, the message is either retrans-
mitted immediately (with a probability P) or the virtual
time is promoted to a random value between the current
virtual time and the virtual start time of the message.
Although non-deterministic, this collision handling
mechanism results in efficient utilization of the bus, as
shown by Zhao and Ramamritham [16].

When using the deadline-based variant of VTCSMA,
even messages with different deadlines may collide, if
local clocks of their senders differ by the same amount.
Correct scheduling of such messages is guaranteed, if
their deadlines differ by more than the maximum clock
skew between non-faulty nodes, which can be bounded by
an appropriate clock synchronization mechanism [5]. In
this paper we apply some modifications to VTCSMA-D,
in order to schedule hard and soft real-time messages on
a CSMA bus.

4. Hybrid scheduling of messages

In [10] and [11] we have introduced and evaluated a
hybrid mechanism to schedule hard, soft, and non real-
time messages in a CAN bus, under anticipated fault and
load conditions. This method can be applied for message
scheduling on every network with a priority-based basic
medium access control. In following, the hybrid sched-
uling mechanism is described.

4.1. Scheduling of hard real-time messages

For hard real-time messages, the deadline is guaranteed
by reserving the bus in a time slot (Figure 3). The re-
served time slots are entered into a calendar. The mes-
sage scheduling calendar is contained in all nodes of the
system. This provides global knowledge on the bus
schedule, which is important when the system is faced
with the "babbling idiot" problem [7]. Task scheduling
calendars are maintained locally on each node.

In order to merge static and dynamic scheduling of
hard and soft real-time messages on the bus, we apply a
tri-stage priority scheme, which is similar to the dual-
priority approach [2]. Due to this scheme, a hard real-
time message gains the highest possible priority at the
beginning of its reserved time slot. Within its reserved
time-slot, a hard real-time message is sent according to
CSMA without waiting1. This results in a collision-free
transmission, because all other messages have an addi-
tional waiting time. The minimum time-slot length de-

1 Of course there is a minimum inter-frame spacing between two consecu-

tive messages. This bus idle period must be additionally taken into ac-
count for all kinds of messages.

pends on the message length, bus speed, and the number
of consecutive transmission failures to be tolerated. If,
however, the laxity of a hard real-time message becomes
negative, then the message is dropped, and exception is
raised at the sender site.

Due to the non-preemptive nature of message trans-
mission on CSMA busses, every message may be delayed
by one message, which is started before its ready time.
Thus, for the bus scheduling, we define ΔTblock as the
longest possible message transmission time. A hard real-
time message k (with a reserved time slot beginning at
Sk) must be ready before Sk - ΔTblock (Figure 3). In order
to prevent being blocked within its reserved time-slot by
the transmission of any other message, a hard real-time
message k must win the bus after Sk - ΔTblock. For this
reason, between Sk - ΔTblock and Sk, k is transmitted with
a non-zero waiting time ΔCmin, which is the minimum
time required for the carrier signal on the bus to be
propagated and detected by all nodes.

Consider the situation illustrated in Figure 3. If at
time t the bus becomes idle, and hard real-time messages
k and j and a soft real-time message l compete for the
bus, then k is transmitted with no waiting, and finishes
before dk, because its laxity is non-negative at its trans-
mission start time. If k has already been transmitted, then
j is transmitted with the waiting time ΔCmin, and l is
transmitted with a waiting time ΔCl ∈ [2∗ΔCmin ...
M∗ΔCmin], where M > 2. Thus, j is transmitted before l,
and no collision occurs.

The proposed scheduling approach for hard real-time
communication requires access to a global time reference
with bounded inaccuracy. To guarantee that messages k
and j do not collide, their senders must agree that t is
inside of the reserved time-slot of k, and outside of the
reserved time-slot of j. This agreement is guaranteed by
leaving a gap between different reserved time-slots. The
lower the clock accuracy, the larger the minimum gap
between two subsequent time slots in the global bus
schedule must be (Figure 4). Thus the required gap be-
tween reserved time-slots of different nodes can be

bounded by synchronizing the local clocks of all non-
faulty nodes [5]. In contrast to the bus scheduling, in case
of local tasks the gap between reserved time-slots is in-
dependent from the clock accuracy, and only depends on
task switching overhead.

Based on the previous discussion, we show that fol-
lowing requirements are sufficient for the correct sched-
uling of hard real-time messages on the bus:

(R1) for each possible occurrence of a hard real-time
message k, an exclusive time-slot [Sk...dk] is re-
served, with dk being its transmission deadline,

(R2) the length (ΔRk = dk – Sk) of the reserved time-slot
of a hard real-time message k is greater or equal to
the worst-case transmission time of the message k,
including all overheads for necessary retransmis-
sions under anticipated fault conditions, and ΔRk ≥
ΔTblock.

(R3) the gap between any two different reserved time-
slots for hard real-time messages is greater than the
maximum clock-difference between any two correct
nodes in the system,

(R4) every hard real-time message k is ready for trans-
mission at its latest ready time LRTk = Sk – ΔTblock.

This means that the laxity of every hard real-time
message at its ready-time allows the longest possible
message of the system to be transmitted first,

(R5) between its latest ready time and the beginning of its
reserved time-slot, the waiting period of a hard real-
time message is ΔCmin, and within the reserved
time-slot the message is sent without waiting.

(R6) Soft real-time messages are always transmitted with
a waiting period which is in the range [2∗ΔCmin ...
M∗ΔCmin], with M > 2 (cf. section 4.2),

(R7) before its latest ready time, the waiting period of a
hard real-time message is a random period between
(M+1)∗ΔCmin and ΔCmax ≥ (M+2)∗ΔCmin (to assure
that it has a lower priority than soft real-time mes-
sages),

reserved time-slot of
message k

ΔRk

critical interval

latest ready
time reserved time-

slot of the next
message j

ΔTblock

Deadline
of k

ΔTblock

LRTj dktSk djSjLRTk

Figure 3. The reserved time-slot and critical interval of hard real-time messages

(R8) if the laxity of a hard real-time message is negative,
then the message is dropped by its sender,

(R9) non real-time messages have waiting periods ≥
ΔCmax + ΔCmin (cf. section 4.3).

Claim 1. If the requirements R1 through R9 are ful-
filled in a CSMA bus, then every hard real-time message
will be transmitted timely under anticipated fault condi-
tions.

Proof. Assume (Figure 3) that a hard real-time mes-
sage j exists with the deadline dj. Due to R1 and R2 a
time-slot [Sj = dj – ΔRj ... dj] is reserved for j. Due to R4,
j is ready for transmission at LRTj = dj – ΔRj – ΔTblock. If j
is not successfully transmitted until LRTj, then it will
compete for the bus at t ∈ [LRTj ... Sj). (let's label this
situation as C1-A)

Due to R6, j wins the bus against every soft and non
real-time message. Due to R1, R2, and R3, if another
sender is trying to send a hard real-time message k, then
it agrees that t is not within the interval [LRTk ... Sk), thus
the waiting period of k is not ΔCmin, and k and j do not
collide. If t < LRTk, then k is transmitted with a waiting
period ≥ (M+1)∗ΔCmin, and j wins the bus at t. If t ≥ Sk,
then t ∈ [Sk ... dk], and k is transmitted without waiting,
hence winning the bus. However, in this case k will be
finished until dk, because hard real-time messages with a
negative laxity are dropped by the sender due to R8. Thus
j will compete for the bus at t’, where t’ ≤ dk as seen by
the sender of k, and due to R3, t’ < Sj as seen by the
sender of j. Again, j is in the situation C1-A, just sub-
stituting t by t’. By iteration, j will win the bus and start
transmission before Sj, and it will win every bus arbitra-
tion during [Sj ... dj]. since j gains the bus access for a
period > ΔRj, it will be transmitted successfully until dj

under anticipated fault conditions. �

4.2. Scheduling soft real-time messages

For the soft real-time communication, the presented
mechanism does not guarantee a deadline. However, this
approach applies VTCSMA-D on the bus, to achieve
EDF scheduling of soft real-time communication. For
this reason, the waiting period of a soft real-time mes-
sage l at the time t is determined as:

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ −Δ∗Δ∗=Δ

η
ttd

CCMtC l
l

)(
,2max,min)(minmin

The deadline of a message x at the time t – denoted as
dx(t) – is determined based on the maximum transmission
time of x and the estimation of the current laxity LA(t) of
the associated real-time transaction A, i.e. dx(t) = t + MTx

+ LA(t) . After a task or message x is completed at t', the
laxity of the real-time transaction is recalculated as LA(t')
= dx(t) – t’. If a task receives several messages, then it
locally calculates the laxity of the real-time transaction as
the minimum laxity inherited from any of those mes-
sages. At the ready time to of the beginning task of a real-
time transaction A, the laxity LA(to) is estimated as dA – to

– META, where dA is the deadline of A, and META is the
maximum execution time of A. META can be calculated
at the design time, by applying the method described in
[14] at a higher level, based on the maximum execution
times of tasks and maximum transmission times of mes-
sages (including the anticipated time redundancy), and
the graph representation of A (cf. Figure 1).

According to this scheme, soft real-time messages are
scheduled by EDF, which is known to be optimal [9].

4.3. Scheduling non real-time messages

Non real-time messages are assigned fixed waiting peri-
ods, because the importance of a non real-time message
does not change by the passage of time. In order to fulfil
the requirement that non real-time messages only use the
bus in absence of real-time messages, the waiting period
of non real-time messages is randomly chosen from a
range [ΔCmax + ΔCmin ... ΔCNRT], where ΔCNRT ≥ ΔCmax +
2∗ΔCmin .

4.4. Dealing with faults

In order to guarantee timely hard real-time message
transfer in the presence of faults, redundant communica-
tion resources must be provided. Space redundancy
would require a second bus, which is too expensive for
many application areas. When a fault model with only
crash and omission failures of the communication system
is assumed, time redundancy can be applied instead of

time

Node1

Global
schedule

Node2

Maximum clock offset = ± ΔOc

 � Maximum skew = 2 × ΔOc

 � gap between time-slots ≥ 2×ΔOc

Reserved
timeslot of
k at node1

Reserved
timeslot of j

at node2

Offset = -ΔOc

Offset = ΔOc

GAP

Figure 4. The gap between reserved time-
slots due to clock inaccuracy

space redundancy. This means that several subsequent
transmissions have to be scheduled. This application of
time redundancy is similar to the strategy used in early
versions of the Time-Triggered Protocol [4].

5. Simulation results

We simulated a set of 42 periodic and sporadic hard and
soft real-time messages, which are sent by 7 computing
nodes. A list of these messages is contained in appendix
1. The rate of the virtual clock of the VTCSMA algo-
rithm was set to η=8. The total data load caused by the
messages, including headers, CRC, inter-frame spacing,
etc. is about 0.466 Mbit/s. We simulated the scenario at
different bus loads by varying the bus speed at constant
data load. This is equivalent to varying the data load (e.g.
for redundant transmissions) at constant bus speed. In
our simulation, late soft real-time messages are dropped,
because otherwise, at an average bus load over 100% the
percentage of late soft real-time messages would depend
on the length of the simulated period, and grow to 100%
at large simulation periods. Note that Zhao and Ramam-
ritham also dropped late soft real-time messages in their
simulations [16].

In order to simulate the worst case load for the sched-
uling, the message arrival times have been adjusted such
that deadlines of soft real-time messages are equal, hence
resulting in the maximum number of collisions, and
temporary overload conditions even in low average bus
loads. Although very pessimistic, this case must be taken
into account to show whether message loss is possible or
not.

We simulated the bus scheduling for a period of 108

bit-times (corresponding to 55 to 400 seconds, depending

on the bus speed). Appendix 2 contains the simulation
results as numbers.

Our simulation (cf. Figure 5) showed that the hybrid
scheduling mechanism is superior to the pure EDF
scheduling based on VTCSMA-D, because in the worst
case of burst equal deadlines, VTCSMA-D results in
timing failure due to temporary overload conditions even
under an average bus load of about 25%. In contrast, the
calendar-based scheduling could guarantee timely mes-
sage delivery even under average loads above 100%. At
the bus speed of 0.405 Mbit/s (about 115% average bus
load), only 0.07% of hard real-time messages were lost.
At lower bus speeds, more hard real-time messages were
lost. The loss of hard real-time messages at low bus
speeds was because some hard real-time messages could
not reserve any time-slot, thus they could not be sched-
uled correctly. If the overload condition is temporarily
produced by a burst of soft real-time messages, then it
does not lead to the timing failure of the hard real-time
communication.

Compared to the TDMA technique, our scheme
achieves a higher bus utilization by transmitting soft
real-time and non real-time messages within reserved
time-slots, whenever hard real-time messages do not
need transmission.

6. Conclusion

In order to guarantee timely completion of hard real-time
messages in a CSMA network, we have introduced a
calendar-based scheduling mechanism, which coexists
with the EDF scheduling used for soft real-time commu-
nication. In contrast to pure EDF scheduling, where
resource conflicts may occur due to equal deadlines, the
presented approach regulates the deadlines of hard real-
time messages by reserving transmission times in a
global calendar. Thus, the timeliness of hard real-time
communication is achieved despite overload failures by
guaranteeing exclusive access right to the bus during the
reserved time-slots.

Although resources are exclusively reserved for peri-
odic and sporadic hard real-time messages, whenever a
sporadic hard real-time message is not transmitted with
its highest anticipated frequency, its associated commu-
nication resources are utilized by soft real-time and non
real-time messages.

Our simulations have shown, that in the worst case
where all deadlines are equal, the pure EDF scheduling
is not capable of scheduling messages under high bus
loads, and performs poorly because of a high number of
collisions. In contrast, our approach schedules hard real-

Message loss under hybrid bus scheduling

0

20

40

60

80
18

00

16
45

14
90

13
35

11
80

10
25

87
0

71
5

56
0

40
5

25
0

Bus speed (kbit/s)

P
er

ce
nt

 lo
st

Portion of lost soft real-time messages (%)

Portion of lost hard real-time messages (%)

Figure 5. Simulation of the hybrid bus schedul-
ing algorithm

time communication correctly, even in overload situa-
tions.

7. References

[1] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz,
"The Real-Time Operating System of MARS", ACM
Operating Systems Review 23(3):141-157, July 1989.

[2] R. Davis, "Dual Priority Scheduling: A Means of
Providing Flexibility in Hard Real-time Systems",
Report No. YCS230, University of York, UK, May
1994.

[3] G. Fohler and C. Koza, "Heuristic Scheduling for
Distributed Real-Time Systems", Research Report No.
12/90, Inst. für Techn. Informatik, Techn. University of
Vienna, 1990.

[4] H. Kopetz and W. Merker, "The Architecture of
MARS", Proc. of 15th Fault Tolerant Computing
Symposium, pp. 274-279, Ann Arbor, Michigan, 1985.

[5] H. Kopetz and W. Ochsenreiter, "Clock
Synchronization in Distributed Real-Time Systrems",
IEEE Trans. on Computers 36(8):933-940, Aug. 1987.

[6] H. Kopetz and G. Grünsteidl, "TTP - A Time-Triggered
Protocol for Fault-Tolerant Real-Time Systems",
Research Report No. 12/92, Inst. für Techn. Informatik,
Techn. University of Vienna, 1992.

[7] A. Krüger and H. Kopetz, "A Network Controller
Interface for a Time-Triggered Protocol", 1995 SAE
Symposium on Future Transportation Electronics:
Multiplexing and In-Vehicle Networking.

[8] S.T. Levi, S.K. Tripathi, S.D. Carson, and A.K.
Agrawala, "The MARUTI Hard Real-Time Operating
System", ACM Operating Systems Review 23(3):90-
105, July 1989.

[9] C.L. Liu and J.W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard real-Time Environment",
J. ACM 20(1):46-61, 1973.

[10] M.A. Livani, J. Kaiser, and W. Jia, "Scheduling Hard
and Soft Real-Time Communication in the Controller
Area Network (CAN)", 23rd IFAC/IFIP Workshop on
Real Time Programming (WRTP98), Shantou, China,
1998.

[11] M.A. Livani and J. Kaiser, "Evaluation of a Hybrid
Real-time Bus Scheduling Mechanism for CAN",
Lecture Notes in Computer Science 1586 (Jose Rolim et
al. Eds.), pp. 425-429, Springer Verlag Berlin, 1999.

[12] M.L. Molle and L. Kleinrock, "Virtual Time MSMA:
Why two clocks are better than one", IEEE
Transactions on Communications 33(9), Sep. 1985.

[13] P. Puschner and Ch. Koza, "Calculating the Maximum
Execution Time of Real-Time Programs", J. Real Time
Systems 1(2):159-176, 1989.

[14] P. Puschner and A. Schedl, "Computing Maximum
Task Execution Times – A Graph-Based Approach", J.
Real Time Systems 13(1):67-91, 1997.

[15] SAE, "Class C Application Requirement
Considerations", SAE Technical Report J2056/1, June
1993.

[16] W. Zhao and K. Ramamritham, "Virtual Time CSMA
Protocols for Hard Real-Time Communcations", IEEE
Tr. Software Eng. 13(8), 1987.

Appendix 1. The message set used for simulations

Following set of messages was used for simulations. It was obtained by modifying a benchmark for safety critical
vehicle control (Class C) applications [15].

Signal (message) description bits jitter period Kind deadline sender receiver
Battery high rate 32 0.6 100 PS 100 Battery V/C
Battery low rate 24 1.0 1000 PH 1000 Battery V/C
Accelerator Position 8 0.1 5 PH 5 Driver V/C
Brake high rate 16 0.1 5 PH 5 Brakes V/C
Transaxle Lubrication Pressure 8 0.2 100 PS 100 Trans V/C
Transaction Clutch Line Pressure 8 0.1 5 PS 5 Trans V/C
Vehicle Speed 8 0.8 100 PH 100 Brakes V/C
Hi/Lo Contactor Open Close 4 0.1 50 H 5 Battery V/C
Key Switch Run 1 0.2 50 S 20 Driver V/C
Key Switch Start 1 0.3 50 S 20 Driver V/C
Accelerator Switch 2 0.4 50 S 20 Driver V/C
Brake Switch 1 0.3 20 S 20 Brakes V/C
Emergency Brake 1 0.5 50 H 20 Driver V/C
Shift Lever (PRNDL) 3 0.6 50 S 20 Driver V/C
Motor/Trans Over Temperature 2 0.3 1000 H 1000 Trans V/C
Speed Control 3 0.7 50 S 20 Driver V/C
12V Power Ack Vehicle Control 1 0.2 50 S 20 Battery V/C
12V Power Ack Inverter 1 0.3 50 S 20 Battery V/C
12V Power Ack I/M Control 1 0.4 50 S 20 Battery V/C
Brake Mode (Parallel/Split) 1 0.8 50 S 20 Driver V/C
SOC Reset 1 0.9 50 S 20 Driver V/C
Interlock 1 0.5 50 S 20 Battery V/C
Reverse and 2nd Gear Clutches 2 0.5 50 S 20 V/C Trans
V/C high rate 32 0.1 5 PH 5 V/C Battery
V/C low rate 16 1.6 1000 PH 1000 V/C Battery
DC/DC Converter Current Control 8 0.6 50 S 20 V/C Battery
12V Power Relay 1 0.7 50 S 20 V/C Battery
Brake Solenoid 1 0.8 50 H 20 V/C Brakes
Backup Alarm 1 0.9 50 H 20 V/C Battery
Warning Lights 7 1.0 50 H 20 V/C Ins.
Key Switch 1 1.1 50 S 20 V/C I/MC
Main Contactor Close 1 0.3 50 S 20 I/MC V/C
I/M C high rate 16 0.1 5 PH 5 I/MC V/C
FWD/REV 1 1.2 50 S 20 V/C I/MC
FWD/REV Ack. 1 0.4 50 S 20 I/MC V/C
Idle 1 1.3 50 S 20 V/C I/MC
Inhibit 1 0.5 50 S 20 I/MC V/C
Shift in Progress 1 1.4 50 S 20 V/C I/MC
Inverter Temperature Status 2 0.6 50 S 20 I/MC V/C
Shutdown 1 0.7 50 H 20 I/MC V/C
Status/Malfunction (TBD) 8 0.8 50 H 20 I/MC V/C
Main Contactor Acknowledge 1 1.5 50 S 20 V/C I/MC

1) Kind: PH = periodic hard RT; H = sporadic hard RT; PS = periodic soft RT; S = sporadic soft RT.
2) Period, deadline, and jitter are given in milliseconds.

Appendix 2. Simulation results in form of numbers

Bus speed (kilo bit/s) Portion of lost soft real-time
messages (%)

Portion of lost hard real-time
messages (%)

1800 6,9853 0
1722,5 10,9244 0
1645 9,1582 0

1567,5 11,104 0
1490 11,8501 0

1412,5 11,8353 0
1335 11,9387 0

1257,5 12,1989 0
1180 13,507 0

1102,5 15,7562 0
1025 16,0034 0
947,5 17,7245 0
870 20,9768 0

792,5 23,7382 0
715 24,4598 0

637,5 28,9398 0
560 32,9869 0

482,5 37,0487 0
405 43,4115 0,0715

327,5 54,1286 18,869
250 66,0189 26,8459

