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Abstract 

Designing distributed real-time systems as being 
composed of communicating objects offers many 
advantages with respect to modularity and extensibility of 
these systems. However, distributed real-time applications 
exhibit communication patterns that significantly differ 
from the traditional object invocation style. The 
publisher/subscriber model for inter-object 
communication matches well with these patterns. Any 
implementation of that model must address the problems 
of binding subscribers to publishers, of routing and 
filtering of messages, as well as reliability, efficiency and 
latency of message delivery. In the context of real-time 
applications, all these issues must be subject to a rigid 
inspection with respect to meeting real-time requirements. 
We argue that for embedded control systems built around 
smart microcontroller-powered devices these 
requirements can only be met when exploiting the 
properties of the underlying network. The CAN-Bus 
(CAN: Controller Area Network) which is an emerging 
standard in the field of real-time embedded systems is 
particularly suited to implement a publisher/subscriber 
model of communication. In this paper, we present an 
implementation of the real-time publisher/subscriber 
model that exploits the underlying facilities of the CAN-
Bus. In particular, we introduce a novel addressing 
scheme for publisher/subscriber communication that 
makes efficient use of the CAN-Bus addressing method. 
We provide a detailed design and implementation details 
along with some preliminary performance estimations. 
 
Keywords: Real-Time Communication Systems, 
Publisher/Subsrciber Model, Tag-based addressing, CAN-
Bus 
 

1 Introduction 
 
Distributed systems, composed from a network of 
microcontrollers connected via a field-bus network 
become increasingly popular in process control. Intelligent 
sensors, actuators and distributed control structures 
replace the centralized computer. A distributed real-time 
architecture modeling smart sensors, actuators and control 
nodes as communicating objects supports in many ways 
the demands of process control with respect to 
extensibility, reliability and cost effectiveness. This leads 
to a modular system architecture in which smart 
autonomous objects cooperate to control a physical 
process. There are, however, some properties, which 
deviate from the conventional object-oriented model of 
computation. In this paper we will focus on the issues of 
inter-object communication.  
 The conventional way of object interaction centers 
around synchronous object invocation. The model 
maintains the semantic of a procedure call in which a 
specific service is requested from another object by 
transferring control and exchanging parameters via shared 
memory rather than by explicit communication. Even 
when extending object-orientation to a distributed 
environment, this model of object invocation is preserved. 
Well known examples are the CORBA RPC and Java 
RMI. In summary, it is a synchronous form of point-to-
point coordinating two well-known (by address) objects. 
In contrast, control applications often require 
asynchronous coordination (the term “asynchronous“ is 
used here to characterize an event driven style of 
communication which does not rely on the (blocking) 
request-response paradigm described above) between sets 
of anonymous objects. The reasons for this are the 
following: 
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1. In many cases, communication patterns are not one-
to-one. A typical situation is that the information 
gained from a sensor can be used and analyzed in 
more than one controller, e.g., the output of a vision 
system on a mobile robot is interesting for reactive 
collision avoidance implemented on a small 
microcontroller as well as for long term navigation 
strategies implemented on a more powerful device. 
Another typical example is the situation in which 
control commands issued from a controller address a 
number of identical actuators; e.g., all motors have to 
stop in case of emergency. 

2. Communication is often anonymous. Consider again 
the example of stopping a set of motors. When 
issuing a stop command, it is not of interest to address 
a specific motor, rather it must be ensured that all 
relevant motors receive the command. Similarly, 
when reacting to a stop command, it is not of interest 
which controller has issued that command. On a more 
abstract level, a sensor object triggered by the 
progression of time or the occurrence of an event 
spontaneously generates the respective information 
and distributes it to the system. Thus, it can be 
considered as a producer. The corresponding 
consumer objects have mechanisms to determine 
whether this information is useful for them. This 
interaction leads to a model of anonymous 
communication in which the producer does not know 
which consumers will use its information and, vice 
versa, the consumers only know which information 
they need independently from which source they 
receive it. Furthermore, anonymous communication 
supports the extensibility and the reliability of the 
system because objects can be added or be replaced 
easily without changing address information 
maintained in the other objects. 

3. Communication is asynchronous because control 
systems have to react to external events. These 
external events are recognized at the sensor interface 
of an embedded system and lead to internal activities. 
This is best captured in a generative, event-based 
communication model. In addition, control 
applications are highly cooperative. The individual 
nodes are, from an application point of view, 
functionally and temporally tightly coupled to 
perform a complex control task. However, because of 
extensibility and reliability reasons it is highly 
desirable to preserve the control autonomy of the 
individual nodes. Therefore coordination between the 
cooperating objects should be achieved via 
asynchronous communication rather than by explicit 
control transfer. 

 
As already argued in other places, the publisher/subscriber 
model of inter-object communication meets these 

requirements [1, 2, 3]. The publisher/subscriber model 
supports an asynchronous style of anonymous many-to-
many communication in contrast to the synchronous style 
of object invocation. A consumer subscribes to a certain 
event type/subject/channel rather than to a specific 
producer. A producer publishes instances of this type of 
information. Published information is forwarded 
eventually to all subscribers, either immediately when 
being published (push) or on demand when a subscriber 
asks for updates (pull). Popular implementations of this 
model are the CORBA event service [1] or even web 
channels [4] Since the publisher/subscriber model is 
extremely attractive for structuring object-oriented control 
applications, attempts already have been undertaken to 
implement the model in the real-time domain [5, 6]. 
Roughly speaking, these implementations suffer from the 
uncertainties incurred when mapping the 
publisher/subscriber model to TCP/IP based 
communication in a general purpose network (a more 
detailed discussion of related work is given in section 2). 
In this paper, we present an implementation of the 
publisher/subscriber model that exploits the real-time 
properties of the underlying network, namely the CAN-
Bus which is very popular in distributed control 
applications. We show how the issues of binding 
subscribers to publishers, of routing and filtering of 
messages, as well as reliability, efficiency and latency of 
message delivery are implemented in order to meeting 
real-time requirements. In particular, we introduce a novel 
addressing scheme for publisher/subscriber 
communication that makes efficient use of the CAN-Bus 
addressing method. 
 The paper is organized as follows. The next chapter 
investigates the implementation issues mentioned above, 
presents the principles of our approach and compares it 
with the related work. The basic features of the CAN-Bus 
will be introduced in chapter 3. They are a prerequisite to 
the understanding of chapter 4 where our addressing 
scheme and the components of the communication system 
are described. Chapter 5 gives some preliminary 
evaluation results and concludes the paper. 
 
2 Design principles 
 
Implementing the publisher/subscriber model requires to 
map the abstractions of that model (publisher, subscriber, 
information type, information instance) to the elements 
provided by the technical infrastructure of the system such 
as objects, messages and addresses. More precisely, we 
can identify publishers and subscribers with objects, and 
information instances with messages that are sent to 
certain addresses. The information type can be mapped to 
the address or the content of the message (or a 
combination of both). 



 Now, the routing problem consists of making sure that 
a message is sent to all potential subscribers, i.e., each 
subscriber has a chance to get all messages it is interested 
in. There are three different approaches to solve the 
routing problem: 
 1) send a number of point-to-point messages, 
 2) send a multicast message, 
 3) send a broadcast message. 
Obviously, alternative 1) is the worst when trying to 
achieve real-time requirements. This is because 
implementing a logical one-to-many communication by a 
number of point-to-point messages induces a higher 
network load compared to a single broadcast message. 
This higher load consumes bandwidth resources and 
makes the delay of message delivery less predictable. It is, 
however, the only possible choice when the underlying 
network is assumed to provide point-to-point message 
delivery only. This is case for the work reported in [5, 6]. 
In [5], the routing problem is tackled by maintaining a 
replicated subscription registry at the publishers, i.e., each 
publisher knows to which subscribers it has to send a 
message. Real-time properties are supported in so far as 
the actual sending of messages is given priority to 
maintaining that replicated information base. However, 
the principle problem of achieving predictable message 
delays is not overcome. The solution described in [6] uses 
an intermediate object (the channel object) which 
represents the information type. This is comparable to the 
indirect port based addressing scheme found for instance 
in the Chorus and in the Mach operating systems. All 
publishers send their messages to the channel object. All 
subscribers register at the channel object. Thus, the 
channel object acts as router between the publishers and 
the subscribers. [6] describes how some real-time 
properties such as handling of prioritized message and 
message correlation can be integrated in the channel 
object. However, the price to be paid is the extra level of 
indirection and the increase in the total number of 
messages needed. 
 The use of the multicast alternative is advocated for in 
[2]. Real-time issues are not addressed. Although being 
attractive for implementing the publisher/subscriber 
model, the choice of the appropriate multicast protocol is 
not clear. In general, multicast communication makes 
group membership explicit and joining or leaving a group 
is an activity, which creates group wide awareness, and 
activity. In the publisher/subscriber model, the knowledge 
about who is in a group is not necessary and subscription 
is (conceptually) a local activity. 
 Finally, the broadcast alternative clearly is the 
premium choice for solving the routing problem given that 
the underlying network is a physical broadcast medium. 
This is a main result from [3]. In there, the implementation 
is based on the Ethernet. Real-time requirements again are 
not addressed and, in general, are hard to achieve on the 

Ethernet due to the way collisions are handled. In contrast 
to Ethernet, the CAN-Bus is a broadcast medium that 
allows use physical broadcast while its non-destructive 
collision handling scheme allows support of real-time 
properties (see section 3 for more details). 
 Now, we consider the filtering problem, which 
consists in making sure that a subscriber does not receive 
more messages than it has subscribed for. This is the other 
side of the routing problem, i.e., if the publisher already 
knows in advance which subscribers must receive a 
particular message and if it sends the message only to 
those subscribers, no filtering must take place. But, as 
argued above, the most handy approach (and the one that 
is best suited to achieve real-time properties) to solve the 
routing problem is the broadcast approach. This induces 
that, at some level, all receivers receive all messages and 
that filtering must take place to implement the 
publisher/subscriber model. The most expressive (and 
least real-time capable) approach to filtering is introduced 
in [7]. In this approach, which is also found in [8, 9], 
subscribers define via predicates over the message 
contents which messages they are interested in. This is 
denoted as "content based addressing". In this scheme, the 
complete contents of each message has to be evaluated in 
order to filter the relevant messages out. This induces a 
non-predictable overhead on each node for each message 
broadcasted in the system. As shown in [3], the overhead 
can be alleviated by identifying messages by a simple tag 
(the subject of the message) instead of arbitrary predicates 
in order to ease the filtering process. Each message is 
tagged with its subject and filters are specified in terms of 
a mask for a particular subject rather than using the entire 
contents of a message. In [3], this technique is termed 
"subject based addressing". However, it still holds that the 
contents of each message has to be evaluated by each 
receiver, only the complexity of the evaluation process in 
reduced.  
 Our approach to make the subject-based addressing 
scheme efficient and usable in an embedded real-time 
system is to put the subject in the address of the message 
rather than in the message contents. For simple devices it 
is substantial that filtering is done at the network 
controller level because the respective microcontroller 
would not even be able just to examine every message on 
the net. By putting the subject in the address we solve the 
filtering problem already on the level of the 
communication controller. On the CAN-Bus, all messages 
are physically broadcasted. However, messages are tagged 
with addresses that are used for the bus arbitration 
process. Addresses are also related to the contents of the 
message rather than to a receiver address. CAN controllers 
can be configured to selectively receive messages 
depending on the contents-related address. All other 
messages are discarded already in the network controller 
without interrupting the application processes. A masking 



mechanism is available to realize "wildcarding" and 
recognize messages with partially identical addresses as 
members of a subject group. For more details and for a 
further explanation of our solution of the filtering problem 
the reader is referred to the description of the Event 
Channel Handlers in section 4.2. 
 By tackling the filtering problem by an efficient use of 
the underlying addressing scheme, we re-introduce a 
binding problem into the implementation of the 
publisher/subscriber model. The binding problem is that 
the system has to find out which address it has to use 
when sending a particular message. In [3], the binding 
problem is completely eliminated because all messages are 
sent to the same (broadcast) address. Systems which 
strictly use the contents of an event to mediate it to the 
application object, do not need any binding of an event to 
a name or an address tag. The price which has to be paid 
for this convenience, however, is as explained above, the 
costly implementation of the filtering that has to inspect 
each message. For real-time embedded systems this will 
be prohibitively expensive. In [6], binding takes place 
when connecting to the event channel, in [5] binding is 
implicit in the implementation of the registration 
functions.  
 In supporting an object-oriented, modular design 
approach, we identify system components (intelligent 
sensors, intelligent actuators) by their external interfaces 
while allowing their implementation to be hidden. In 
particular, we do not require components to be re-
compiled when being put together to build a system. We 
even allow components to be added dynamically. Since 
the subjects being published or subscribed by a 
component are part of its interface, this subject must be 
mapped dynamically to an address at run-time. The 
straightforward approach to directly use the subject as 
address is not feasible on the CAN-Bus because, firstly, 
the address is also used for the bus arbitration process and 
relates to message priorities, and secondly, the address is 
relatively short compared to global name space of all 
possible subjects, and thirdly, the CAN-Bus forbids 
messages with identical addresses to appear on the CAN-
Bus. The latter could not be avoided when using subjects 
directly as addresses because there might several 
components that publish on the same subject. Thus, our 
implementation includes a dynamic binding mechanism 
that binds subjects to addresses at run-time. This 
mechanism, denoted as Event Channel Broker in the 
following, supports late binding and local address 
resolution. It is described in more detail in section 4.3. 
 Finally, we briefly sketch how the reliability, 
efficiency and latency problems are solved in our 
implementation. The first two problems are already 
addressed by the underlying CAN-Bus. Achieving 
reliability means to make sure that messages are not lost 
on the communication medium. As already argued in [10], 

the use of explicit acknowledgement schemes for 
detecting message losses is not suitable for real-time 
systems. This is the more true when considering one-to-
many communication as in the publisher/subscriber 
model. The CAN-Bus, however, provides a sophisticated 
fault detection mechanism to achieve a consistent view 
about the status of a message at the end of every 
individual message transfer. The efficiency problem 
relates to the effective bandwidth that is achieved on the 
medium, especially when considering high load situations. 
Good efficiency in general is hard to achieve especially 
when broadcasting is used to solve the routing problem. 
This might overwhelm the medium with unnecessary 
messages. In particular, it is well known pure CSMA 
suffers from a low efficiency in high load situations due to 
the increase of collisions and resends [11]. The CAN-Bus, 
however, provides a non-destructive collision detection 
scheme and thus does not suffer from those efficiency 
penalties. By the latency problem we mean that a 
predictable message delay must be guaranteed in a real-
time system, i.e., each message has a deadline before 
which it must be sent. This timeliness in message delivery 
is not achieved by the basic CAN-Bus properties that only 
provide priority-based message dispatching. For 
guaranteeing timely delivery, we use a global network 
scheduling approach [12] that can be implemented 
efficiently on the CAN-Bus by using a dynamic priority 
scheme [13]. 
 Due to its specific properties, the CAN-bus is an ideal 
candidate to support the publisher/subscriber model of 
communication. Therefore, we will now briefly introduce 
its basic properties.  
 
3 Basic CAN features 
 
CAN (ISO 11898 an 11519-1) is a broadcast CSMA-
network targeted to operate in an automotive or industrial 
automation environment with speeds of up to 1 Mbit/sec, 
exchanging small real-time control messages. The CAN-
specification [14] developed by BOSCH covers the 
functionality of layers 1 (physical layer) and 2 (data link 
layer) of the ISO/OSI protocol stack. CAN is a variant of 
a polled bus [15]. A polled bus relies on three properties.  

P1 every bit of a message will propagate to all 
connected nodes before the next bit will be sent, 
thus enabling all nodes to see the same bit value 
during a certain time window. 

P2 the sender monitors the bus at the same time it 
transmits. For every bit, a sender can check if the 
bus carries the signal level which was 
transmitted.  

P3 there are dominant and recessive signal levels. A 
single dominant signal level overrides any 
number of recessive signal levels.   



If two stations start transmission at the same time, a 
collision will occur. Different from other CSMA-
networks, however, collisions always lead to a well-
defined signal level on the bus because of the property P1 
and P3. In most implementations, the CAN-bus behaves 
like a wired AND circuit for all bit values sent at the same 
time. This basic feature of the CAN-bus is exploited for: 
-  Efficient use of available network bandwidth by 

providing a non-destructive priority based message 
dispatching. 

-  Immediate error detection, signaling and automatic 
retransmission of messages. 

 
The priority-based non-destructive arbitration scheme 
assures that a collision does not destroy the messages on 
the bus, but the message with the highest priority will be 
transferred without further delay. If a node during the 
arbitration process sends out a recessive level but 
monitors a dominant level on the bus, it knows that a 
message with higher priority is competing for the bus. The 
node then will switch to a receiving mode. Finally, the 
node with the lowest message ID will win the arbitration 
process and send the data. It can easily be seen that by this 
mechanism, the CAN-bus serves as a priority based global 
message dispatcher. The non-destructive arbitration 
scheme overcomes the drawback of general CSMA 
networks of low predictability and lost bandwidth because 
of collisions under high load conditions. 
 The second important feature of CAN is that it 
provides mechanisms to achieve a consistent view about 
the status of a message at the end of every individual 
message transfer. Every message will be accepted or 
rejected by all participants. If one of the participants 
(sender or receiver) detects an error locally it will 
invalidate the ongoing message transfer by sending out a 
string of dominant bits. This will be detected by the other 
participants including the sender. The receivers will, as a 
consequence, discard the current message from their local 
in-queues. The sender will automatically retransmit the 
message. Thus, relating a corrupted message with its 
source and retransmitting it will be done at the controller 
level. For the host processor the automatic retransmission 
procedure is transparent which substantially lowers its 
protocol overhead. There is a very low probability that 
transmission errors remain undetected [14, 16].  
  To summarize, CAN supports routing of messages by 
an efficient broadcasting of messages and reliability by a 
broad spectrum of error detecting and recovery 
mechanisms. 
 
4 Implementing a real-time  
   publisher/subscriber protocol  
 
CAN alone does not yet enforce temporal guarantees for 
real-time communication or a particular model of 

communication. Moreover, there are some rare failure 
situations which cannot be handled by the reliability 
mechanisms of CAN [17, 18]. We need to build additional 
protocol layers which realize the properties necessary for 
a real-time publisher/subscriber model of communication. 
Important, however, is to exploit the CAN basic features 
as far as possible. Particularly, we have to add: 
1. A local run-time component (ECH, see Fig. 1) which 

performs the filtering of messages based on their 
event tags. The ECH provides an event channel 
interface to the application object and exploits the 
hardware filtering mechanisms of messages on 
receiver sites efficiently. 

2. A binding service (the ECB, see Fig. 1) which 
supports our enhancement of assigning tags as event 
identifiers to the messages. This mechanism must 
guarantee the uniqueness of event tags. 

 
As described above, the CAN identifier and the special 
treatment of this ID by the CAN controller hardware are 
the key for priority based message dispatching and for 
routing and filtering. The CAN standard specifies two 
different but compatible formats of the CAN-ID. A short 
11-Bit form and an extended format (29 bit). However, 
CAN does not fix any specific use of the identifier. 
Therefore, higher level protocols are free to structure the 
identifier according to their needs. There are a number of 
application level protocols which all use different 
interpretations of the ID [19, 20, 21]. Their major 
drawbacks are that they use a short (11 bit) form of CAN 
identifiers (The CAN standard defines both, 11 Bit and 29 
Bit Ids). They argue that this will reduce the overhead for 
a message. Because messages cannot be preempted and 
CAN is designed to achieve a short latency for high 
priority messages, the maximum message length is 154 
bits with 64 Bits (8 Bytes) of payload. The overhead is 
thus around 140% for the longest message. This will be 
reduced to around 110% when using short IDs.  
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Fig. 1 Overall communication system's architecture 
 
However, these schemes make it almost impossible to 
implement useful event tags and support a general 
publisher/subscriber model. Moreover, if the identifier 
carries useful information, like temporal constraints or 
subject identifiers, which have to be communicated 
anyway, more payload is available for additional data. In 
the protocols mentioned above the payload of the 
messages is severely reduced by carrying system 
information.  
 
4.1 The Event Channel Handlers 
 
The Event Channel Handlers (ECH) constitute the local 
run-time support which provides all functions necessary to 
manage the event channels on a node. This support ranges 
from the application objects' interface to the low-level 
mechanism to setup and control the hardware filters for 
the reception of relevant events. 
 The scheduling of messages, routing and filtering 
expose a certain structure to the extended 29-Bit CAN 
identifier. The structure of the CAN identifier for our 
protocol is depicted in Fig. 2. As mentioned in the 
previous chapter, all 29 bits of the identifier are used in 
the arbitration process to establish a priority order 
between the messages ready to be sent. Thus, CAN alone 
guarantees the timeliness of the highest priority message 
only. To overcome this drawback, rate monotonic and 
deadline monotonic analysis is applied to assign priorities 
in a way that all messages will be properly accommodated 
[22]. Rate monotonic analysis allows off-line validation of 
message priorities if the bus has an anticipated load and 
messages arrive periodically. Thus, it is perfectly suited 
for static systems which only handle hard-real-time 
messages. However, we want to support Quality of 

Service for a more dynamic type of system in which 
messages may not arrive periodically and hard real-time 
and soft real-time messages may coexist. We use a 
dynamic LLF scheme, an idea which first has been 
proposed for EDF by Zuberi and Shin [23]. However, in 
the form proposed in [23] it is only suited for a very low 
number of nodes (≤ 3) and also cannot guarantee the 
timely delivery of hard real-time messages during 
transient overload situations. We propose a scheme which 
is based on reserved time slots for hard real-time messages 
similar to TTP. The priority scheme of the CAN-Bus is 
exploited to guarantee that hard real-time messages are 
properly sent even if they have to compete with soft real-
time and non- –real-time traffic. Different from TTP or 
TDMA schemes, slots not needed by hard real-time 
messages can be used by lower urgency messages. A 
discussion of the scheme is beyond the scope of this 
paper. It is described in detail in [13, 24]. 
 Our scheme uses the 8 most significant bits of the ID 
to specify the dynamic priority. The remaining bits of the 
ID are used to carry information which characterizes 
events. This is referred as static priority field (see Fig. 2). 
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Fig. 2 Identifier structure 
 
The static priority field contains two sections. The first 
section contains the node identifier. We assume a single 
local CAN network which may have up to 128 nodes. The 
number of nodes in a CAN network is not really restricted 
by the protocol. Rather this is a physical restriction 
resulting from popular implementations of bus drivers. 
According to the ISO-DIS 11898 Standard, the physical 
interface must accommodate 2- 30 nodes. This node ID is 
needed to guarantee uniqueness of the entire CAN-ID, i.e. 
that no two identical CAN-IDs compete for the bus access 
(in this case the protocol would be unable to resolve the 
arbitration conflict). The partitioning of the CAN-ID has 
to solve the trade-off between the number of network 
nodes and the number of events which can be identified 
by the respective tag in the ID. Because there is only a 
restricted number of bits, a static assignment of the 
respective fields in the ID always leads to a restricted 
extensibility of the system. Therefore nodes and events 
have some unique long names which are mapped to CAN-
IDs when a node is connected to the network. The event 
channel broker (ECB) and appropriate protocols 



(described in section 4.3) are implemented for this 
purpose. Before a new node is allowed to send any regular 
message, it issues a configuration request to the ECB and 
obtains a unique 7-bit node identifier. The ECB 
configuration protocol ensures that this message has a 
unique identifier which is not used during normal system 
operation and that two configuration requests do not 
interfere. Similarly the binding of unique event names and 
the respective 14-bit event tags has to be performed before 
an object can use an event channel.  
 In a system which comprises nodes with limited 
processing performance it is essential that the mechanism 
of filtering irrelevant events is embedded in the controller 
and works without host assistance. The filtering 
mechanism in CAN applies to the message ID. The event 
tag as part of the address is a prerequisite to exploit the 
CAN-ID for event filtering. This low level filter 
mechanism is now briefly sketched.  
 Every CAN controller comprises one or more receive 
registers RxReg. This register holds a 29-bit identifier 
(TID: template ID). During a message transfer, a message 
ID on the CAN-bus (CID: current ID) is compared against 
the identifier in the receive register(s). If a match occurs, 
the message is fetched from the bus and stored in a buffer. 
To allow the reception of a group of messages, an 
additional mask register is available. The bit pattern in this 
register contains a mask defining which bit-positions of 
the ID should be used to determine a match. This 
mechanism is similar to an associative memory which 
allows the masking of search keys to address a set of 
memory locations. For each incoming message the 
controller checks if: TID & MASK == CID & MASK (&: 
bitwise logical AND).  
 In our scheme, the mask can be used to select 
messages according to priority, transmitting node, subject 
tag, or a combination of them. Fig. 3 gives some examples 
of selective message reception. Mask 1 specifies the 
subscription to a specific event. Only the event with the 
tag "00110110110100" will be accepted by the controller. 
Mask 2 enables reception of a group of events from a 
specific node. 

dynamic prio       Txnode              etag     field

8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 
1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1
x x x x x x x x x x x x x x x 1 1 1 
x x x x x x x x 1 1 1 1 1 1 1 1 1 1  

 
 x: don't care 

Fig. 3 Examples of selective masking of a CAN ID 
 
  The capabilities of the filter mechanism are not 
specified in the standard. Therefore, they are, to a certain 
degree, dependent on the CAN controller used. A 
common feature, however, is that all CAN controllers 
provide at least one global mask to filter events (some 

controllers provide additional capabilities which allow a 
finer grain of filtering events to reduce the load of the host 
processor. It is however beyond the scope of this paper to 
discuss these optimizations). If two messages with 
different identifiers should be received on a node, all 
differing bit positions must be masked out, i.e. these bits 
are not used for matching the ID to the contents of the 
receive register. It is obvious that the filter mechanism can 
best be exploited if binding is not arbitrary but considers 
some application dependent assignment of events tags. 
The ECB, responsible for the binding, can support the low 
level filtering mechanism by grouping of events and 
assigning a partly identical event tag.  
 The efficiency of handling incoming messages is 
crucial for the applicability of the concept in embedded 
real-time systems. On an incoming event, the ECH has to 
execute the following tasks: 
1. Handle the controller specific issues like reading 

and resetting the receive register. This is normally 
performed in an interrupt handling mode. 

2.  Determine the respective event channel. 
3.  Determine the objects which have subscribed to the 

event channel. 
4.  Copy the event in the respective queues of the 

objects.  
5.  Notify the object of an event occurrence. This may 

be combined with step 4 depending on the 
underlying real-time executive. 

 
We assume a controller which is compatible with the 
Basic CAN standard [14]. The highest possible rate of 
incoming messages in a 1Mbit/sec network is around 1/90 
µsec [26] for messages with no data. Because Basic CAN 
controllers are equipped with a shadow buffer for 
incoming messages, the received message is not destroyed 
while the next message is received. Thus at the worst case, 
the host has to examine and forward a message every 90 
µsec. However, a much lower rate is expected because 
firstly, only relevant events pass the filtering mechanism 
and secondly, analysis of requirements for hard real-time 
communication show, that considering reliable message 
transfer will reduce the message rate considerably [24, 
25]. In chapter 5 we present some preliminary 
performance figures. 
 
4.2 The Event Channel Broker and the  
      Binding Protocol 
 
The ECB handles binding and configuration requests. 
Binding refers to mapping subjects to addresses (event 
tags). Configuration addresses the problem of assigning 
unique node IDs and guaranteeing that no address 
conflicts will occur on the CAN-Bus. 
 As described above, the binding supports the use of 
tags to identify the contents of a message. This requires 



that the message contents is related to a message tag or 
subject by a binding procedure. This binding is performed 
in two steps. First, the contents of a message has to be 
related to a subject (or an event channel). The subject is 
represented by a long unique logical message ID. The 
assignment is done off-line. A publisher and a subscriber 
have to know the subject names when they want to 
participate in a communication over this specific event 
channel. This subject ID can also be used in higher level 
protocols that make use of the publisher/subscriber 
communication implemented by our system. The next step 
is to assign a short tag which is carried in the CAN ID to a 
specific subject. This tag is then used to allow filtering at 
the CAN controller level. Whereas the first step is done 
off-line the second step is dynamically performed at run 
time. Thus, a node, which wants to communicate the first 
time, has to resolve the logical subject names.  
 The configuration problem which we have to solve for 
the CAN-bus is to provide unique message identifiers. The 
same event, provided by multiple sources must have 
different identifiers to comply with the CAN arbitration 
scheme. Therefore, the static part of this ID comprises a 
node-ID and an event tag (see section 4.1). In our current 
implementation, we support 15-bit unique logical names 
for nodes and 32-bit logical names for events (the sizes of 
node names and event names are somewhat arbitrary in 
our prototype implementation. The size of the node name 
e.g. was chosen because it fits perfectly in a single 
configuration request message. The protocol, however, 
allows for arbitrary long names if multiple messages 
which are assigned to dedicated event names are used for 
a configuration requests). The assignment of a logical 
node name to a 7-bit node ID is a configuration issue 
which has to be performed when a node is connected to 
the network. It is a prerequisite for any communication of 
the node. The binding of logical event names to event tags 
is the second step. This step can be performed eagerly at 
node configuration time or lazily, when an event is 
actually used. Early binding may be the preferred 
technique to achieve predictability in a real-time system. If 
late binding is applied, the resolution of the event name 
has to be considered as an additional scheduling 
parameter.  
 Let's start with the configuration protocol. The 
configuration protocol envisages a bootstrap problem. 
This results from the fact that if two nodes would try to 
send messages with the same identifier but different data 
parts, this would lead to a conflict which could not be 
resolved by CAN. The two controllers would detect a 
transmission error, invalidate the message and 
automatically would start retransmission at the same time 
with the same messages. Therefore, we have either to 
assure that the configuration request to the ECB has a 
unique CAN-ID or the configuration request must not 
contain any data. In the CAL configuration protocol [19] a 

configuration request uses a single dedicated CAN-ID to 
request a unique node-ID. This request can be issued by 
multiple nodes at the same time, consequently, no data is 
allowed in this message. Thus, the configuration server 
does not know which node has issued the request, and 
hence, it has to poll all nodes in the system. Our solution 
to this problem avoids the time consuming polling by 
including the unique long node ID in the message. The 
protocol uses a specific configuration event (event #1) 
which is dedicated to a configuration request. The 15 most 
significant bits of the event contain the long node ID 
(Because a configuration request should not interfere with 
a (low laxity = high priority) real-time message, the two 
most significant bits of the logical node ID are always 
"11" resulting in an effective name space of 13 bits). This 
serves two purposes. Firstly, since node IDs are unique, 
two configuration requests have always different CAN-
IDs. Secondly, the ECB knows which node issued the 
request. The ECB performs the name conversion and 
returns the short node ID via a second reserved event 
(event #2). The node which expects an answer of the 
ECB, sets its receive register exactly to this event. The 
ECB now pushes the event to the associated event channel 
with the logical node ID and the short node ID attached as 
data. The logical node ID allows the receiving node to 
determine whether the message is a reply to its request. 
From then, it can communicate using its unique short node 
ID.  
 The binding protocol works very similar. Because the 
node already has a unique ID, the principle of the protocol 
is straightforward. However, we implemented an 
optimization. Many local application objects may use the 
same event channel. It would therefore not be efficient if 
each of them would issue a (remote) query to the ECB. 
Instead, the application object always directs its request to 
the local ECH which caches resolved event names. Only if 
it is the first local request to resolve the name, the ECH 
has to communicate with the ECB. The protocol between 
the ECH and the ECB again uses specific binding events 
(#3 and #4) for requesting an event tag returning it to the 
client ECH.  
 Currently, we only implemented a central ECB which 
obviously constitutes a single point of failure. Using 
replication this drawback could be removed. However, it 
should be noted, that the ECB is only needed if a binding 
has to be performed, i.e. at system configuration or at the 
integration of new components. 
 
5 Concluding remarks and preliminary  
   evaluation 
 
The focus of the paper is the efficient implementation of 
the publisher/subscriber model on the CAN-bus. We argue 
that the CAN-bus is well suited to implement such a 
model and that it is necessary to exploit basic network 



features to enable hosts with restricted processing and 
memory capacity to use the convenient communication 
paradigm. The paper addresses two questions:   
1. Is, in general, the publisher/subscriber model of 

communication a good thing for object-oriented 
distributed control applications? 

2. Can such a model be implemented efficiently in a 
system which incorporate smart devices with limited 
processing and memory capacity? 

To answer the first question, we gave some examples of 
typical control scenarios in which the conventional style 
of synchronous object invocation is not appropriate. And 
in fact, the general idea of anonymous communication has 
gained credit in control automation environments [3, 8]. 
The second question which is the focus of the paper 
cannot be answered easily because it heavily depends on 
the type of system where the anonymous communication 
is used. We identified the characteristic requirements of 
anonymous communication which have to be considered 
and gave a sketch of how similar systems solved these 
issues. Of course, a positive answer of the second question 
is a necessary condition that the model is feasible in a 
certain environment.  
 As shown in our state-of -the-art description in section 
2, existing protocols for implementing the publisher/ 
subscriber model use general-purpose networks which are 
not particularly suited to achieve efficiency in a control 
application. Hence, it is impossible to use these solutions 
in a system with 8- or 16-bit microcontrollers. Our 
solution for a publisher/subscriber protocol for the CAN-
bus tries to exploit hardware features as far as possible to 
free the restricted processing capacity of the host from 
evaluating every message. We identified the problem of 
routing messages efficiently to all potential subscribers. 
This problem is efficiently solved by the CAN broadcast 
mechanism. The next crucial problem is the filtering of 
messages. Using a broadcast mechanism leaves the 
filtering task to the subscriber nodes. It has been argued 
that it is impossible to examine every message in the 
respective host processors due to performance restrictions. 
Instead, hardware filtering at the controller level should be 
exploited. This requires that the message contents is 
related to a message tag or subject by a binding procedure. 
This binding is performed in two steps. First, the contents 
of a message is associated with a subject and represented 
by a long logical message ID. The next step is to assign a 
short tag which is carried in the CAN ID to support 
hardware filtering. Whereas the first step is done off-line 
the second step is dynamically performed at run time. 
Thus, a node which wants to communicate the first time 
has to resolve the logical subject names of the required 
message channels. For the sake of efficiency (and 
feasibility in the controller context) this eager binding 
sacrifices some of the dynamic properties of the most 
general approach which has to evaluate the full contents of 

each message. However, it should be kept in mind that the 
subject is not related to any physical location, i.e. it is not 
a network address of a specific node (or a group of nodes) 
but uniquely identifies the message contents. Although the 
hardware filtering mechanism of the CAN-Bus is 
restricted, it particularly helps that processors with 
restricted capabilities (like a simple smart sensor) only 
subscribing for a small number of messages are not 
overloaded with the filtering task. 
We did a first implementation of our protocol on the 16-
Bit microcontroller SAB 80C167 from Siemens to 
demonstrate the feasibility of the approach. We were 
primarily interested in the most basic performance figures 
of individual event transfers. So far, we only tested the 
raw performance of the ECHs and the ECB, i.e. we did 
not evaluate a benchmark or an application. The 
conditions were set for the highest priority event; i.e. no 
other event was able to delay the respective message. The 
times measured included the times for pushing an event to 
a channel, transferring it to a remote site and notify the 
subscriber. According to our basic architecture of the 
embedded system which dedicates a microcontroller to 
every sensor or actuator, many nodes will only incorporate 
a single object. Therefore, we have two implementations 
of the ECH. Both run on the 16-Bit 80C187 embedded 
controller and are written in C. One is realized on the raw 
hardware without any operating system support and only 
supports a single object. The other implementation uses 
the real-time executive PXROS supporting multiple 
objects. A task is assigned to every object. For the 
implementation on the raw machine a complete event 
transfer needed 169 µsec. The time for message 
transmission was 95 µsec, thus the local activities on the 
nodes took 74 µsec. If PXROS was used, the end-to-end 
time, under the same conditions, was increased to 469 
µsec which is mainly because of task switching and the 
support of multiple objects on a node which results in a 
more complex assignment mechanism. 
 We also implemented an ECB. To handle 
configuration request it simply assigns short node IDs in 
ascending order and returns it according the protocol. A 
configuration request to the ECB takes 0,9 ms. To resolve 
an event name, the ECB first has to check whether an 
assignment already exists. The current implementation 
does a simple list search of already assigned names. No 
grouping of IDs is considered. The protocol needs 1,8 ms 
adding approx. 1µsec per entry of the list.  
 Of course, these results are of limited value to assess 
the behavior of a complex application. Rather, they set the 
limits of the communication system. E.g. the time to 
propagate an event under PXROS is much higher than the 
time it takes to transmit two subsequent messages over 
CAN. This means, that a node may not be able to receive 
and inspect every message on the bus. This has to be 
considered when designing an application system. On the 



other hand, the implementation showed that a simple 
sensor or actuator using the stand-alone ECH is feasible. 
The (ROMmable) code size of the stand-alone ECH is 
around 3k. To buffer a single incoming event, 12 bytes are 
required, 8 bytes for the message contents and 4 Bytes to 
hold the CAN Identifier. Thus, it seems to be feasible that 
smart elements with limited processing and memory 
resources can be incorporated in the system using a 
convenient high-level communication paradigm.   
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