

Implementing the Real-Time Publisher/Subscriber Model

on the Controller Area Network (CAN)

J. Kaiser
University of Ulm

kaiser@informatik.uni-ulm.de

M. Mock
GMD - German National Research Center for Information Technology

mock@gmd.de

Abstract

Designing distributed real-time systems as being
composed of communicating objects offers many
advantages with respect to modularity and extensibility of
these systems. However, distributed real-time applications
exhibit communication patterns that significantly differ
from the traditional object invocation style. The
publisher/subscriber model for inter-object
communication matches well with these patterns. Any
implementation of that model must address the problems
of binding subscribers to publishers, of routing and
filtering of messages, as well as reliability, efficiency and
latency of message delivery. In the context of real-time
applications, all these issues must be subject to a rigid
inspection with respect to meeting real-time requirements.
We argue that for embedded control systems built around
smart microcontroller-powered devices these
requirements can only be met when exploiting the
properties of the underlying network. The CAN-Bus
(CAN: Controller Area Network) which is an emerging
standard in the field of real-time embedded systems is
particularly suited to implement a publisher/subscriber
model of communication. In this paper, we present an
implementation of the real-time publisher/subscriber
model that exploits the underlying facilities of the CAN-
Bus. In particular, we introduce a novel addressing
scheme for publisher/subscriber communication that
makes efficient use of the CAN-Bus addressing method.
We provide a detailed design and implementation details
along with some preliminary performance estimations.

Keywords: Real-Time Communication Systems,
Publisher/Subsrciber Model, Tag-based addressing, CAN-
Bus

1 Introduction

Distributed systems, composed from a network of
microcontrollers connected via a field-bus network
become increasingly popular in process control. Intelligent
sensors, actuators and distributed control structures
replace the centralized computer. A distributed real-time
architecture modeling smart sensors, actuators and control
nodes as communicating objects supports in many ways
the demands of process control with respect to
extensibility, reliability and cost effectiveness. This leads
to a modular system architecture in which smart
autonomous objects cooperate to control a physical
process. There are, however, some properties, which
deviate from the conventional object-oriented model of
computation. In this paper we will focus on the issues of
inter-object communication.
 The conventional way of object interaction centers
around synchronous object invocation. The model
maintains the semantic of a procedure call in which a
specific service is requested from another object by
transferring control and exchanging parameters via shared
memory rather than by explicit communication. Even
when extending object-orientation to a distributed
environment, this model of object invocation is preserved.
Well known examples are the CORBA RPC and Java
RMI. In summary, it is a synchronous form of point-to-
point coordinating two well-known (by address) objects.
In contrast, control applications often require
asynchronous coordination (the term “asynchronous“ is
used here to characterize an event driven style of
communication which does not rely on the (blocking)
request-response paradigm described above) between sets
of anonymous objects. The reasons for this are the
following:

mailto:kaiser@informatik.uni-ulm.de
mailto:mock@gmd.de

1. In many cases, communication patterns are not one-
to-one. A typical situation is that the information
gained from a sensor can be used and analyzed in
more than one controller, e.g., the output of a vision
system on a mobile robot is interesting for reactive
collision avoidance implemented on a small
microcontroller as well as for long term navigation
strategies implemented on a more powerful device.
Another typical example is the situation in which
control commands issued from a controller address a
number of identical actuators; e.g., all motors have to
stop in case of emergency.

2. Communication is often anonymous. Consider again
the example of stopping a set of motors. When
issuing a stop command, it is not of interest to address
a specific motor, rather it must be ensured that all
relevant motors receive the command. Similarly,
when reacting to a stop command, it is not of interest
which controller has issued that command. On a more
abstract level, a sensor object triggered by the
progression of time or the occurrence of an event
spontaneously generates the respective information
and distributes it to the system. Thus, it can be
considered as a producer. The corresponding
consumer objects have mechanisms to determine
whether this information is useful for them. This
interaction leads to a model of anonymous
communication in which the producer does not know
which consumers will use its information and, vice
versa, the consumers only know which information
they need independently from which source they
receive it. Furthermore, anonymous communication
supports the extensibility and the reliability of the
system because objects can be added or be replaced
easily without changing address information
maintained in the other objects.

3. Communication is asynchronous because control
systems have to react to external events. These
external events are recognized at the sensor interface
of an embedded system and lead to internal activities.
This is best captured in a generative, event-based
communication model. In addition, control
applications are highly cooperative. The individual
nodes are, from an application point of view,
functionally and temporally tightly coupled to
perform a complex control task. However, because of
extensibility and reliability reasons it is highly
desirable to preserve the control autonomy of the
individual nodes. Therefore coordination between the
cooperating objects should be achieved via
asynchronous communication rather than by explicit
control transfer.

As already argued in other places, the publisher/subscriber
model of inter-object communication meets these

requirements [1, 2, 3]. The publisher/subscriber model
supports an asynchronous style of anonymous many-to-
many communication in contrast to the synchronous style
of object invocation. A consumer subscribes to a certain
event type/subject/channel rather than to a specific
producer. A producer publishes instances of this type of
information. Published information is forwarded
eventually to all subscribers, either immediately when
being published (push) or on demand when a subscriber
asks for updates (pull). Popular implementations of this
model are the CORBA event service [1] or even web
channels [4] Since the publisher/subscriber model is
extremely attractive for structuring object-oriented control
applications, attempts already have been undertaken to
implement the model in the real-time domain [5, 6].
Roughly speaking, these implementations suffer from the
uncertainties incurred when mapping the
publisher/subscriber model to TCP/IP based
communication in a general purpose network (a more
detailed discussion of related work is given in section 2).
In this paper, we present an implementation of the
publisher/subscriber model that exploits the real-time
properties of the underlying network, namely the CAN-
Bus which is very popular in distributed control
applications. We show how the issues of binding
subscribers to publishers, of routing and filtering of
messages, as well as reliability, efficiency and latency of
message delivery are implemented in order to meeting
real-time requirements. In particular, we introduce a novel
addressing scheme for publisher/subscriber
communication that makes efficient use of the CAN-Bus
addressing method.
 The paper is organized as follows. The next chapter
investigates the implementation issues mentioned above,
presents the principles of our approach and compares it
with the related work. The basic features of the CAN-Bus
will be introduced in chapter 3. They are a prerequisite to
the understanding of chapter 4 where our addressing
scheme and the components of the communication system
are described. Chapter 5 gives some preliminary
evaluation results and concludes the paper.

2 Design principles

Implementing the publisher/subscriber model requires to
map the abstractions of that model (publisher, subscriber,
information type, information instance) to the elements
provided by the technical infrastructure of the system such
as objects, messages and addresses. More precisely, we
can identify publishers and subscribers with objects, and
information instances with messages that are sent to
certain addresses. The information type can be mapped to
the address or the content of the message (or a
combination of both).

 Now, the routing problem consists of making sure that
a message is sent to all potential subscribers, i.e., each
subscriber has a chance to get all messages it is interested
in. There are three different approaches to solve the
routing problem:
 1) send a number of point-to-point messages,
 2) send a multicast message,
 3) send a broadcast message.
Obviously, alternative 1) is the worst when trying to
achieve real-time requirements. This is because
implementing a logical one-to-many communication by a
number of point-to-point messages induces a higher
network load compared to a single broadcast message.
This higher load consumes bandwidth resources and
makes the delay of message delivery less predictable. It is,
however, the only possible choice when the underlying
network is assumed to provide point-to-point message
delivery only. This is case for the work reported in [5, 6].
In [5], the routing problem is tackled by maintaining a
replicated subscription registry at the publishers, i.e., each
publisher knows to which subscribers it has to send a
message. Real-time properties are supported in so far as
the actual sending of messages is given priority to
maintaining that replicated information base. However,
the principle problem of achieving predictable message
delays is not overcome. The solution described in [6] uses
an intermediate object (the channel object) which
represents the information type. This is comparable to the
indirect port based addressing scheme found for instance
in the Chorus and in the Mach operating systems. All
publishers send their messages to the channel object. All
subscribers register at the channel object. Thus, the
channel object acts as router between the publishers and
the subscribers. [6] describes how some real-time
properties such as handling of prioritized message and
message correlation can be integrated in the channel
object. However, the price to be paid is the extra level of
indirection and the increase in the total number of
messages needed.
 The use of the multicast alternative is advocated for in
[2]. Real-time issues are not addressed. Although being
attractive for implementing the publisher/subscriber
model, the choice of the appropriate multicast protocol is
not clear. In general, multicast communication makes
group membership explicit and joining or leaving a group
is an activity, which creates group wide awareness, and
activity. In the publisher/subscriber model, the knowledge
about who is in a group is not necessary and subscription
is (conceptually) a local activity.
 Finally, the broadcast alternative clearly is the
premium choice for solving the routing problem given that
the underlying network is a physical broadcast medium.
This is a main result from [3]. In there, the implementation
is based on the Ethernet. Real-time requirements again are
not addressed and, in general, are hard to achieve on the

Ethernet due to the way collisions are handled. In contrast
to Ethernet, the CAN-Bus is a broadcast medium that
allows use physical broadcast while its non-destructive
collision handling scheme allows support of real-time
properties (see section 3 for more details).
 Now, we consider the filtering problem, which
consists in making sure that a subscriber does not receive
more messages than it has subscribed for. This is the other
side of the routing problem, i.e., if the publisher already
knows in advance which subscribers must receive a
particular message and if it sends the message only to
those subscribers, no filtering must take place. But, as
argued above, the most handy approach (and the one that
is best suited to achieve real-time properties) to solve the
routing problem is the broadcast approach. This induces
that, at some level, all receivers receive all messages and
that filtering must take place to implement the
publisher/subscriber model. The most expressive (and
least real-time capable) approach to filtering is introduced
in [7]. In this approach, which is also found in [8, 9],
subscribers define via predicates over the message
contents which messages they are interested in. This is
denoted as "content based addressing". In this scheme, the
complete contents of each message has to be evaluated in
order to filter the relevant messages out. This induces a
non-predictable overhead on each node for each message
broadcasted in the system. As shown in [3], the overhead
can be alleviated by identifying messages by a simple tag
(the subject of the message) instead of arbitrary predicates
in order to ease the filtering process. Each message is
tagged with its subject and filters are specified in terms of
a mask for a particular subject rather than using the entire
contents of a message. In [3], this technique is termed
"subject based addressing". However, it still holds that the
contents of each message has to be evaluated by each
receiver, only the complexity of the evaluation process in
reduced.
 Our approach to make the subject-based addressing
scheme efficient and usable in an embedded real-time
system is to put the subject in the address of the message
rather than in the message contents. For simple devices it
is substantial that filtering is done at the network
controller level because the respective microcontroller
would not even be able just to examine every message on
the net. By putting the subject in the address we solve the
filtering problem already on the level of the
communication controller. On the CAN-Bus, all messages
are physically broadcasted. However, messages are tagged
with addresses that are used for the bus arbitration
process. Addresses are also related to the contents of the
message rather than to a receiver address. CAN controllers
can be configured to selectively receive messages
depending on the contents-related address. All other
messages are discarded already in the network controller
without interrupting the application processes. A masking

mechanism is available to realize "wildcarding" and
recognize messages with partially identical addresses as
members of a subject group. For more details and for a
further explanation of our solution of the filtering problem
the reader is referred to the description of the Event
Channel Handlers in section 4.2.
 By tackling the filtering problem by an efficient use of
the underlying addressing scheme, we re-introduce a
binding problem into the implementation of the
publisher/subscriber model. The binding problem is that
the system has to find out which address it has to use
when sending a particular message. In [3], the binding
problem is completely eliminated because all messages are
sent to the same (broadcast) address. Systems which
strictly use the contents of an event to mediate it to the
application object, do not need any binding of an event to
a name or an address tag. The price which has to be paid
for this convenience, however, is as explained above, the
costly implementation of the filtering that has to inspect
each message. For real-time embedded systems this will
be prohibitively expensive. In [6], binding takes place
when connecting to the event channel, in [5] binding is
implicit in the implementation of the registration
functions.
 In supporting an object-oriented, modular design
approach, we identify system components (intelligent
sensors, intelligent actuators) by their external interfaces
while allowing their implementation to be hidden. In
particular, we do not require components to be re-
compiled when being put together to build a system. We
even allow components to be added dynamically. Since
the subjects being published or subscribed by a
component are part of its interface, this subject must be
mapped dynamically to an address at run-time. The
straightforward approach to directly use the subject as
address is not feasible on the CAN-Bus because, firstly,
the address is also used for the bus arbitration process and
relates to message priorities, and secondly, the address is
relatively short compared to global name space of all
possible subjects, and thirdly, the CAN-Bus forbids
messages with identical addresses to appear on the CAN-
Bus. The latter could not be avoided when using subjects
directly as addresses because there might several
components that publish on the same subject. Thus, our
implementation includes a dynamic binding mechanism
that binds subjects to addresses at run-time. This
mechanism, denoted as Event Channel Broker in the
following, supports late binding and local address
resolution. It is described in more detail in section 4.3.
 Finally, we briefly sketch how the reliability,
efficiency and latency problems are solved in our
implementation. The first two problems are already
addressed by the underlying CAN-Bus. Achieving
reliability means to make sure that messages are not lost
on the communication medium. As already argued in [10],

the use of explicit acknowledgement schemes for
detecting message losses is not suitable for real-time
systems. This is the more true when considering one-to-
many communication as in the publisher/subscriber
model. The CAN-Bus, however, provides a sophisticated
fault detection mechanism to achieve a consistent view
about the status of a message at the end of every
individual message transfer. The efficiency problem
relates to the effective bandwidth that is achieved on the
medium, especially when considering high load situations.
Good efficiency in general is hard to achieve especially
when broadcasting is used to solve the routing problem.
This might overwhelm the medium with unnecessary
messages. In particular, it is well known pure CSMA
suffers from a low efficiency in high load situations due to
the increase of collisions and resends [11]. The CAN-Bus,
however, provides a non-destructive collision detection
scheme and thus does not suffer from those efficiency
penalties. By the latency problem we mean that a
predictable message delay must be guaranteed in a real-
time system, i.e., each message has a deadline before
which it must be sent. This timeliness in message delivery
is not achieved by the basic CAN-Bus properties that only
provide priority-based message dispatching. For
guaranteeing timely delivery, we use a global network
scheduling approach [12] that can be implemented
efficiently on the CAN-Bus by using a dynamic priority
scheme [13].
 Due to its specific properties, the CAN-bus is an ideal
candidate to support the publisher/subscriber model of
communication. Therefore, we will now briefly introduce
its basic properties.

3 Basic CAN features

CAN (ISO 11898 an 11519-1) is a broadcast CSMA-
network targeted to operate in an automotive or industrial
automation environment with speeds of up to 1 Mbit/sec,
exchanging small real-time control messages. The CAN-
specification [14] developed by BOSCH covers the
functionality of layers 1 (physical layer) and 2 (data link
layer) of the ISO/OSI protocol stack. CAN is a variant of
a polled bus [15]. A polled bus relies on three properties.

P1 every bit of a message will propagate to all
connected nodes before the next bit will be sent,
thus enabling all nodes to see the same bit value
during a certain time window.

P2 the sender monitors the bus at the same time it
transmits. For every bit, a sender can check if the
bus carries the signal level which was
transmitted.

P3 there are dominant and recessive signal levels. A
single dominant signal level overrides any
number of recessive signal levels.

If two stations start transmission at the same time, a
collision will occur. Different from other CSMA-
networks, however, collisions always lead to a well-
defined signal level on the bus because of the property P1
and P3. In most implementations, the CAN-bus behaves
like a wired AND circuit for all bit values sent at the same
time. This basic feature of the CAN-bus is exploited for:
- Efficient use of available network bandwidth by

providing a non-destructive priority based message
dispatching.

- Immediate error detection, signaling and automatic
retransmission of messages.

The priority-based non-destructive arbitration scheme
assures that a collision does not destroy the messages on
the bus, but the message with the highest priority will be
transferred without further delay. If a node during the
arbitration process sends out a recessive level but
monitors a dominant level on the bus, it knows that a
message with higher priority is competing for the bus. The
node then will switch to a receiving mode. Finally, the
node with the lowest message ID will win the arbitration
process and send the data. It can easily be seen that by this
mechanism, the CAN-bus serves as a priority based global
message dispatcher. The non-destructive arbitration
scheme overcomes the drawback of general CSMA
networks of low predictability and lost bandwidth because
of collisions under high load conditions.
 The second important feature of CAN is that it
provides mechanisms to achieve a consistent view about
the status of a message at the end of every individual
message transfer. Every message will be accepted or
rejected by all participants. If one of the participants
(sender or receiver) detects an error locally it will
invalidate the ongoing message transfer by sending out a
string of dominant bits. This will be detected by the other
participants including the sender. The receivers will, as a
consequence, discard the current message from their local
in-queues. The sender will automatically retransmit the
message. Thus, relating a corrupted message with its
source and retransmitting it will be done at the controller
level. For the host processor the automatic retransmission
procedure is transparent which substantially lowers its
protocol overhead. There is a very low probability that
transmission errors remain undetected [14, 16].
 To summarize, CAN supports routing of messages by
an efficient broadcasting of messages and reliability by a
broad spectrum of error detecting and recovery
mechanisms.

4 Implementing a real-time
 publisher/subscriber protocol

CAN alone does not yet enforce temporal guarantees for
real-time communication or a particular model of

communication. Moreover, there are some rare failure
situations which cannot be handled by the reliability
mechanisms of CAN [17, 18]. We need to build additional
protocol layers which realize the properties necessary for
a real-time publisher/subscriber model of communication.
Important, however, is to exploit the CAN basic features
as far as possible. Particularly, we have to add:
1. A local run-time component (ECH, see Fig. 1) which

performs the filtering of messages based on their
event tags. The ECH provides an event channel
interface to the application object and exploits the
hardware filtering mechanisms of messages on
receiver sites efficiently.

2. A binding service (the ECB, see Fig. 1) which
supports our enhancement of assigning tags as event
identifiers to the messages. This mechanism must
guarantee the uniqueness of event tags.

As described above, the CAN identifier and the special
treatment of this ID by the CAN controller hardware are
the key for priority based message dispatching and for
routing and filtering. The CAN standard specifies two
different but compatible formats of the CAN-ID. A short
11-Bit form and an extended format (29 bit). However,
CAN does not fix any specific use of the identifier.
Therefore, higher level protocols are free to structure the
identifier according to their needs. There are a number of
application level protocols which all use different
interpretations of the ID [19, 20, 21]. Their major
drawbacks are that they use a short (11 bit) form of CAN
identifiers (The CAN standard defines both, 11 Bit and 29
Bit Ids). They argue that this will reduce the overhead for
a message. Because messages cannot be preempted and
CAN is designed to achieve a short latency for high
priority messages, the maximum message length is 154
bits with 64 Bits (8 Bytes) of payload. The overhead is
thus around 140% for the longest message. This will be
reduced to around 110% when using short IDs.

ECH: Event Channel Handler
ECB: Event Channel Broker CAN-

Network

binding
request

node
ID

application
 object

push
pull
subscribe

node

node

node

node
subject
 tag

application
 object

ECB

configuration
request

ECH

event
channel

event
channelevent

channel

communication
controller

Fig. 1 Overall communication system's architecture

However, these schemes make it almost impossible to
implement useful event tags and support a general
publisher/subscriber model. Moreover, if the identifier
carries useful information, like temporal constraints or
subject identifiers, which have to be communicated
anyway, more payload is available for additional data. In
the protocols mentioned above the payload of the
messages is severely reduced by carrying system
information.

4.1 The Event Channel Handlers

The Event Channel Handlers (ECH) constitute the local
run-time support which provides all functions necessary to
manage the event channels on a node. This support ranges
from the application objects' interface to the low-level
mechanism to setup and control the hardware filters for
the reception of relevant events.
 The scheduling of messages, routing and filtering
expose a certain structure to the extended 29-Bit CAN
identifier. The structure of the CAN identifier for our
protocol is depicted in Fig. 2. As mentioned in the
previous chapter, all 29 bits of the identifier are used in
the arbitration process to establish a priority order
between the messages ready to be sent. Thus, CAN alone
guarantees the timeliness of the highest priority message
only. To overcome this drawback, rate monotonic and
deadline monotonic analysis is applied to assign priorities
in a way that all messages will be properly accommodated
[22]. Rate monotonic analysis allows off-line validation of
message priorities if the bus has an anticipated load and
messages arrive periodically. Thus, it is perfectly suited
for static systems which only handle hard-real-time
messages. However, we want to support Quality of

Service for a more dynamic type of system in which
messages may not arrive periodically and hard real-time
and soft real-time messages may coexist. We use a
dynamic LLF scheme, an idea which first has been
proposed for EDF by Zuberi and Shin [23]. However, in
the form proposed in [23] it is only suited for a very low
number of nodes (≤ 3) and also cannot guarantee the
timely delivery of hard real-time messages during
transient overload situations. We propose a scheme which
is based on reserved time slots for hard real-time messages
similar to TTP. The priority scheme of the CAN-Bus is
exploited to guarantee that hard real-time messages are
properly sent even if they have to compete with soft real-
time and non- –real-time traffic. Different from TTP or
TDMA schemes, slots not needed by hard real-time
messages can be used by lower urgency messages. A
discussion of the scheme is beyond the scope of this
paper. It is described in detail in [13, 24].
 Our scheme uses the 8 most significant bits of the ID
to specify the dynamic priority. The remaining bits of the
ID are used to carry information which characterizes
events. This is referred as static priority field (see Fig. 2).

Dynamic Priority
Field

Static Priority
Field

Dynamic Priority
Field

Static Priority
Field

Priority TxNode etag

8 Bit 7 Bit 14 Bit

Priority TxNode etag

8 Bit 7 Bit 14 Bit

Scheduling Uniqueness Subject IdentificationScheduling Uniqueness Subject Identification

Fig. 2 Identifier structure

The static priority field contains two sections. The first
section contains the node identifier. We assume a single
local CAN network which may have up to 128 nodes. The
number of nodes in a CAN network is not really restricted
by the protocol. Rather this is a physical restriction
resulting from popular implementations of bus drivers.
According to the ISO-DIS 11898 Standard, the physical
interface must accommodate 2- 30 nodes. This node ID is
needed to guarantee uniqueness of the entire CAN-ID, i.e.
that no two identical CAN-IDs compete for the bus access
(in this case the protocol would be unable to resolve the
arbitration conflict). The partitioning of the CAN-ID has
to solve the trade-off between the number of network
nodes and the number of events which can be identified
by the respective tag in the ID. Because there is only a
restricted number of bits, a static assignment of the
respective fields in the ID always leads to a restricted
extensibility of the system. Therefore nodes and events
have some unique long names which are mapped to CAN-
IDs when a node is connected to the network. The event
channel broker (ECB) and appropriate protocols

(described in section 4.3) are implemented for this
purpose. Before a new node is allowed to send any regular
message, it issues a configuration request to the ECB and
obtains a unique 7-bit node identifier. The ECB
configuration protocol ensures that this message has a
unique identifier which is not used during normal system
operation and that two configuration requests do not
interfere. Similarly the binding of unique event names and
the respective 14-bit event tags has to be performed before
an object can use an event channel.
 In a system which comprises nodes with limited
processing performance it is essential that the mechanism
of filtering irrelevant events is embedded in the controller
and works without host assistance. The filtering
mechanism in CAN applies to the message ID. The event
tag as part of the address is a prerequisite to exploit the
CAN-ID for event filtering. This low level filter
mechanism is now briefly sketched.
 Every CAN controller comprises one or more receive
registers RxReg. This register holds a 29-bit identifier
(TID: template ID). During a message transfer, a message
ID on the CAN-bus (CID: current ID) is compared against
the identifier in the receive register(s). If a match occurs,
the message is fetched from the bus and stored in a buffer.
To allow the reception of a group of messages, an
additional mask register is available. The bit pattern in this
register contains a mask defining which bit-positions of
the ID should be used to determine a match. This
mechanism is similar to an associative memory which
allows the masking of search keys to address a set of
memory locations. For each incoming message the
controller checks if: TID & MASK == CID & MASK (&:
bitwise logical AND).
 In our scheme, the mask can be used to select
messages according to priority, transmitting node, subject
tag, or a combination of them. Fig. 3 gives some examples
of selective message reception. Mask 1 specifies the
subscription to a specific event. Only the event with the
tag "00110110110100" will be accepted by the controller.
Mask 2 enables reception of a group of events from a
specific node.

dynamic prio Txnode etag field

8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1
1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1
x x x x x x x x x x x x x x x 1 1 1
x x x x x x x x 1 1 1 1 1 1 1 1 1 1

 x: don't care

Fig. 3 Examples of selective masking of a CAN ID

 The capabilities of the filter mechanism are not
specified in the standard. Therefore, they are, to a certain
degree, dependent on the CAN controller used. A
common feature, however, is that all CAN controllers
provide at least one global mask to filter events (some

controllers provide additional capabilities which allow a
finer grain of filtering events to reduce the load of the host
processor. It is however beyond the scope of this paper to
discuss these optimizations). If two messages with
different identifiers should be received on a node, all
differing bit positions must be masked out, i.e. these bits
are not used for matching the ID to the contents of the
receive register. It is obvious that the filter mechanism can
best be exploited if binding is not arbitrary but considers
some application dependent assignment of events tags.
The ECB, responsible for the binding, can support the low
level filtering mechanism by grouping of events and
assigning a partly identical event tag.
 The efficiency of handling incoming messages is
crucial for the applicability of the concept in embedded
real-time systems. On an incoming event, the ECH has to
execute the following tasks:
1. Handle the controller specific issues like reading

and resetting the receive register. This is normally
performed in an interrupt handling mode.

2. Determine the respective event channel.
3. Determine the objects which have subscribed to the

event channel.
4. Copy the event in the respective queues of the

objects.
5. Notify the object of an event occurrence. This may

be combined with step 4 depending on the
underlying real-time executive.

We assume a controller which is compatible with the
Basic CAN standard [14]. The highest possible rate of
incoming messages in a 1Mbit/sec network is around 1/90
µsec [26] for messages with no data. Because Basic CAN
controllers are equipped with a shadow buffer for
incoming messages, the received message is not destroyed
while the next message is received. Thus at the worst case,
the host has to examine and forward a message every 90
µsec. However, a much lower rate is expected because
firstly, only relevant events pass the filtering mechanism
and secondly, analysis of requirements for hard real-time
communication show, that considering reliable message
transfer will reduce the message rate considerably [24,
25]. In chapter 5 we present some preliminary
performance figures.

4.2 The Event Channel Broker and the
 Binding Protocol

The ECB handles binding and configuration requests.
Binding refers to mapping subjects to addresses (event
tags). Configuration addresses the problem of assigning
unique node IDs and guaranteeing that no address
conflicts will occur on the CAN-Bus.
 As described above, the binding supports the use of
tags to identify the contents of a message. This requires

that the message contents is related to a message tag or
subject by a binding procedure. This binding is performed
in two steps. First, the contents of a message has to be
related to a subject (or an event channel). The subject is
represented by a long unique logical message ID. The
assignment is done off-line. A publisher and a subscriber
have to know the subject names when they want to
participate in a communication over this specific event
channel. This subject ID can also be used in higher level
protocols that make use of the publisher/subscriber
communication implemented by our system. The next step
is to assign a short tag which is carried in the CAN ID to a
specific subject. This tag is then used to allow filtering at
the CAN controller level. Whereas the first step is done
off-line the second step is dynamically performed at run
time. Thus, a node, which wants to communicate the first
time, has to resolve the logical subject names.
 The configuration problem which we have to solve for
the CAN-bus is to provide unique message identifiers. The
same event, provided by multiple sources must have
different identifiers to comply with the CAN arbitration
scheme. Therefore, the static part of this ID comprises a
node-ID and an event tag (see section 4.1). In our current
implementation, we support 15-bit unique logical names
for nodes and 32-bit logical names for events (the sizes of
node names and event names are somewhat arbitrary in
our prototype implementation. The size of the node name
e.g. was chosen because it fits perfectly in a single
configuration request message. The protocol, however,
allows for arbitrary long names if multiple messages
which are assigned to dedicated event names are used for
a configuration requests). The assignment of a logical
node name to a 7-bit node ID is a configuration issue
which has to be performed when a node is connected to
the network. It is a prerequisite for any communication of
the node. The binding of logical event names to event tags
is the second step. This step can be performed eagerly at
node configuration time or lazily, when an event is
actually used. Early binding may be the preferred
technique to achieve predictability in a real-time system. If
late binding is applied, the resolution of the event name
has to be considered as an additional scheduling
parameter.
 Let's start with the configuration protocol. The
configuration protocol envisages a bootstrap problem.
This results from the fact that if two nodes would try to
send messages with the same identifier but different data
parts, this would lead to a conflict which could not be
resolved by CAN. The two controllers would detect a
transmission error, invalidate the message and
automatically would start retransmission at the same time
with the same messages. Therefore, we have either to
assure that the configuration request to the ECB has a
unique CAN-ID or the configuration request must not
contain any data. In the CAL configuration protocol [19] a

configuration request uses a single dedicated CAN-ID to
request a unique node-ID. This request can be issued by
multiple nodes at the same time, consequently, no data is
allowed in this message. Thus, the configuration server
does not know which node has issued the request, and
hence, it has to poll all nodes in the system. Our solution
to this problem avoids the time consuming polling by
including the unique long node ID in the message. The
protocol uses a specific configuration event (event #1)
which is dedicated to a configuration request. The 15 most
significant bits of the event contain the long node ID
(Because a configuration request should not interfere with
a (low laxity = high priority) real-time message, the two
most significant bits of the logical node ID are always
"11" resulting in an effective name space of 13 bits). This
serves two purposes. Firstly, since node IDs are unique,
two configuration requests have always different CAN-
IDs. Secondly, the ECB knows which node issued the
request. The ECB performs the name conversion and
returns the short node ID via a second reserved event
(event #2). The node which expects an answer of the
ECB, sets its receive register exactly to this event. The
ECB now pushes the event to the associated event channel
with the logical node ID and the short node ID attached as
data. The logical node ID allows the receiving node to
determine whether the message is a reply to its request.
From then, it can communicate using its unique short node
ID.
 The binding protocol works very similar. Because the
node already has a unique ID, the principle of the protocol
is straightforward. However, we implemented an
optimization. Many local application objects may use the
same event channel. It would therefore not be efficient if
each of them would issue a (remote) query to the ECB.
Instead, the application object always directs its request to
the local ECH which caches resolved event names. Only if
it is the first local request to resolve the name, the ECH
has to communicate with the ECB. The protocol between
the ECH and the ECB again uses specific binding events
(#3 and #4) for requesting an event tag returning it to the
client ECH.
 Currently, we only implemented a central ECB which
obviously constitutes a single point of failure. Using
replication this drawback could be removed. However, it
should be noted, that the ECB is only needed if a binding
has to be performed, i.e. at system configuration or at the
integration of new components.

5 Concluding remarks and preliminary
 evaluation

The focus of the paper is the efficient implementation of
the publisher/subscriber model on the CAN-bus. We argue
that the CAN-bus is well suited to implement such a
model and that it is necessary to exploit basic network

features to enable hosts with restricted processing and
memory capacity to use the convenient communication
paradigm. The paper addresses two questions:
1. Is, in general, the publisher/subscriber model of

communication a good thing for object-oriented
distributed control applications?

2. Can such a model be implemented efficiently in a
system which incorporate smart devices with limited
processing and memory capacity?

To answer the first question, we gave some examples of
typical control scenarios in which the conventional style
of synchronous object invocation is not appropriate. And
in fact, the general idea of anonymous communication has
gained credit in control automation environments [3, 8].
The second question which is the focus of the paper
cannot be answered easily because it heavily depends on
the type of system where the anonymous communication
is used. We identified the characteristic requirements of
anonymous communication which have to be considered
and gave a sketch of how similar systems solved these
issues. Of course, a positive answer of the second question
is a necessary condition that the model is feasible in a
certain environment.
 As shown in our state-of -the-art description in section
2, existing protocols for implementing the publisher/
subscriber model use general-purpose networks which are
not particularly suited to achieve efficiency in a control
application. Hence, it is impossible to use these solutions
in a system with 8- or 16-bit microcontrollers. Our
solution for a publisher/subscriber protocol for the CAN-
bus tries to exploit hardware features as far as possible to
free the restricted processing capacity of the host from
evaluating every message. We identified the problem of
routing messages efficiently to all potential subscribers.
This problem is efficiently solved by the CAN broadcast
mechanism. The next crucial problem is the filtering of
messages. Using a broadcast mechanism leaves the
filtering task to the subscriber nodes. It has been argued
that it is impossible to examine every message in the
respective host processors due to performance restrictions.
Instead, hardware filtering at the controller level should be
exploited. This requires that the message contents is
related to a message tag or subject by a binding procedure.
This binding is performed in two steps. First, the contents
of a message is associated with a subject and represented
by a long logical message ID. The next step is to assign a
short tag which is carried in the CAN ID to support
hardware filtering. Whereas the first step is done off-line
the second step is dynamically performed at run time.
Thus, a node which wants to communicate the first time
has to resolve the logical subject names of the required
message channels. For the sake of efficiency (and
feasibility in the controller context) this eager binding
sacrifices some of the dynamic properties of the most
general approach which has to evaluate the full contents of

each message. However, it should be kept in mind that the
subject is not related to any physical location, i.e. it is not
a network address of a specific node (or a group of nodes)
but uniquely identifies the message contents. Although the
hardware filtering mechanism of the CAN-Bus is
restricted, it particularly helps that processors with
restricted capabilities (like a simple smart sensor) only
subscribing for a small number of messages are not
overloaded with the filtering task.
We did a first implementation of our protocol on the 16-
Bit microcontroller SAB 80C167 from Siemens to
demonstrate the feasibility of the approach. We were
primarily interested in the most basic performance figures
of individual event transfers. So far, we only tested the
raw performance of the ECHs and the ECB, i.e. we did
not evaluate a benchmark or an application. The
conditions were set for the highest priority event; i.e. no
other event was able to delay the respective message. The
times measured included the times for pushing an event to
a channel, transferring it to a remote site and notify the
subscriber. According to our basic architecture of the
embedded system which dedicates a microcontroller to
every sensor or actuator, many nodes will only incorporate
a single object. Therefore, we have two implementations
of the ECH. Both run on the 16-Bit 80C187 embedded
controller and are written in C. One is realized on the raw
hardware without any operating system support and only
supports a single object. The other implementation uses
the real-time executive PXROS supporting multiple
objects. A task is assigned to every object. For the
implementation on the raw machine a complete event
transfer needed 169 µsec. The time for message
transmission was 95 µsec, thus the local activities on the
nodes took 74 µsec. If PXROS was used, the end-to-end
time, under the same conditions, was increased to 469
µsec which is mainly because of task switching and the
support of multiple objects on a node which results in a
more complex assignment mechanism.
 We also implemented an ECB. To handle
configuration request it simply assigns short node IDs in
ascending order and returns it according the protocol. A
configuration request to the ECB takes 0,9 ms. To resolve
an event name, the ECB first has to check whether an
assignment already exists. The current implementation
does a simple list search of already assigned names. No
grouping of IDs is considered. The protocol needs 1,8 ms
adding approx. 1µsec per entry of the list.
 Of course, these results are of limited value to assess
the behavior of a complex application. Rather, they set the
limits of the communication system. E.g. the time to
propagate an event under PXROS is much higher than the
time it takes to transmit two subsequent messages over
CAN. This means, that a node may not be able to receive
and inspect every message on the bus. This has to be
considered when designing an application system. On the

other hand, the implementation showed that a simple
sensor or actuator using the stand-alone ECH is feasible.
The (ROMmable) code size of the stand-alone ECH is
around 3k. To buffer a single incoming event, 12 bytes are
required, 8 bytes for the message contents and 4 Bytes to
hold the CAN Identifier. Thus, it seems to be feasible that
smart elements with limited processing and memory
resources can be incorporated in the system using a
convenient high-level communication paradigm.
6 References

[1] Object Management Group (www.omg.org), The

CORBA Services, OMG Technical Document
formal/98-07-05.

[2] S. Maffeis: "iBus - The Java Intranet Software Bus",
Olsen&Associates, www.olsen.ch, 1997.

[3] B. Oki, M. Pfluegl, A. Seigel, D. Skeen: "The
information Bus®- An Architecture for Extensible
Distributed Systems", 14th ACM Symposium on
Operating System Principles, Asheville, NC, Dec
1993,pp.58-68.

[4] Pointcast Inc., The Pointcast Network,
www.pointcast.com .

[5] R. Rajkumar, M. Gagliardi, L Sha: " The Real-Time
Publisher/Subscribe Inter-Process Communication
Model for Distributed Real-Time Systems: Design and
Implementation", IEEE Real-time Technology and
Applications Symposium, June 1995.

[6] T.H. Harrison, D.L. Levine, D.C. Schmidt: "The Design
and performance of a Real-time CORBA Event Service",
Proc. of the 12th Ann. Conference on Object-oriented
Programming, Systems, Languages and Applications,
OOPSLA, Atlanta, USA, 1997.

[7] N. Carriero, D. Gelernter: "Linda in Context",
Communications of the ACM, 32, 4, April 1989, pp 444-
458.

[8] K. Mori. Autonomous decentralized Systems: Concepts,
Data Field Architectures, and Future Trends, Int.
Conference on Autonomous Decentralized Systems
(ISADS93), 1993.

[9] Gradimir Starovic, Vinny Cahill, and Brendan Tangney:
"An event based object model for distributed
programming." In OOIS (Object-Oriented Information
Systems) '95, London, Springer-Verlag, December 1995,
pp. 72-86.

[10] H. Kopetz, Real-Time Systems, Kluwer Academic
Publishers, 1997.

[11] A. Tannenbaum, Computer Networks, 3rd edition,
Prentice Hall, 1996.

[12] M. Mock, E. Nett. Real-Time Communication in
Autonomous Robot Systems, Int. Symposium on
Autonomous Decentralized Systems, ISAD 99, Tokyo
1999 (to appear).

[13] M.A. Livani, J. Kaiser, W.J. Jia: "Scheduling Hard and
Soft Real-Time Communication in the Controller Area
Network (CAN)", 23rd IFAC/IFIP Workshop on Real
Time Programming, Shantou, China, June 1998.

[14] ROBERT BOSCH GmbH: "CAN Specification Version
2.0", Sep. 1991.

[15] C.M. Krishna, K.G. Shin: "Real-Time Systems",
McGraw-Hill, 1997.

[16] J. Unruh, H.J. Mathony, K.H. Kaiser: "Error Detection
Analysis of Automotive Communication Protocols".
SAE Int. Congrss, No. 900699, Detroit, USA, 1990.

[17] M.A. Livani, J. Kaiser : "Predictable Atomic Multicast in
a Controller Area Network (CAN)", Tech. Report,
University of Ulm, No. 98-15, December 1998.

[18] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, L
Rodrigues: "Fault-Tolerant Broadcasts in CAN", Proc. of
FTCS-28, München, Germany, June 23-25, 1998, pp.
150-159.

[19] CiA Draft Standards 201-207: "CAN Application Layer
(CAL) for Industrial Applications", May 1993.

[20] D. Noonen, S. Siegel, P. Malony:" DeviceNet
Application Protocol", Proc.1st International CAN
Conference, CiA, Erlangen, Germany, 1994.

[21] Smart Distributed Systems, Application Layer Protocol
Version 2, Honeywell Inc, Micro Switch Specification
GS 052 103 Issue 3, USA, 1996.

[22] K. Tindell, A. Burns: "Guaranteed Message latencies for
Distributed Safety-Critical Hard Real Time Control
Networks", Tech. Report YCS229, Dept. of Comp.
Science, University of York, May 1994.

[23] K. M. Zuberi and K. G. Shin, „Non-Preemptive
Scheduling of messages on Controller Area Network for
Real-Time Control Applications“, Technical Report,
University of Michigan, 1995.

[24] M.A. Livani, J. Kaiser: "EDF Consensus on CAN Bus
Access for Dynamic Real-Time Applications", in José
Rolim (Ed.): Lecture Notes in Computer Science, Vol.
1388, pp.1088-1097, Springer, 1998.

[25] J. Rufino, P Verissimo: "A study on the Inaccessibility
Characteristics of the Controller Area Network", Proc. of
the 2nd International CAN Conference 95, London, Oct.
95. CiA.

[26] M.A. Livani, J. Kaiser: " Evaluation of a Hybrid Real-
time Bus Scheduling Mechanism fro CAN", Seventh Int.
Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 1999), San Juan, Puerto Rico, April
12 - 16, 1999.

http://www.pointcast.com/

	
	Abstract
	1 Introduction
	2 Design principles
	3 Basic CAN features

	4 Implementing a real-time
	6 References

