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Abstract. The papeffocuseson the problemto guaranteeeliable and ordered
message deliverto the operationalsites of a CAN-Bus network. The contri-

butions of the paperare firstly a hardwaremechanismto handlerare failure

situations and secondly, a protocol to guarantee the sameocbnessagesn

all nodes.After analyzingthe error handling mechanismwe suggesta hard-
ware extensionto capturesituations,which may lead to inconsistentviews

aboutthe statusof a messagdetweenthe nodes.Basedon this mechanism,
which enhanceshe guaranteesf the CAN-Bus with respectto reliable mes-
sagetransmission,we developa deadline-basediotal ordering scheme.By

carefully exploiting the properties of CAN, this che achievedwith very low

additional message overhead.
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1 Introduction

Dependability is one of theost importantdesigndimensionsfor many applications
in the areaof real-timecontrol systems.A distributedreal-timearchitecturesupports
in many ways the aspect of dependabitiswell asotherrelateddemandf process
control like modularity and improved extensibility. Therefore,distributed systems,
composedrom a network of micro-controllersconnectedvia a field-bus network be-
comeincreasinglypopularin processcontrol and automotiveapplications.In these
cooperative distributed systems, reliable coordination of distributed atttmesnesa
critical issue.Atomic broadcasprotocolsrepresenta maturetechnologyto support
this coordination of distributed actions in the presence of network and node fditures.
contrastto general-purposa@pplications,real-time control systemsput some addi-
tional challenging requirements to these protocols. Firstly, they toaneettempo-
ral constraints dictated by the controlled external environment, usyiaén in terms
of deadlines. Thisneansthat the communicatiorhasto be predictableand bounded
in the temporaldomain. Secondly,the nodesin thesesystemsconsistingof micro-
controllerstypically offer limited processingand memory capacity. Additionally,
field-bus networksonnectingthesenodesgenerallyexhibit a lower bandwidthcom-
pared to genergdurposeLANs. Theseconstraintsdemandfor efficient mechanisms,
which carefully exploit the capability and functionality of the underlying hardware
basis.

Reliable atomic broadcastprotocols are widely used in dependabledistributed
computing. There ishowever,a wide classof protocols,which are not designedor
real-time systemsand thereforecompletelylack respectiveproperties[3, 4, 5]. Even
thoseprotocolswhich are explicitly designedfor dependableeal-time systems,like
[6,7] cannotbe usedin a fieldbus environmentstraightforwardly. The reasonsare
mainly the constraints,set by low performancemicro-controllersand low network



bandwidth. In a control system composed from micro-controllers it is vifeddthe
host processoras much as possiblefrom executing complex protocol algorithms.
Equally important, thesesystemsdemandfor minimizing the communicationover-
head usually necessary to achieve a consensus about the messagadtatiesin a
reliable broadcagbrotocol. Therefore,it is importantto carefully analyzethe proper-
ties of the network to exploit the functionality that is alreasigilableon the control-
ler level.

The paperfocuseson mechanismgo supportreliable atomic broadcaston the
CAN-bus. Among the establishedield bus networks,CAN constitutesan emerging
standardand particularly supportsa decentralizeccontrol architecture. Developedby
BOSCH [1], CAN is primarily aimed at automotive applications wtochit a single
point of control or a master-slavecommunicationrelation often found in industrial
automation.BecauseCAN was designedor reliable operationin a control environ-
ment, it has a numbef comprehensivenechanismdo detectand handlecommuni-
cationfaults. Particularly, CAN hasa built-in mechanismwhich aims at achieving
consensus about the success of a message transdéirgarticipantsimmediately,i.e.
beforethe messages deliveredto the host processorby the CAN communication
controller. Thus, in most situations, tkenderhandlesthe fault transparentlyon the
controller level byautomaticallydiscardingthe faulty messageand initiating retrans-
mission. However, a careful analysisof the CAN-bus mechanismswith respectto
atomic broadcastprotocolsin [2] revealsthat in specific situationsinconsistencies
may arise which cannot be handled by the standard CAN protocol.

An atomic broadcast protocol provides reliablessageransmissionto all opera-
tional nodes under anticipated fault assumptions and guarantees that alievedes|
the messagef the sameorder. The paperpresentssolutions to thesetwo require-
ments. To provide reliable messagdransferunder omission and crashfailures we
describe a new hardware mechanism SHARE (SH&aRBwansmitter) which guaran-
teesan all-or-nothingproperty of messagedelivery. This meansthat a messagds
eventually correctly deliveredor discardedat all operationalnodes.Basedon this
atomicity property we developan orderingschemebasedon deadlines.The specific
featureof our schemecomparedo otherapproacheg6, 19] is that it considersthe
coexistenceof hard and soft real-time messagesWhile hard real-time messagesre
critical and must be delivered at some specified deadifereal-timemessagesnay
miss their deadlines under transient overload.

The achievement of the paper is to provide the atdm@adcasprotocol for CAN
with very low overheador the host processorand the communicatiometwork. By
using SHARE, error detection and retransmissions of messagempletelyhandled
at the network controller level. Order is established by exploiting the praperties
without additionalcommunicationoverhead Anotherimportantbenefit of the proto-
col is that the temporalbehaviourof the systemis highly predictableand does not
change with the number of nodes in the system.

The papersetsout with the problemanalysis.Ilt comprisesa brief descriptionof
the basic CANmechanismswhich area prerequisiteo understandhe critical faults
which leadto inconsistenciesTheseinconsistenciesre analyzedin the subsequent
section.Chapter3 describegshe SHARE hardwarecomponentto achieveconsistent
delivery of messages in spite of sendershesBasedon theseresults,chapter4 pre-
sentsour mechanisnto establishorder betweenthe messagedasedon their dead-
lines. Chapter 5 summarizes related work and a conclusion is presented in Chapter 6.



2 Problem Analysis

CAN handlesarbitration and performs messagevalidation and error signaling in a
very specific way. Because this is exploited by our mechanismejilvériefly intro-
duce the basic CAN properties. CAN (ISO 1189814619-1)is a broadcastCSMA-
networktargetedto operatein an automotiveor industrial automationenvironment
with speed=f up to 1 Mbit/sec, exchangingsmall real-timecontrol messagesThe
CAN-specification[1] developedby BOSCH covers the functionality of layers 1
(physical layer) and 2 (data link layer) thie ISO/OSI protocol stack. CAN is a vari-
ant of a polled bus [8], which relies on three properties.

1. Everybit of a messagevill propagatdo all connectechodesbeforethe next bit
will be sent,thus enablingall nodesto seethe samebit value during a certain
time window.

2. The sender monitors the bus at the same time it transmit@vEorbit, a sender
can check if the bus carries the signal level which was transmitted.

3. Therearedominantand recessivesignal levels. A single dominantsignal level
overrides any number of recessive signal levels.

If two stations start transmission at the same time, a collisibnoccur. Different
from other CSMA-networks, however, collisioavaysleadto a well-definedsignal
level on the bus because of the property 1 and Bhdst implementationsthe CAN-
bus behaves lika wired AND circuit for all bit valuessentat the sametime, i.e. a
“0” denotes a dominant and a “1” denotes a recesslge. This basicfeatureof the
CAN-bus is exploited for:

- Efficient use of availablenetwork bandwidthby providing a non-destructivearbi-
tration of the bus based on the priority of messages.

- Immediate error detection, signaling and automatic retransmission of messages.

2.1 CAN arbitration

The priority-basednon-destructivearbitration schemeassureghat a collision does
not destroy thenessagesn the bus, but the messageavith the highestpriority will
be transferredwithout further delay. Collisions are resolved during the arbitration
processj.e. whensendingthe arbitrationfield, which containsa uniquelID for each
message. If a node during the arbitration process sends out a ret®sdibeit moni-
tors a dominant level on the bus,stopstransmissiorbecauseét knows that a mes-
sage with highepriority is competingfor the bus. The CAN arbitrationmechanism
thus actsas a global priority-basednon-preemptivanessagelispatcherguaranteeing
that the message with the highest priority always is wé&hbut delay. Additionally,
the non-destructivearbitration schemeovercomesthe drawback of general CSMA
networksof low predictability and lost bandwidth becauseof collisions under high
load conditions.

2.2 CAN error detection and fault handling

The second important featuog CAN is that it providesa validation mechanismgo
achieve a consistent view about the statusrokasaget the end of everyindividual
message transfer. Every message will be acceptegjentedby all participants.CAN
has a comprehensive s#terror detectionmechanismswhich comprisebit monitor-
ing, bit stuffing, cyclic redundancycheckingand frame consistencychecks[1]. Here,
only the error signaling mechanismill be examinedin more detail becausét takes
partin providing consensusiboutthe messagestatusin CAN. The error signaling



mechanism is realized by exploititogt monitoring andthe CAN bit-stuffing mecha-
nism. The CAN bit-stuffing mechanismalwaysinsertsan additional complementary
bit in the bit-streanof a messageavhena string of 5 consecutivebits with the same
value are detected. When a CAN controller (sender or receiggstsan error locally

it will invalidate the ongoing messagmnsferby sendingout an error frame consist-
ing of a string of 6 dominant bits. Thigolatesthe CAN bit-stuffing rule and conse-
quently, will be detectedby all othernodes,including the sender.As a result, the

receiverswill discardthe currentmessagdrom their local in-queuesand start error

signalingthemselvesAfter error signaling is terminated,the senderwill automati-
cally retransmitthe messageThus, relating a corruptedmessageo its sourceand

retransmitting it will be done at theontrollerlevel. For the host processothe auto-

matic retransmission procedure is transparent.
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Fig. 1. Schematic outline of a CAN data frame

To allow last moment frame error detection fardeswhich are completelyout of
synchronization, CANorovidesan end-of-framefield (EOF) consistingof 7 recessive
bits (see Fig. 1). Nodes which are aware of receiving the EFisablethe mecha-
nism detecting a bit-stuffing violation. Only nodes which are not aware of receining
EOF will detect a bit-stuffing error when sampling bit #6. They will start egigmal-
ing in bit #7 of the EOF.

If the receiversdid not observethe startof an error frameuntil the bit #6 of the
EOF, they assumehat the messageds transmittedcorrectly and deliver it to their
respective host processors. Let us term the point when the receiver karajesbit
#6 the validatiorpoint for receivers.The error frame canbe viewed as a variantof a
negativeacknowledge(NAK). If no NAK occurs, the messageis assumedto be
transmitted correctly.

2.3 Sources of inconsistencies

Now consider that some receivers detect an error just inithés of the EOF. These
receivers will discard thenessagend start an error frame. Obviously the error frame
can only start in the subsequent bit, i.e. the#fBiof EOF. At that time all receivers



which did not detect or were not affected by #ner havealreadyacceptedand deliv-
ered the message&hey basicallyignore the error frame.To copewith this situation
andto preventthat somereceivershaveobtainedthe messageand someothershave
not, the sender dhe messagevaits until the bit #7 of the EOF beforeit assumes
correct messageansmissionln the situation sketchedabove,the sendemould rec-
ognizethe error frameand initiate retransmissionThis leadsto “inconsistent mes-
sageduplicates”[2] of the messageat those nodes,which previously acceptedthe
messagelf the messagés retransmittedimmediately, theseinconsistentduplicates
can easily be detected by a sequence numbarh consistsof a single toggle bit [9]
in its simplest form.

However, there may be situations in which a higher priority mestdgéecomes
readyto transmiton somenodewhich now competeswith the message'a” to be
retransmittedBecauseof the global CAN priority schemethe messagéb” (or any
number of higher priority messages) will be seeforethe retransmissiorof message
“a”. In this situation, we encountera problemaffectingthe order of messagesThe
nodes which have already receivedssageéa” will seeit beforemessageb” while
the othermnodesobserve*a” after“b”. This is not solvedby the raw CAN protocol
nor by the mechanisms provided pgpularCAN applicationlevel protocols[9, 10,
11].

The CAN protocol guaranteeshat if the senderremainsoperational,it will re-
transmit the messagmtil it is eventuallyreceivedby all nodes.In caseof a sender
crash,however,therewill be nodes,which have receivedthe messagewhile others
never will receive the messadghis constitutesan “inconsistentmessagemission”
[2]. In the following two chapterswe introducethe conceptsto deal with sender
crashesand inconsistentorder of messagesWe start with describing SHARE, a
hardware component to handieonsistentomissionstransparentlyj.e. without any
additional load for the nodes in the system. Built on thissketchthe protocol that
provides a deadline-based ordering scheme.

3 Using Shadow Retransmittersto Mask Sender Crashes

As discussedpreviously, CAN providesreliable messagdransmission(sometimes
with duplicates) unless a sender crashes after a freameeceivedonly by a subsetof

the receivers.n this casethe sendercannotretransmitthe frame which resultsin a

permanent frame-level inconsistency.

This problemis solvedby addingdedicatedhodesto the system,which act as
‘Shadow Retransmitters(SHARE). A SHARE, schematicallysketchedin Fig. 2,
capturedrames,which aretransmittedover CAN and detectthe situation when an
inconsistent omission is possible. In these situations bleégvejust like the sender
andtransmitthe frame simultaneouslywith the original sender.This is feasible be-
cause of the physical properties@AN; i.e. multiple senderanay transmitidentical
frames. Hence,if the original sendercrashesthe SHARE will mask the fault and
retransmit the message. TBEIARE mechanisnis transparenaind canbe usedin a
systemto copewith inconsistentomissionswithout changingthe existing system
componentr affectingthe temporalpropertiesof the system.Currently,a SHARE
consistsof a dedicatedmicro-controllerwith CAN interfaceand a simple additional
state machine to detect a unique bit pattern on the bus. This bit patteris gener-
ated when a situation occurs which may lead to inconsistent omissions.
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Fig. 2. Components of a SHARE

The detectionof a possibleinconsistentomission is basedon a simple fact: a
frame-level inconsistency snly possibleif at leastone non-faulty node observesan
error,i.e. a dominantlevel in bit #6 in the EOF pattern.In this casethe senderis
expected to retransmit the frame, thus a SHARE should also retransmit the frame.

ACK End Of Frame (EOF) pattern
¢ >« >

Fig. 3. Bit pattern terminating a CAN message frame

The terminatingbit sequencef a CAN messagdrame comprisesa total number
of 8 recessive bits, one bit from the acknowledge field and seven bitsBOfRelt is
shown in Fig. 3. Asve statedbefore,retransmissiorby a SHARE is not allowed if
an error occurs before bit #6 of the EOF. Theisgationsare handledconsistentlyby
the standard CAN protocol.

The situation, in which &HARE is expectedo retransmita frame, occursif set
of nodeskE (with at least one element)detectsan error during the bit #6 of EOF.
These nodes will start an error frame at bitw7ich is observed bgll nodesinclud-
ing the SHARE. The sender is now obliged to retransmitprByentan inconsistent
message omissioim caseof a sendercrash,the SHARE is expectedo transmitthe
message simultaneously.



We observe, that the bit pattern, which is generatethisyerroris unique,i.e. it
cannot be generated by some single estcgomeother sectionof the messagdrame.
If somenodedetectsan errorin bit #6 the erroris flaggedin bit#7 of the EOF by
sendinga dominantbit value. Thus, the characteristicsequenceas 7 recessivebits
followed by a dominantbit. This sequencecannot occur during normal message
transfer or error processing because of the bit stuffifyand subsequenérror signal-
ing. Thus, a SHARE caneasily be implementedcby a statemachine,which detects
this particularsequencelote, that at this time, the CAN-Controller of the SHARE
has a valid message frame in his receive buffer.

Finally, the situation may occurthat a nodedetectsan error during bit #7. This
nodewill be the senderor a SHARE becausall receiversalreadyhaveacceptedhe
message. If any SHARE detects the message during kieét7it will retransmit.in
this situation, a SHARE exactly behaves like any sender wdgtéctsan errorin bit
#7. Hence, a sender crash is always masked by a SHARE.

The actions of &EHARE aretime critical. In orderto startthe frameretransmis-
sion simultaneouslyvith the sender;a SHARE must be readyto retransmita frame
immediately after receiving iiTo be more precise,after detectingan error at the last
bit of a frame, a SHARE must start its retransmissiorwithin 3 bit-times. At the
maximum bit-rate of 1Mbit/s, a SHARE hasno morethan 3 p-secondgo start the
retransmission of the lastceivedframe. Currently, SHARE componentsare realized
by dedicated hardware. The main component of a SHAREL& bit Siemensmicro-
controller C167 [12], which has an embedded CAN contralieta specialfastinter-
rupt handlingunit. This unit, called PEC (PeripheralEvent Controller) enablesthe
transfer of a word or byte from a source addressdestinationaddressvith minimal
CPU interaction. SHARE uses 3 PEC transfer channels to:

1) convert the CAN receive buffer of the last received frame to a transmit buffer,
2) initiate its transmission, and
3) prepare the next free buffer for receiving another frame.

A PEC transferonly takes2 processorclock cycles.Becausehe processorinter-
rupt responselelay (dueto the pipeline)takesno morethan7 processobus access
cycles [12],the necessangteps(1-3) for retransmissiorare completedin lessthan 2
us at a processor clock rate of 20MHz. Henc8HARE is fastenoughfor operating
at the highest bit-rate of 1Mbit/s.

The error detection includinthe specialtreatmentof bit #6 is realizedby a rela-
tively simple 22v10 Gate-Array Logic (GAL) which is directly connededhe CAN
transceiversThe logic detectsa characteristicsequencen the bus indicating that a
dominant level occurreth bit #7 of the EOF. The error detectorimmediatelyraises
an interrupt, which activates the PEC transfer channels. A listing @Attemap can
be found in [13].

The main advantage of dedicated SHARE components istthagparencyExist-
ing CAN networksmay adda SHARE to the bus in orderto guaranteeconsistent
frame delivery in the case of an inconsistent omission failure causeddndercrash.
No additionalprotocol overheads necessaryin fault-free situations. Even when an
omissionoccurs,thereis no additionaleffort to detectand handlethe situation. A
SHARE realizesa fault-tolerantsenderwhich retransmita messagewith very high
reliability. This is important when consideringthe overall bus schedulingwhich
needs not to distinguish between consistent and inconsistent omission failures.



4 Achieving Order

With the introduction of SHARE components welvedthe problemof inconsis-
tent omission failures. We now can safely assume that each messagéswhigived
by a nodewill eventuallybe receivedby all operationalnodesin the systemevenif
the sender crashes and failg¢transmit. This is summarizedn assumption(Al): f
one non-faulty nodereceivesa messagethen all non-faulty nodeseventually receive
this message.

Our scheme to establigitder betweenmessagesssumeghat in a real-timecon-
trol system, a message has todaediveredat its deadline.We further assumethe co-
existence oftritical hardreal-timemessagesand lesscritical soft real-timemessages.
The former have to meet their deadlines otherwise the syatsnunpredictably Soft
real-time messagesnay miss their deadlinesunder transient overload. Temporal
constraintdike deadlinesor laxities canbe convertedinto a priority schemd8, 14,
22], which is used by the CAN priority-basedmessagalispatchingmechanismto
globally schedule the messages. We use the eight most significant bitsSG#NRD
as an explicit priority field. In [14, 15] we develogehemewhich is a combination
of a reservation-based, time triggered message schedulihgribreal-time communi-
cation requirementand leastlaxity first (LLF) for soft real-timemessages.Because
the detailed description dfie mechanisnis beyondthe scopeof this paper,we will
only roughly sketchthe basicideasof the schemeLet us startwith the assumption
for hardreal-timemessage4A2): Hard real-time messagesre receivedbefore their
deadlines by all operational nodes under an omission fault assumption.

For hard real-time messages fixed time stotsreservedike in a TDMA [16] or
TTP [17] approachConflicting resourcerequirementsbetweenhard real-time mes-
sagesareresolvedoff-line, i.e. at run-time two hard real-time messagesever will
compete for the CAN-bus. H time slot for a specifichardreal-timemessagearrives,
the dynamicpriority mechanismassureghat the messagéasthe highestpriority of
all messagesurrently competingfor the bus. To copewith communicatiorfailures,
our schemeprovidestime redundancyand multiple transmissionf the samemes-
sage. Ifk omissions must be tolerated famessageaeedingthe time At to be trans-
mitted, the respective reserved time slot must be of lerdilfAt + Ar) + At where
Ar is the recovery time (a more detaildidcussioncanbe foundin [15]). Becausea
SHARE handlesinconsistentomissions (assumptionAl) we can assumethat A2
holds.

Soft real-timemessagesre scheduledaccordingto the LLF (Least Laxity First)
algorithm [8]. This meansthatin overloadsituationsdeadlinesmay be missed (as-
sumptionA3). Finally, we assumethat the communicationsystemcan rely on the
fact that the local real-time operating system will provide a message timehgfore
the transmission deadline is expired (assumpiidn

Based on these assumptions, meav can developan orderingschemeThe algo-
rithm relies on the reliable message transfed on the knowledgeaboutthe message
transmissiondeadlinesThe transmissiondeadline (TD) of a messagealenotesthe
point of time, at which the message must be successfaligmittedto all non-faulty
destination nodesThe transmissiordeadlineis tightly relatedto the point in time,
where the message delivery to all receiving applicatinjectsis expectedTherefore,
the orderingmechanisnreflectsan applicationspecific order relatedto temporal re-
guirements.We maintain the order for hard real-time messagesnd soft real-time
messages in two totallgrderedsetsseparatelyThis is becauseonsensusboutthe



order of soft real-timemessagesannotbe derived under hard real-time constraints.
This property has formally been proved in [20].

Letmandm’ be two real-time messages with deadlidgandd.. Thenthe dead-
line-based ordering algorithm implements the following rule:

(O1): dm<dm’ [»J delj(m) - delj(m’)

This means that if the deadline of the messaggebefore thedeadlineof the mes-
sagem’, thenm must be delivered to destination objects befateFor hard real-time
messages this is easy to show. Because featetime messagesare scheduledoff-line
accordingto a time-triggeredschemeand aretransmittedin reservedime slots, the
aboverule follows immediately. The order betweenhard real-time messagesan
straightforwardlybe formulatedby the following delivery rule: Every hard real-time
message is delivered at its deadline. Total ordéraod real-timemessagess guaran-
teed according to their deadlines.

To establisha total order betweensoft real-time messagess more complicated.
Firstly, soft real-time messagesnay have identical transmissiondeadlines.This
results in the same laxity thatmsappedon the samepriority. Secondly,undertran-
sient overload,multiple messageshat already have missedtheir deadlinesend up
with the same laxity. In both cases we cannot use the priority figltb& significant
bits) in the CAN message ID alone to establish the order. However, becausib€AN
all must be different (to enable amambiguousarbitrationdecision),some (arbitrary)
orderin which the messageare scheduledn the busis determinedby the unique
lesssignificantbits of the CAN-ID. Note, thatin caseof equaldeadlinesandin the
situationthat all laxities are “0”, no relationshipbetweenthe messagegan exist
because none of the messages has yet been sent. The following rule is used & ensure
global decision on the delivery order of messagesmdm’.

(02): dm=dm’ [J (delj(m) - delj(m’) = message-IDm < message-IDm’)

In 02, message-IR consists ofa tuple (dn, sender-IB, , rm) with sender-IB, is
some unique number for the sender amd’“are the remainindits of the arbitration
field. Thesender-I0, makes sure that messages from different nodes competitigefor
bus have different CAN-IDs.

Soft real-timemessagesan becomereadyfor transmissiomat any point in time.
No a priori reservationor conflict resolutionis performed.We may have messages
with different and equal priorities. The ordering is based on the following properties:
P1: If a node has received a messagand thenanothermessagavith lower priority
is observed on the CAN bus, or the bus is idle, therséimelerof m will not retrans-
mit it in future.

Assume thata messagen is transmittedat leastonceon the CAN bus. Further,
assume that the sending CAN controller still attemptet@ansmitdueto the incon-
sistenttransmission Accordingto the CAN specification[1] the senderwill try to
retransmitm immediately,thus no bus idle period will be observedbefore the re-
transmission ofm. Furthermore, ndower-priority messagevill be transmittedbefore
the retransmission a@h, becausen will win the arbitrationprocessagainstany lower-
priority message. Because we assugl@ble retransmissiorthrougha SHARE even
in the case of sender crashes, we can enforce this property:

P2: Any receiver of a soft real-time messagecan assumethat the messagéiasbeen
receivedby all nodeswhenthe receiverobservesan idle bus or a messagewith a
lower priority on the bus after receiving



P2 states the condition under whiclheaeivercan detectthat all nodesreceiveda
particular message. Now, to deliver tihiessagethe receivermust be surethat it is
delivered in the same order in all nodes. This osfeuld be basedon the transmis-
sion deadline.Therefore,we now must first clarify the questionwhethera message
with an earlier deadline still caarrive. Basedon our previousconsiderationsve can
conclude:

P3: A soft real-time message with a highm@iority hasan earlierdeadlinethan a soft
real-time message with a lower priority. If after the transmission deadline of realeft
time message m another message with lower prioritsaissmittedon the CAN bus,
or the bus is idle, then thei® no other soft real-timemessagen’ with an earlieror
equal deadline, which is pending for transmission.

P3 is proved by the following considerations: Assume ghaessagen’ with the
deadlinedw < dm is pendingfor transmissionat the time t>d.. Becauseof the dead-
line-basedpriority assignmenthe priority of m'is not lower thanthe priority of m.
Due to assumption Adn’ has been pending for transmissitieastsincedy, hence
at least sincd,. Hence the send@&f m’ must havebeentrying to transmitm’ at the
beginningof everybus-idle period sinced.. Thereforeno idle bus can be observed
before the successful transmissiomdf Also, no lower-priority messageansmission
can be observed on the bus before the successful transmissigrbe€ausen’ would
win the arbitration processagainstany lower-priority messageThus, if after dn a
message with a lower priority is transmitted on the CAN bus, or the bus is ubused
someperiodof time, then m’ has beenalreadytransmittedsuccessfullybefore and
hence has been received before

We now can derive the property which enabléstal order betweensoft real-time
messages:

P4: For any soft real-time message no precedingsoft real-timemessagavill arrive
later, if after the transmission deadlihga lower-priority messages observedon the
bus.

Therefore, the delivery rule whianaintainstotal orderof soft real-timemessages
can finally be established as follows:

SRTD: (Soft Real-Timeanessagdelivery) Every receivedsoft real-timemessagean
be delivered in total order as soaseitheranothermessagevith later deadline,or a
bus idle time is observed after its transmission deadline.

In situations which are naiffectedby overload,soft real-timemessagesare trans-
mitted anddeliveredin strict deadlineorder.If thereis no idle bus detected(in this
casean immediatedelivery is performed)the messagehas at most to wait for one
message transmission time to daivered.In overloadsituations,no temporalguar-
antees can be granted. The deadlines cammasedfor orderingthe messageg-How-
ever, total order betweensoft real-time messagess still preservedDuplication of
messages is handled by a sequence number.

5 Discussion and Related Work

We presented a scheme to provide reliable atomic broadca&3afdr Considering
the broadcast mechanisrsgecifically developedor CAN, we examinedsomeof the
popularapplicationlevel protocols available for industrial automation[9, 10, 11].
These protocols provide reliable message delivery for situations, whicoaeedby
the standardCAN error detectionand fault handlingmechanismsThus, they fail to
provide measures for inconsistemhissions.Additionally, they cannotguaranteghe



same order omessagef all nodesevenundermoderatefault assumptionsThis is
because message duplicates cannot be safely distinguished from new messages.

Reliable message transmissitmall operationalreceiverscan be achievedby ap-
propriate retransmission mechanisms [2, 6, 18, 1jproblemoccurswhena sender
crashes beforg performsthe retransmissionAll approacheso handlethis situation
are based othe assumptiorthat the senderhas correctly transmittedthe messageat
leastonceand at leastone receiverhascorrectlyreceivedit. This receiverthen can
retransmit the message. In aagerapproachthe receiverstry to retransmitthe mes-
sage until theyhaveobserveda certainnumberof retransmission§2, 6]. In the lazy
approachthe messages retransmitteconly if a sendercrashhasbeendetectedlt is
obviousthat the first approachincurs additional messageverheadwhile the second
approach relies on the detection of a serntashthat requiresa time-out mechanism.
What distinguishesour approachs the use of maskingredundancyWith the intro-
duction of SHARE components, the retransmissiocaseof a sendercrashbecomes
completelytransparentNo additionaloverheads addedto the protocol that would
increase network load or affect the basic timing properties.

Concerning the mechanism to establish order, our sclaenmnmodatebard and
soft real-time messages. We maintaider separatelyfor the two classesof real-time
messages. This is because the delivery of a hard real-time mebksadgtnot rely on
the successfully established ordetweensoft real-timemessagesyhich in overload
situationsis not time-bounded.To our knowledge,the only work specifically ad-
dressing ordering schemes for CAN is described in [2] and [19]. In [19] a CADstool
used to determine off-line, which messagesn applicationmay be causallyrelated.
The deadlines of related messages are adjastgardingto this analysis.Then, their
dynamic priorityschem¢g[22] is usedto schedulehe messagesn the CAN-bus ac-
cording to theirfixed deadlines.The approachs only valid in systemsin which all
causal relationships can be determined off-lBecondly,the approachreatsall mes-
sages as hard real-time messages.

In [2] a protocol suite is presented which provifmdt-tolerantbroadcastn CAN
under varyingsystemassumptionsThe protocolsarereferredas EDCAN (CAN Ea-
ger-Diffusion), RELCAN (Lazy Diffusion-basedProtocol), and TOTCAN (Totally
Ordered CAN-protocol)The EDCAN (CAN Eager-Diffusion)protocolis basedon a
multiple transmissiorpolicy similar to [6]. The problemwith EDCAN is the high
communicationoverheadof about200% undernormal operation.To overcomethis
efficiency problem, theauthorsproposea more efficient protocol called RELCAN. In
this protocol, efficiency in the fault-free case is traded agaiosttainwaiting time in
case ofa sendercrash.Although this delayis predictablejt hasto be consideredn
the worst case estimation of every message transfer. FthallfOTCAN protocolis
proposedwhich provides total order of messages. TOTCAN usesa two-phase
scheme. Sender crashes aretotdratedby TOTCAN, althoughconsistencyof mes-
sages is maintained b y discarding a message for which it chegogranteedhat it
has been received by abdes.In contrastto our hardware-basedolution to reliable
messagéransfer,the software-orientegbrotocolsrequirea substantialoverheadThis
overheadnvolves not only the communicationsystem,which hasto carry a higher
load, but also the processing nodes, which explicitly have to perform retransmissions.

6 Conclusion

The paper presented mechanisms to achieve fault-tolemaatcastsn CAN. The
mechanisms for error detection and fault handling in CAN already cax@rsaderable



fault class.However,therestill exist situationsin which CAN aloneis not able to
guarantee the all-or-nothing propedfymessageaeceptionand the consistentorder of
messages. Wérst introduceda hardwareextensionSHARE to provide atomicity of
messageeception.A SHARE componentetectsthe specific situation where some
nodes may have accepted a message while othersbaua this situation a retrans-
mission is necessaryln combinationwith the mechanismsprovided by CAN,
SHARE components masiendercrashesThe hardwareof a SHARE is simple and
can be added to any existing CAN-bus network. Multiple SHARE componentscan
added to increase reliability. Based on the atomigityperty,we developa deadline-
based consistent ordering mechanism. We traed real-time messageand soft real-
time messageseparatelyHard real-timemessagesre strictly orderedaccordingto
their deadlines: Thigs possiblebecausall deadlinesof hardreal-timemessagesre
different and conflicts are resolvedf-line. In contrast,soft real-timemessagesyhich
are createdlynamically, may haveidentical deadlines Moreover,soft real-timemes-
sagesmnay miss their deadlinesundertransientoverload.By carefully exploiting the
propertiesof CAN, we providetotal orderfor hardreal-timeand soft real-time mes-
sagesrespectivelywithout additionalmessag®verheadBy treating hard and soft
real-timemessageseparatelywe makesurethat a hard real-time messageneveris
delayed because it has to wait on the decision abeudrder of a soft real-timemes-
sage.

Currently the protocol igmplementedand we investigatethe integrationwith an
application levelprotocol using the publisher/subscribecommunicationrmodel [23].
For the publisher/subscriber model whishbasedon anonymouscommunication,t
is highly beneficial that the protocols devisedtiis papercanachieveatomicity and
order without explicit knowledge of the sender and receivers of messages.
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