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Abstract. The paper introduces a mechanism to implement distributed scheduling for CAN-bus resource in
order to meet the requirements of a dynamic distributed real-time system.  The key issues considered here, are
multicasting, distinguishing between hard real-time, soft real-time, and non real-time constraints, achieving
high resource utilization  for CAN-bus, and supporting dynamic hard real-time computing by allowing
dynamic reservation of communication resources.

Key Words. Real-Time Communication, CAN, Scheduling.

1. INTRODUCTION

A real-time communication system (RTCS) consti-
tutes the backbone for distributed control applica-
tions. RTCS substantially differ in many respects
from general purpose communication systems. In
general, while the goals of general purpose com-
munication systems center around throughput,
RTCS focus on predictability of communication.
Predictability means that the system exhibits an
anticipated behaviour in the functional and the
temporal domain.

In the area of industrial automation and the auto-
motive industry, field busses are used to disse-
minate time critical messages. Field busses exhibit
bounded message latency, reliability of transfer,
efficiency of the protocol and, to a certain extent,
preventing a node from monopolizing the network.
Among field busses, CAN bus (BOSCH (1991))
provides advanced built-in features, which make it
suitable for complex real-time applications. Some
of these features are priority-based, multiparty bus
access control using carrier sense / multiple access
with collision avoidance (CSMA/CA), bounded
message length, efficient implementation of
positive/negative acknowledgement, and automatic
fail-silence enforcement with different fault levels.

As a common resource, the CAN bus has to be
shared by all computing nodes. Access to the bus
has to be scheduled in a way that distributed com-
putations meet their deadlines in spite of competi-
tion for the communication line. Since the sche-
duling of the bus cannot be based on local deci-
sions, a distributed consensus about the bus access
has to be achieved.

There exist several alternative approaches to solve
this problem based on the assumptions about the
behaviour of the system and the environment.

The deadline-monotonic priority assignment
(Audsley et al. (1991), Tindell et al. (1994, 1995))
achieves meeting deadlines as guaranteed by an off-
line feasibility test for a static system with periodic
tasks. Although static systems can be scheduled
easily by this approach, it does not allow sche-
duling of dynamic systems, where an offline fea-
sibility test has incomplete knowledge about the
future behavior of the system. Moreover, the dead-
line-monotonic approach does not distinguish hard
and soft deadlines.

A scheduling mechanism for the  CAN bus, based
on a mixture of dynamic and static priorities, has
been approached by Zuberi and Shin (1995).
However, this approach makes unrealistic
assumptions about CAN – e.g. 10 Mbits/s – and
exhibits a rather restricted scheduling ability due to
a short time horizon (cf. section 4).

Livani et al. (1998) have introduced a mechanism
to assign dynamic priorities to CAN messages, in
order to achieve an EDF resource access consensus
among the participating nodes. Based on the EDF
access mechanism, soft real-time communication
will be scheduled optimally with EDF approach. To
guarantee deadlines of hard real-time communi-
cation, calendar-based resource reservation is app-
lied. An application of this scheduling approach in
a distributed object-oriented real-time control sys-
tem has been introduced by Kaiser et al. (1998a).

The presented approach takes advantage of the
built-in CSMA/CA access protocol of CAN bus to
realize the EDF access regulation. The CSMA/CA
protocol is comparable with a priority-based
dispatcher. Due to this analogy, it is possible to
express scheduling decisions for the CAN-bus
resource by static or dynamic priority orders.



The paper is organized as follows: Chapter 2
introduces the application system model. Chapter 3
describes some features of CAN.  In chapter 4 the
authors briefly describe a dynamic priority assign-
ment mechanism, resulting in EDF access regula-
tion. Based on the EDF access regulation, chapter 5
introduces a real-time scheduling approach for
communication on CAN bus. A summary concludes
the paper.

2. THE SYSTEM MODEL

The system model in this paper is influenced by the
anticipated hardware basis. The authors assume a
number of different micro-controllers with different
performance attributes ranging from 8-bit to 32-bit
architectures. All micro-controllers are equipped
with a CAN-Bus interface. The model exploits the
inexpensive availability of 8-bit micro-controllers
to structure the overall task of the system into small
packages, i.e. objects with a well-defined message
interface to other objects. Of course, it is possible
to locate several tightly related objects in one node.

Higher control instances are available to control
groups of objects or eventually the entire system
using more powerful microprocessors. Thus, the
higher control instances have a well defined
instrumentation interface which is composed from
objects, each encapsulating a certain functionality.

An object has a unique name and a set of associated
operations. The unique name of the object is
translated to a short form system name during run-
time and maintained by a configuration service.

Object groups

In conventional object-oriented languages a method
invocation is synchronous and directed to a single
object. It is usually not possible to express a request
to a group of objects. However, in a real-time
control system it is beneficial to provide groups of
objects and to use asynchronous multicasts to
invoke methods of these groups. The motivation
ranges from simple and fast distribution of
information, like sensor data and alarm messages,
to replicated objects forming a group to achieve
fault-tolerance.

In this system model, an object participating in
group communication, does not necessarily have
any knowledge about the number and location of
other group members. Therefore, the sender of a
multicast usually does not know whether it has to
send the message locally, or remote. This simplifies
the design and implementation of the objects, and
minimizes the configuration effort when adding or
removing an object.

But consequently, there must be an instance in the
system, which knows the configuration. The
configuration is given by object groups, where a

group contains one or more objects. This
configuration information is maintained by
distributed multicast agents, one residing on every
computing node. Every object wishing to send a
multicast message, requests its local multicast agent
to deliver the message to other group members. The
multicast agent is described in more details in
Kaiser et al. (1998a).

Group Communication Protocol

By using CAN bus as the basic communication
medium, one can relax many assumptions necessary
for arbitrary networks, resulting in a rather low
overhead protocol. Because the communication
medium, the CAN-Bus, supports consistent view on
the low system level, it is beneficial to exploit this
feature.

In order to support real-time object groups with
consistent information, the group communication
protocol must deliver real-time messages to all
members of a group both timely, and in a consistent
order. In chapters 4 and 5 the authors describe how
to guarantee timely multicast transmission in CAN.
Given the guarantee of timely message transmis-
sion, Kaiser et al. (1998b) have shown that atomic
multicast can be achieved by consistent ordering of
messages based on application-defined delivery
deadlines.

3. LOW-LEVEL CONSISTENCY IN CAN

Since in the CAN bus every bit is propagated over
the whole bus length while it is still transmitted, all
correct nodes have a consistent view of every bit. In
the case that different nodes send different bit
values simultanously, the dominant value – which
changes the bus level actively –  overrules the
recessive value. In all common implementations of
CAN, ‘0’ is the dominant bit value, i.e. whenever
different bit values are sent on the bus
simultanously, the logical AND function of their
values is observed by every node. Thus, the nodes
of a CAN bus are logically connected by a wired-
AND function.

The consistent view of every bit among all nodes, is
exploited in the CAN protocol to implement a low-
latency error detection and signaling mechanism.
During the transmission of every message, all CAN
controllers monitor every bit, and detect any
violation of the consistency rules (e.g. CRC, bit-
stuffing) with a high probability (BOSCH (1991)).
After a node detects an error, it sends a sequence of
six dominant bits, thus violating the bit-stuffing
rule. At this time, every node in the network
becomes aware of the error, the message is
discarded, and retransmitted by the sender.

Also the basic medium access protocol of CAN,
called CSMA/CA, relies on a consistent global
view of every bit. According to this mechanism, all



nodes competing for the bus begin to send the
unique identifier of their messages, which consists
of 11 or 29 bits, according to the „standard“ or
„extended“ message format. whenever a node sends
a ‘1’ and senses a ‘0’, it stops transmitting, and
switches to the receiver mode. At the end of the
identifier field, only the node which is sending the
message with the lowest identifier value, is still
transmitting.

CAN provides a connectionless protocol. This
means, that the message identifier indicates the
content of a message rather than the source or
destination. Each communication controller has a
programmable filter through which it can
associatively detect relevant messages. By setting
some of the filter bits as „don’t care“, it is possible
to receive groups of messages.

4. EDF ACCESS REGULATION

As it is shown in chapter 5, an EDF medium access
regulation among all network nodes can serve as a
basis for a hybrid bus scheduling, where timeliness
of hard real-time messages is guaranteed by
resource reservation, while optimal scheduling of
soft real-time communication is achieved by EDF
scheduling strategy.

In order to realize the EDF access regulation in a
CAN network, one must define a mapping of the
transmission deadline into the message priority,
such that a message with an earlier transmission
deadline wins the bus arbitration against a message
with a later deadline.  However, one cannot use the
whole identifier as a deadline-driven dynamic
priority because of following reasons: Firstly, the
sender node identifier must be included into the
identifier field of CAN messages, to ensure that
competing messages have always different
identifiers. Secondly, one should encode the
message group name into the identifier in order to
support group addressing and multicast message
filtering by the CAN controller hardware. Fig. 1
illustrates how a CAN identifier is partitioned in
order to fulfill all functionalities mentioned above.

Due to the requirement to schedule three types of
communication, namely hard real-time, soft real-
time, and non real-time, the value domain of the 8-
bit dynamic priority field is divided into two
distinct ranges. The higher priorities are reserved
for real-time messages, and the lower priorities are
assigned to non real-time messages. This ensures

that real-time messages always win the bus against
non real-time messages.

In the priority field of a real-time message, the time
remaining until its transmission deadline (let’s call
it transmission laxity) is encoded. The transmission
deadline is a point of time specified by the sending
application object, when a message must be com-
pletely transmitted to receiving nodes. As long as a
sending node is pending for the bus, its com-
munication subsystem checks and updates the trans-
mission laxity of the ready message periodically.
As soon as the transmission laxity of a hard real-
time message becomes zero, it is withdrawn, and
the sending application object is notified of the
deadline failure. Soft real-time messages, however,
are sent in spite of missed deadline.

Each value of the transmission laxity is mapped to a
portion of future time, a priority tick Δtp. At the end
of each priority tick, a pending transmitter increases
the priority of its real-time message by
decrementing its transmission laxity field. The
priority ticks are time intervals of a fixed length,
with the first one beginning at the present time.
Since there is only a limited number of different
priorities, only a limited number of priority ticks
are visible. Hence, one cannot distinguish different
points of time within and after the last identified
priority tick. Since one can make no order decision
between any two points of time falling into the last
priority tick, the beginning of the last priority tick
will be the time horizon of the proposed deadline-
driven access decision.

Def. The Time Horizon: the time horizon is defined
as the point of time, where a time-driven
decision mechanism (like EDF scheduler)
cannot see beyond.

In this case, if the time until the time horizon is
only long enough for the transmission of n
messages, then the EDF bus scheduler cannot
guarantee correct scheduling of n+1 pending real-
time messages with deadlines beyond the time
horizon.

5. SCHEDULING HARD AND SOFT REAL-
TIME MESSAGES

Different urgency classes

The authors assume four classes of activities in the
system, which have been introduced by Stankovic
et al. (1989). Critical activities are hard real-time
and their deadlines are absolute in time. To
guarantee the timely execution of critical activities,
all their occurrences have to be predicted and
respective resources have to be scheduled in
advance in a periodic calendar. Essential activities
have deadlines relative to their start times. If the
system grants an essential task, it guarantees the

Priority TxNode Group Name

13 bits8 bits8 bits

Fig. 1. Partitioning of a CAN-message identifier



resources for a timely execution by reserving the
appropriate time slots in the resource scheduling
calendar. However, the system can refuse a
guarantee.

Soft real time activities have deadlines which are
considered by the system but no guarantees are
given to meet such a deadline. Soft real-time
activities are executed on a best effort basis.
However, as shown later, the EDF scheduling
strategy is used for optimal resource utilization.
Non real-time activities can only use resources
which are not requested by a real-time activity.

The global scheduling in a distributed system
requires consensus between all participants about
the usage of shared system resources. Particularly,
if a joint action will be performed, all local
resources must be available and reserved for the
respective computation (Gergeleit et al. (1994b)).
The global schedule has to be enforced by all
participants, based on their local information. In a
completely static system, a global calendar is
available and each participant has its relevant
entries referring to its activities in a global time
scale. A local activity may only be started
according to this schedule (Kopetz et al. (1985,
1992)). In a more dynamic system where critical,
essential, soft real-time and non-real-time tasks
coexist, things are more complicated. If a
computing resource is free, a less critical task may
start computation and request resources. In this
case, it must be guaranteed that it does not block an
activity with a higher criticality. In this section, the
enforcement of the global schedule for the shared
bus resource is described.

Timeliness of hard real-time communication

For hard real-time communication, the deadline is
guaranteed by reserving a time slot on the bus. The
reserved time slots are entered into a calendar,
which contains both periodic fixed reservations and
dynamic reservations. This calendar is contained in
each node of the system, thus the dynamic time slot
reservation is performed by a single atomic
multicast message only.

The scheduling approach for hard real-time
communication requires access to a global time
reference with bounded inaccuracy. Once a time
slot is reserved, the respective action can be started
locally. To guarantee that it does not interfere with
another time slot, the time reference of all nodes
must be synchronized. The lower the clock
accuracy, the larger the minimum gap between two
subsequent time slots in the global bus schedule
(Fig. 2). In order to provide a global time reference
with high accuracy, clock synchronization
mechanisms have to be applied, e.g. as described by
Kopetz et al. (1987) or Gergeleit et al. (1994a).

Efficient reservation of time slots for hard real-time
communication is supported by defining the end of
the reserved time slot of a message as its
transmission deadline, thus applying EDF
scheduling to hard real-time communication. The
sender of a hard real-time message enforces its
access right by dynamically increasing the priority
of the message according to its laxity relative to the
reserved time slot. Due to this scheme, a hard real-
time message gains the highest possible priority at
the beginning of its reserved time slot. In order to
guarantee that two subsequent reserved time-slots
are always assigned different priorities in the right
order, the priority tick must not be longer than the
minimum possible length of any reserved time-slot
(Fig. 3). In the current prototype, the minimum
time-slot length for a single-fault tolerant message
is equal to the transmission time for two empty
frames plus error detection and recovery time,
which take together at least 175 bit-times.

 Note that every message may be delayed by one
message, which is started before the ready time of
it. ΔTmax is defined as the longest possible message
transmission time. Then, a hard real-time message k
– with a reserved time slot beginning at sk – must
be ready before sk - ΔTmax, in order to tolerate the
non-preemptive transmission of any single message.

In order to guarantee the collective timeliness of
hard real-time communication, the following
requirements must be met:

time

Node1

Global
schedule

Node2

Maximum clock offset  =  ± ΔOc

   � Maximum skew = 2 × ΔOc

      � gap between time-slots ≥ 2×ΔOc

Reserved
timeslot of

node1

Reserved
timeslot of

node2

Offset = -ΔOc

Offset = ΔOc

GAP

Fig. 2. The gap between reserved time-slots due
to clock inaccuracy

time

Global
schedule

• Deadlines differ at least by the length of the reserved time-slot
• Minimum length of reserved time-slots = ΔRmin

   � Priorities must change at least each ΔRmin

  �  Δtp  ≤  ΔRmin

Reserved
timeslot of

node1

Reserved
timeslot of

node2

Δtp

ΔR1 ΔR2

Priority
P P+1 P+2 P+3

Fig. 3. Maximum length of priority tick



(R1) for each hard real-time message, an exclusive
time-slot is reserved, which ends at the
transmission deadline of the message,

(R2) the reserved time-slot of each message is as long
as the worst-case transmission time of the
message, including all overheads for error
detection, recovery, and retransmissions under
an anticipated fault hypothesis,

(R3) the gap between any two different reserved time
slots for hard real-time messages is greater or
equal to the maximum time-skew between any
two correct nodes in the system,

(R4) every hard real-time message is ready for
transmission at least ΔTmax before the beginning
of its reserved time slot. This means that the
laxity of every hard real-time message at its
ready-time is large enough to allow the longest
possible message of the system to be transmitted
first,

(R5) the priority of a hard real-time message depends
on its transmission laxity, (cf. chapter 4).

Given these assumptions, every hard real-time
message will be transmitted timely under
anticipated fault conditions. Assume (Fig. 4) that Mi

is the first hard real-time message after the system
startup, which cannot start at the beginning of its
reserved time slot si, hence missing its transmission
deadline di. Since Mi is ready at si - ΔTmax, it
participates in at least one arbitration process
before si. If Mi does not start before si, then another
message Mi-1 wins the arbitration against Mi, and
following conditions are true:

(C1) Mi-1 is a hard real-time message,
(C2) the reserved time slot of Mi-1 ends at di-1,

where di-1 < di, because of R5, and
(C3) Mi-1 is not completely transmitted until si.

From R3 and C2 it is concluded that the
transmission deadline of Mi-1 lies before si, i.e. di-1

< si. Due to C3, Mi-1 misses its deadline di-1,
because it is completed after si, and di-1 < si. This is
a contradiction to the assumption that Mi is the first
hard real-time message after system startup, which
misses its deadline.

Timeliness of soft real-time communication

For the soft real-time communication, the presented
mechanism does not guarantee a deadline. This is
because it is always possible to dynamically
schedule additional hard real-time („essential“)
communication. However, this approach guarantees
optimal scheduling of soft real-time messages,
because the priority of a soft real-time message
depends directly on the time remaining until its
delivery deadline, thus realizing EDF scheduling,
which is known to be optimal (Liu et al. (1973)).

Conflicts of soft and hard deadlines

Since soft real-time communiation does not make
any time-slot reservation, the deadlines of soft real-
time messages are arbitrarily spread over the time.
This can lead to conflicts while scheduling several
soft real-time messages with deadlines close
together. While deadline conflicts among soft real-
time messages are always acceptable, they must
never affect the timeliness of a hard real-time
message. This is achieved by guaranteeing that a
hard real-time message has a higher priority than
any soft real-time message within a critical interval
before its dealine. This critical interval begins after
the latest ready time of a hard real-time message:

worst-case latest ready time of any HRT-message =
Deadline - ΔRmax - ΔTmax

where:
ΔRmax = longest possible reserved time-slot of any

HRT-message
ΔTmax = longest possible single transmission time

of any message

From this requirement the priorities of hard and soft
real-time messages are derived depending on their
transmission laxity:

Hard real-time:
PH(laxity) = min( Pmin + ⎣laxity / Δtp⎦ , Pmax )

where:
PH(laxity) is the priority of a hard real-time

message with a given ‘laxity’
Pmin is the highest priority = lowest binary value

for real-time priorities
Pmax is the lowest priority = highest binary value

for real-time priorities
Soft real-time:

PS(laxity) = max( PH(ΔRmax + ΔTmax) , min( Pmin +
⎣laxity / Δtp⎦ , Pmax ))

 where:
PS(laxity) is the priority of a soft real-time message

with a given ‘laxity’

Non real-time communication

Non real-time messages are assigned fixed
priorities, because the importance of a non real-
time message does not change by the passage of
time. Note that in this approach any non real-time
message has always a lower priority than any real-

di-1 timedi

Reserved
timeslot of

Mi

siri si-1

MiMi-2 Mi-1Mi-3

Reserved
timeslot of

Mi-1

Laxity of Mi

ΔTmax

Fig. 4. A hard real-time message missing its
deadline



time message. It means:  PN > Pmax  where PN  is
the priority of an arbitrary non real-time message.

Dealing with faults

In order to guarantee timely hard real-time message
transfer in the presence of faults, redundancy must
be provided. Space redundancy would require a
second CAN bus. Since a fault model with only
crash and omission failures is assumed, time
redundancy can be applied instead of space
redundancy.  This means that several subsequent
transmissions plus the failure detection/recovery of
CAN bus, which consumes bounded time (Rufino et
al. 1995)), have to be scheduled. This application
of time redundancy is similar to strategies used in
other real-time communication protocols, e.g. TTP
(Kopetz et al. (1992)). However, in contrast to
statically planned communication, this can use the
redundant time slot for low-priority communica-
tion, if the first transmission was successful.

6. CONCLUSION AND FUTURE RESEARCH

In order to guarantee timely delivery of hard real-
time messages in a CAN network, the authors have
introduced a calendar-based scheduling mechanism,
which coexists with the EDF scheduling used for
soft real-time messages. In contrast to pure EDF
scheduling, where resource conflicts may occur due
to conflicting deadlines, the presented approach
coordinates the deadlines of hard real-time
communication by reserving resources in a global
calendar. Thus, the timeliness of hard real-time
communication is achieved despite overload
failures by guaranteeing exclusive access right to
the network during the reserved time-slots.

This approach guarantees timeliness in presence of
communication errors, by applying time
redundancy. However, in case of non-faulty
message transfer, the unused redundant resources
are utilized for low-priority communication. This is
possible because a hard real-time message releases
the network resources after its successful
transmission. Thus, optimal resource utilization in
fault-free situations as well as in presence of faults
is achieved.

The low-level communication protocol presented in
this paper will serve as a basis for a high-level
atomic multicast protocol with bounded termination
time. The concept of the high-level atomic
multicast protocol is reported by Kaiser et al.
(1998b).
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