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Abstract
The paper introduces a mechanism to implement distributed scheduling for CAN-bus
resource in order to meet the requirements of a dynamic distributed real-time system.
The key issues considered here, are multicasting, distinguishing between hard real-time,
soft real-time, and non real-time constraints, achieving high resource utilization  for
CAN-bus, and supporting dynamic hard real-time computing by allowing dynamic
reservation of communication resources.

1 Introduction
A real-time communication system (RTCS) constitutes the backbone for

distributed control applications. RTCS substantially differ in many respects from
general purpose communication systems. In general, while the goals of general
purpose communication systems center around throughput, RTCS focus on
predictability of communication. Predictability means that the system exhibits an
anticipated behaviour in the functional and the temporal domain.

In the area of industrial automation and the automotive industry, field busses are
used to disseminate time critical messages. Field busses exhibit bounded message
latency, reliability of transfer, efficiency of the protocol and, to a certain extent,
preventing a node from monopolizing the network. Among field busses, CAN bus[13]
provides advanced built-in features, which make it suitable for complex real-time
applications[8]. Some of these features are priority-based, multiparty bus access
control using carrier sense / multiple access with collision avoidance (CSMA/CA),
bounded message length, efficient implementation of positive/negative
acknowledgement, and automatic fail-silence enforcement with different fault levels.

As a common resource, the CAN bus has to be shared by all computing nodes.
Access to the bus has to be scheduled in a way that distributed computations meet
their deadlines in spite of competition for the communication line. Since the
scheduling of the bus cannot be based on local decisions, a distributed consensus
about the bus access has to be achieved.

There exist several alternative approaches to solve this problem based on the
assumptions about the behaviour of the system and the environment. The TDMA
(Time-Division Multiple Access) protocol does not take advantage of the priority-
based bus arbitration mechanism. Relying on the availability of a high-resolution
global time-base, each node knows exactly when to send or receive a message.



However, due to its static nature, the TDMA approach is not suitable for dynamic
real-time systems. Moreover, the TDMA protocol is applied preferrably on high-
bandwidth busses, like Ethernet or FDDI [7][11].

The deadline-monotonic priority assignment [16] achieves meeting deadlines as
guaranteed by an off-line feasibility test for a static system with periodic tasks.
Although static systems can be scheduled easily by this approach, it does not allow
scheduling of dynamic systems, where an offline feasibility test has incomplete
knowledge about the future behavior of the system.

A dynamic scheduling of CAN bus has been approached in [18]. However, this
approach makes unrealistic assumptions about CAN – e.g. 10 Mbits/s – and exhibits a
rather restricted scheduling ability due to a short time horizon (cf. section 4).

In this paper, we introduce a mechanism to assign dynamic priorities to CAN
messages, in order to achieve an EDF resource access consensus among the
participating nodes. Our motivation is to schedule soft real-time communication
optimally with EDF approach, and to guarantee deadlines of hard real-time
communication by calendar-based resource reservation. As we have shown in [7],
these two scheduling approachs can co-exist in CAN, if they are based on our EDF
access mechanism.

We take advantage of the built-in CSMA/CA access protocol of CAN bus to
implement the EDF access regulation. The CSMA/CA protocol is comparable with a
priority-based dispatcher. Due to this analogy, we express our scheduling decisions
for the CAN-bus resource by static or dynamic priority orders.

The paper is organized as follows: Section 2 introduces some features of CAN. In
section 3 some of the common approaches to the CAN-bus scheduling are discussed.
In Section 4 we describe our dynamic priority assignment mechanism, resulting in
EDF access consensus. Based on the EDF access consensus, we introduce in section 5
a real-time scheduling approach for communication on CAN bus. A summary
concludes the paper.

2 Basic CAN-Bus Properties
The key to the understanding of the CAN-Bus is its bit synchronization and the

fact that all nodes (including the sender) scan the value of a bit while it is transmitted.
Hence, all correct nodes have a consistent view of every bit during its transmission.

The nodes of the CAN-Bus are connected logically via a wired-AND or,
alternatively, a wired-OR function. This means that we can distinguish dominant and
recessive levels on the bus. In a wired-AND connection - as implemented by Intel,
Motorola, Siemens, etc. - a ‘1’ is a recessive bit-value and a ’0’ is a dominant bit-
value because if different bit-values are put on the bus by different nodes
simultaneously, the logical AND function of the values is seen by all nodes.

The consistent view of every bit among all CAN controllers is exploited for a
priority-based arbitration mechanism. Whenever the bus is idle, any node may start to
transmit a message by transmitting the identifier bits whilst simultaneously monitoring
the bus. If a node transmits a recessive bit of the identifier but monitors a dominant
bit, it becomes aware of a collision. In this case, the node concludes that it is not
transmitting the highest priority message, stops transmission and switches to the
receive mode. Eventually, the identifier which does not lead to the detection of a



collision by the sending node wins the arbitration and the attached data is fully
transmitted. It will be received by all participants on the net. In CAN terminology, this
technique is called „collision avoidance“ (CSMA/CA). It guarantees that the highest
priority message of competing transmitters is broadcasted without delay. In the wired-
AND implementation of CAN, a lower binary value of the message identifier means a
higher priority. This priority-based collision handling requires also, that all messages
which compete for the bus, have different identifiers.

The general format of a message, the data frame, is sketched in Fig. 1. A message
is tagged by an identifier, which defines also its priority. The identifier consists of 29
bits in extended message format, or 11 bits, according to the older „standard format“.
Each individual CAN message can transport up to 8 bytes of data. The length of the
data field is indicated in the control field.

CAN provides a connectionless protocol. This means, that the message identifier
indicates the content of a message rather than the source or destination. Each
communication controller has a programmable filter through which it can
associatively detect relevant messages. By setting some of the filter bits as „don’t
care“, it is possible to receive groups of messages. However, the combination of this
feature with dynamic priority assignment together with the guarantee of identifier
uniqueness, requires the usage of a 29-bit identifier which expands the message
header. However, since the group name and end-to-end delivery deadline are included
in the identifier field, the data field remains free for application use. Given the 29-bit
identifier, the fault-free transmission of a CAN message takes between 66 and 154 bit-
times, depending on the data field length and bit-stuffing.

3 Existing Scheduling Approachs for CAN
In this section, we provide an overview of a few different scheduling approachs. In

the CANopen standard [3], a master node transmits a high-priority SYNC message
periodically. The senders of all synchronous messages then transmit their messages
with fixed predefined priorities. The CANopen approach, however, has two
disadvantages. Firstly, the SYNC message is issued by a master node, and in the case
the master node fails to send it, the synchronous message exchange is stopped until a
bus master is determined by an assessment protocol. The second problem of
CANopen is that asynchronous events have low priorities, and thus they are delayed
by the whole transmission time of the SYNC message plus all synchronous application
messages. If one stores an asynchronous event and polls it by a synchronous message,
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then the length of the SYNC period may not exceed the deadline of the event. Due to
these problems, neither safety-critical hard real-time applications nor asynchronous
real-time applications can rely on CANopen protocol.

Another fixed priority bus scheduling approach has been made by Tindell and
Burns [16], who have applied the Deadline Monotonic[1] scheduling method on the
bus resource. The authors have shown that CAN fulfills the requirements of static hard
real-time systems, by applying their analysis of the fixed priority bus scheduling
policy to the SAE benchmark class C automotive systems (safety critical control
applications). However, due to its static nature, the Deadline Monotonic approach is
not suitable for dynamic and adaptive real-time applications.

Zuberi and Shin [18] have made an approach to schedule CAN bus by a mixture of
static and dynamic priorities. However, this approach makes unrealistic assumptions
about CAN – e.g. 10 Mbits/s bandwidth and 30 µs end-to-end transmission delay –
and exhibits a rather restricted scheduling ability due to a short time horizon.
Moreover, at certain points of time (near the end of each „epoch“) the correct
arbitration among more than two competing nodes cannot be guaranteed, because of a
too short time horizon. The meaning of time horizon will be explained later in this
paper.

None of the above solutions considers either the need of distributed real-time
system for a group communication protocol, or the facilities provided by CAN
controllers to efficiently realize multicasting.

4 EDF Access Consensus on CAN
As we have shown in [7], an EDF bus access consensus among the CAN nodes can

serve as a basis for a hybrid bus scheduling, where timeliness of hard real-time
messages is guaranteed by resource reservation, while optimal scheduling of soft real-
time communication is achieved by EDF scheduling strategy.

In order to realize the EDF access regulation on CAN bus, we must define a
mapping of the transmission deadline into the message priority, such that a message
with an earlier transmission deadline wins the bus arbitration against a message with a
later deadline.  However, we don’t use the whole identifier as a deadline-driven
dynamic priority because of following reasons: Firstly, we must include the sender
node identifier into the identifier field of CAN messages, to ensure that competing
messages have always different identifiers. Secondly, we want to encode the message
group name into the identifier in order to support multicast message filtering by the
CAN controller hardware. Fig. 2 shows how the priority, sender ID, and message
group name are composed to a CAN identifier.

Due to our requirement to schedule three types of communication, namely hard
real-time, soft real-time, and non real-time, we divide the value domain of the 8-bit

Priority TxNode Group Name

13 bits8 bits8 bits

Fig. 2. A partitioned CAN arbitration field



priority field into three distinct ranges. The highest priorities are reserved for hard
real-time messages, the middle range is assigned to soft real-time messages, and the
lowest priorities are assigned to non real-time messages. This ensures that more
critical messages always win the bus against less critical messages. As illustrated in
Fig. 3, this range partitioning is realized by assigning the prefix ‘0’ to hard real-time
priorities, ‘10’ to soft real-time priorities, and ‘11’ to non real-time priorities.

In the priority field of a real-time message, we encode the time remaining until its
transmission deadline (let’s call it delivery laxity). The transmission deadline is a
point of time specified by the sending application object, when a message must be
completely transmitted to receiving nodes. This is tightly related to the delivery
deadline, which specifies the latest time of the end-to-end message delivery. As long
as a sending node is pending for the bus, its communication subsystem checks and
updates the delivery laxity of the ready message periodically. As soon as the delivery
laxity becomes zero, the message is withdrawn, and the sending application object is
notified of the deadline failure.

Each value of the delivery laxity is mapped to a portion of future time, a time slot.
At the end of each time slot, a pending transmitter increases the priority of its real-
time message by decrementing its delivery laxity field. The time slots have a fixed
length, and the first one begins at the present time. Only the last time slot is open-end,
in order to achieve a complete mapping of the future time. Since we can make no
order decision between any two points of time falling into the last time slot, the
beginning of the last time slot will be the time horizon of our deadline-driven access
decision.
Def. The Time Horizon: By time horizon we mean the point of time, where a time-

driven decision mechanism (like EDF scheduler) cannot see beyond. In our
case, if the time until the time horizon is only long enough for the transmission
of n messages, then the EDF bus scheduler cannot schedule n+1 real-time
messages, which are pending simultanously for transmission.

Having seven bits left for the delivery laxity of hard real-time messages, the time
horizon comes after 127 time slots. In order to ensure dynamic priority changing at
each bus arbitration round, transmitters must change the message priorities even after
the shortest possible message transmission. Hence, a time slot should not be longer
than 66 bit-times, which is the transmission time of a message with empty data field
and no bit-stuffing in extended format. This results in a maximum time horizon of
8382 bit-times, which allows for scheduling of up to 54 nodes simultanously
requesting the bus for hard real-time communication, each requiring the longest

0Hard real-time messages Laxity* TxNode Group Name

1Soft real-time messages TxNode Group Name0 Laxity*

1Non-real-time messages TxNode Group Name1 Priority**

* this is the time remaining until the latest transmission time or the end of the reserved time slot

** due to the wired-AND implementation of CAN bus, 0 means a higher priority than 1

Fig. 3. Encoding message priorities into the identifier field



message transmission time of 154 bit-times. In case of soft real-time communication,
there are only six bits remaining for the delivery laxity. This results in a time horizon
of 4158 bit-times, which enables scheduling of 27 transmitters competing with soft
real-time messages.

5 Hybrid Bus Scheduling Based on EDF Consensus
We assume four classes of activities in our system, which have been introduced in

[15]. Critical activities are hard real-time and their deadlines are absolute in time. To
guarantee the timely execution of critical activities, all their occurrences have to be
predicted and respective resources have to be scheduled in advance in a periodic
calendar. Essential activities have deadlines relative to their start times. If the system
grants an essential task, it guarantees the resources for a timely execution by reserving
the appropriate time slots in the resource scheduling calendar. However, the system
can refuse a guarantee.

Soft real time activities have deadlines which are considered by the system but no
guarantees are given to meet such a deadline. Soft real-time activities are executed on
a best effort basis, however, as shown later, an EDF-like scheduling is used for
optimal resource utilization. Non real-time activities can only use resources which are
not requested by a real-time activity.

The global scheduling in a distributed system requires consensus between all
participants about the usage of shared system resources. Particularly, if a joint action
will be performed, all local resources must be available and reserved for the respective
computation[5]. The global plan has to be enforced by all participants, based on their
local information. In a completely static system, a global calendar is available and
each participant has its relevant entries referring to its activities in a global time scale.
A local activity may only be started according to this schedule[11]. In a more dynamic
system where critical, essential, soft real-time and non-real-time tasks coexist, things
are more complicated. If a computing resource is free, a less critical task may start
computation and request resources. In this case, it must be guaranteed that it does not
block an activity with a higher criticality. In this section, the enforcement of the global
schedule for the shared bus resource is described.

For hard real-time communication, we guarantee the deadline by reserving a time
slot on the bus. The reserved time slots are entered into a calendar, which contains
both periodic fixed reservations and dynamic reservations. This calendar is contained
in each node of the system, thus the time slot reservation is performed by a single
atomic multicast message only.

Our scheduling approach for hard real-time communication requires access to a
global time reference. Once a time slot is reserved, the respective action can be started
locally. To guarantee that it does not interfere with another time slot, the time
reference of all nodes must be synchronized. The lower the clock accuracy, the larger
the minimum gap between two subsequent time slots in the global bus schedule. Fig. 4
shows a situation, where a too low clock accuracy causes a collision of different time
slots. In order to provide a global time reference with high accuracy, clock
synchronization mechanisms have to be applied, e.g. as described in [4] or [10].



Efficient reservation of time slots for hard real-time communication is supported
by defining the end of the reserved time slot of a message as its transmission deadline.
The sender of a hard real-time message enforces its access right by dynamically
increasing the priority of the message according to its laxity relative to the reserved
time slot. Due to this scheme, a hard real-time message gains the highest possible
priority at the beginning of its reserved time slot. Fig. 5 illustrates a situation, where
several transmitters compete for the bus access, near the reserved time slot of a hard
real-time message k. Messages i and k are ready to be transmitted after t0, where
message j is already started. Because CAN message transfer is non-preemptive,
message j is completed regardless of its priority. As the bus becomes idle at t1,
messages i and k compete for the bus according to their priorities. We assume that the
next reserved time slot after t1 begins at sk, and belongs to the message k. Then
message k is guaranteed to have the highest priority at t1, and to win the arbitration
process.

Note that k may be delayed by one message, which is started before the ready time
of k. We define ΔTmax as the longest possible message transmission time. Then, a hard
real-time message k – with a reserved time slot beginning at sk – must be ready before
sk - ΔTmax, in order to tolerate the non-preemptive transmission of the longest possible
message.
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In order to guarantee the collective timeliness of hard real-time communication,
the following requirements must be met:
(R1) for each hard real-time message, an exclusive time-slot is reserved, which ends

before the transmission deadline of the message,
(R2) the reserved time-slot of each message is as long as the worst-case transmission

time of the message, including all overheads,
(R3) the reserved time slots of hard real-time messages do not overlap,
(R4) every hard real-time message is ready for transmission at least ΔTmax before the

beginning of its reserved time slot. This means that the laxity of every hard real-
time message at its ready-time is large enough to allow the longest possible
message of the system to be transmitted first,

(R5) the priority of a hard real-time message depends on its laxity (Fig. 3).

Given these assumptions, every hard real-time message will be transmitted timely
under fault-free conditions. Assume (Fig. 6) that Mi is the first hard real-time message
after the system startup, which cannot start at the beginning of its reserved time slot si,
hence missing its transmission deadline di. Since Mi is ready at si - ΔTmax, it
participates in at least one arbitration process before si. If Mi does not start before si,
then another message Mi-1 wins the arbitration against Mi, and following conditions are
true:
(C1) Mi-1 is a hard real-time message,
(C2) the reserved time slot of Mi-1 ends at di-1, where di-1 < di, because of R5, and
(C3) Mi-1 is not completely transmitted until si.

From R3 and C2 we conclude that the transmission deadline of Mi-1 lies before si,
i.e. di-1 < si. Due to C3, Mi-1 misses its deadline di-1, because it is completed after si,
and di-1 < si. This is a contradiction to the assumption that Mi is the first hard real-time
message after system startup, which misses its deadline.

In order to guarantee timely hard real-time message transfer in the presence of
faults, redundancy must be provided. Space redundancy would require a second CAN
bus. If we apply time redundancy, we have to schedule two subsequent transmissions
plus the failure handling mechanism of CAN bus, which consumes bounded time [14].
Our application of time redundancy is similar to strategies used in other real-time
communication protocols, e.g. TTP. However, in contrast to statically planned
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Fig. 6. A hard real-time message missing its deadline



communication, we can use the redundant time slot for low-priority communication, if
the first transmission was successful.

For the soft real-time communication, our mechanism does not guarantee a
deadline. This is because it is always possible to dynamically schedule additional hard
real-time („essential“) communication. However, we guarantee optimal scheduling of
soft real-time messages, because firstly, their priorities are higher than that of non
real-time messages, and secondly, the priority of a soft real-time message depends
directly on the time remaining until its delivery deadline, thus realizing EDF
scheduling, which is known to be optimal[12].

Non real-time messages are assigned fixed priorities, because the importance of a
non real-time message does not change by the passage of time. Note that the values
‘11111110’ and ‘11111111’ are not allowed due to the CAN specification[13].

6 Conclusion and Future Research
In this paper, we introduced a dynamic priority access regulation for CAN bus,

which enables the scheduling of the bus resource according to EDF, or other time-
driven approachs. We have exploited the CSMA/CA protocol provided by CAN, to
achieve an access consensus among all nodes, based on the dynamic priorities.

In order to guarantee timely delivery of hard real-time messages, we have
introduced a resource reservation mechanism, which coexists with the EDF scheduling
used for soft real-time messages. We achieve timeliness in presence of faults, by
applying time redundancy. However, in case of non-faulty message transfer, the
unused redundant resources are used for low-priority communication.

Currently, we are working on a fault injection component, which systematically
injects faults in certain bits of messages. This will provide a means to study the
effectiveness of our multicast protocol under different fault conditions. We are also
developing a monitoring component which observes the behavior of the CAN
controllers upon detecting a fault.

Our concepts will be evaluated in a testbed, a distributed robotics application
consisting of cooperative hardware objects, like intelligent sensors and actuators, all
connected by a CAN bus.
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