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Abstract
The paper focuses on method invocation of real-time
objects in a CAN-based distributed real-time system. A
simple object model is introduced, which allows the
convenient modelling of hardware and software
components. Related to the object model, two issues are
discussed. Firstly, a model is introduced which allows to
form and address object groups. This reflects a basic
need in a real-time system to distribute information to
multiple clients efficiently. Secondly, we discuss an
approach to express timing requirements for object
invocations. To achieve distributed consensus on
communication resource access, an EDF-like approach is
introduced, which takes advantage of knowledge about
deadlines, the number of remaining communication
activities, and the remaining worst-case execution time
for the invoked method at each point of time.

1. Introduction

Future computer systems will, to a large extent,
monitor and control real-world processes. This results in
an inevitable demand for timeliness and reliability.
Distributed systems which inherently provide immunity
against single failures are an adequate architecture to
meet the goal of reliability. Additionally, because real-
world applications often require the spatially distributed
control of electromechanical components, a distributed
system architecture brings computing power to the points
where it is needed. The availability of inexpensive yet
powerful microcontrollers supports a distributed solution.
This results in a system model which is composed from
smart components implementing the instrumentation
interface to the real world comprising sensors and
actuators. A convenient way to model such an
environment is to use an object-based approach where
objects encapsulate all kinds of entities necessary to
control a physical process.

We can identify at least two layers in systems
interacting with the real world. A lower responsive
system level tightly controlling the sensor/actuator

interface to the world and a higher system level
responsible for interpretation and evaluation of the
perception of the world as communicated by the
instrumentation interface. In this layer, higher level
decisions are performed. Although these different levels
have different requirements concerning responsiveness,
they are sometimes not separated clearly simply because
of the hardware architecture. We concentrate on the lower
system level and describe an object model which is
motivated by a system structure which relies on a modular
design and independent computing resources for the
components of the instrumentation interface. Rather than
having a central powerful processor in which
electromechanical components are only modelled as
objects from which control signals are generated, the
electromechanical components are objects themselves
powered by inexpensive microcontrollers. The objects of
this layer have a well defined interface to be easily
controlled by a higher level instance which can exploit
this abstraction rather than dealing with low level control
signals.

The hardware modules are connected by a field-bus.
We choose the CAN-bus (CAN: Controller Area
Network), developed by BOSCH[[28]] because it provides
advanced technical features and represents an emerging
standard with a wide applicability. Moreover, popular
microcontrollers are available with an on-chip CAN
controller. CAN is a shared bus designed to connect
control systems in a spatially restricted area like cars,
robots, tool machines, and other automotive or industrial
automation applications. It is targeted to operate in a
noisy environment with speeds of up to 1 Mbit/sec,
exchanging small real-time control messages. We use the
CAN message format to uniformly invoke methods on our
objects. This allows a transparent object invocation in the
sense that an invoking object must not know where the
invoked object resides in the system. Additionally, we can
address groups of objects with a single CAN message.

As a common resource, the communication medium
has to be shared by all computing nodes. Access to the
medium has to be scheduled in a way that distributed
computations meet their deadlines in spite of competition
for the communication line. Since the scheduling of the



bus cannot be based on local decisions, a distributed
consensus about the bus reservation has to be achieved.
Clearly, this is only a special case of the more general
problem to schedule a cooperative distributed
computation.

There exist several alternative approaches to solve this
problem based on the assumptions about the behaviour of
the system and the environment. The first approach,
known as time-triggered approach [[18]],[[21]], [[19]]
assumes a complete knowledge of all future actions of the
system. Hence, during operation these systems exhibit
minimal overhead paired with a maximum of
predictability and are highly appropriate for safety-critical
applications which can be modelled by a periodic
behaviour.

A more adaptable and economic way to manage system
resources has to be based on run-time information. These
real-time systems have to plan their operation at run-time,
at least to a certain extent.  Although the trade-off
generally is between adaptability and predictability, these
systems are scalable in the sense that they allow a
coexistence of activities with different real-time
requirements. These systems rely on run-time guarantees
[[30]], [[11]] rather than on a preplanned feasibility
guarantee only. A form of calendar-based scheduling
[[22]], [[30]] is an approach to run-time guarantees where
hard real-time activities have the possibility to reserve
resources in advance. The free resources can be used by
less important tasks. It should be noted that scheduling
policies like e.g. earliest deadline first (EDF), least laxity
first (LLF) or rate monotonic scheduling only guarantee
optimality, i.e. if a schedule exists, it will be found. But in
the dynamic system, there may be conflicting requests for
which these scheduling policies will not find a solution.
In this case they fail to guarantee anything. A calendar,
on the other hand, is a mechanism to guarantee resource
availability for reservations which have already been
made.

The contributions of the paper are twofold. First, we
discuss an object model appropriate for our application
scenario. Secondly, this paper describes the enforcement
of global scheduling decisions on the shared resource of
the communication bus to perform object invocations. It
guarantees that firstly, in spite of the restricted local
knowledge of the global schedule, hard real-time
messages are always sent timely. Secondly, the bus
resource can be utilized optimally. We allow hard real-
time messages to be sent as early as possible, even before
the reserved time slot without affecting the timeliness of
other hard real-time messages. Secondly, each node is
free to send soft real-time messages or non real-time
messages at any time. As described in our paper, an EDF

scheduling is used to enforce the reservations in the
calendar.

The paper is organized as follows: Chapter 2 briefly
introduces a system model and defines the requirements
for the objects. Chapter 3 describes the CAN message
format and how it is structured for our invocation
mechanism. Chapter 4 deals with the guarantees for the
timely message transmission and finally chapter 5
concludes the paper with an outlook on our future
research.

2. The System Model

Our system model is influenced by our anticipated
hardware basis. We assume a number of different
microcontrollers with different performance attributes
ranging from 8Bit to 32Bit architectures. All
microcontrollers are equipped with a CAN-Bus interface.
We exploit the different performance and price
characteristics of the microcontrollers to structure the
overall task of the system into small packages. Since the
simple microcontrollers are in the range of a few $s,  it
must no longer be a rare resource. In our application
example, a simple active suspension system (Fig. 2-1), we
use a simple microcontroller for each servo or complex
sensor. A servo is composed from a motor and an internal
sensor which provides feedback on the current position.
This sensor/actuator system is connected to the CAN-bus
to cooperate with other similar objects and receive control
commands through CAN messages. No direct, low level
control signals are visible outside the module. Thus,
encapsulation and a well defined interface are supported.
On the logical level, the sensor/actuator block is seen as
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Fig. 2-1: An application example



an object on which certain methods can be invoked, e.g.
to position itself to a specific angel, to communicate the
angel, etc. A sensor/actuator constitutes the lowest level
in the control hierarchy, comparable with a simple reflex
loop in a biological system. Higher control instances are
available to control groups of objects or eventually the
entire system using more powerful microprocessors. Thus,
the higher control instances have a well defined
instrumentation interface which is composed from
objects, each encapsulating a certain functionality.

An object has a unique name and a set of associated
operations. The unique name of the object is translated to
a short form system name during run-time and
maintained by a configuration service. Objects in such an
environment must have some extensions to the sequential,
passive model known from the field of programming
languages. Particularly our model includes:

1. Active, autonomous objects.
Since objects may have a dedicated processor, it is

straightforward to assume a model of autonomous, active
objects. An object is characterized by a name and a list of
methods which can be invoked on the object. Because the
object is active, it can also export information. This is
equivalent to sending an invocation to another object or to
a group of objects without a previous request. As
described in chapter 3, we provide a transparent group
communication mechanism, i.e. an object itself usually
does not know whether it communicates with an object on
a remote or on the local node. This group communication
mechanism is a basis for remote method invocation of
object groups. In fact, communication relations can
dynamically be defined during run time. So, objects may
join or leave a group, and are autonomous in deciding
when to process a request.

The concept of TMO (time-triggered message
triggered object) [[16]] derived from the RTO.k (Real-
Time Object) [[17]] concept enhances the conventional
object model by mechanisms to specify the temporal
behaviour of an object. It provides a framework to specify
a complex real-time system together with its environment
in the same uniform representation. The aim is an
integrated design of a distributed real-time system and
simulators generating real-time input modelling the target
applications. A TMO exhibits active, spontaneous
behaviour as well as providing services requested by a
method call. Three execution models are derived for
executing TMOs [[17]]. Among them, the execution
model which provides a dedicated processor for each
object (Type II) is very similar  to our basic system
structure. The difference on the conceptual level is the
notion of the object group and the fact that we do not
relate spontaneous behaviour to clock events. However, if

the spontaneous activity of an object is hard real-time, we
also have to map it to some reserved time slot.

CHAOS [[11]] demonstrates that the object model can
be tailored to meet the efficiency requirements of real-
time applications. The motivation also comes from a
robotics application where electromechanical components
are encapsulated and controlled by objects. CHAOS
provides a spectrum of objects with different weight
ranging from light weight passive objects to objects
including several processes providing scheduling and
synchronization facilities. The concept is targeted to
rather powerful parallel machines. The active objects are
too heavy weight to implement them with our simple
hardware basis.

In Alpha, [[12]], objects are passive abstract data types
in which a number of processes can execute concurrently.
MARUTI [[22]] provides modules in the design process.
However, these modules are broken down into elementary
units (EUs) which constitute the atomic entities of
sequential execution. Also, EUs resemble to objects, they
are not user defined but derived during the compilation
process [[25]].

2. Object groups.
In conventional object-oriented languages a method

invocation is synchronous and directed to a single object.
It is usually not possible to express a request to a group of
objects. However, in a real-time control system it is
beneficial to provide groups of objects and to use
asynchronous multicasts to invoke methods of these
groups. The motivation ranges from simple and fast
distribution of information, like sensor data and alarm
messages, to replicated objects forming a group to achieve
fault-tolerance. Because the communication medium, the
CAN-Bus, supports consistent multicasts on the low
system level, it is beneficial to exploit this feature. It
allows to address a group of N objects with one message
rather than sending N individual messages. To a certain
extent, CAN provides atomicity of message transfer, i.e.
either all operational nodes correctly receive a message or
none of them.

The consistent view of the message status between all
nodes is one of the most important features of the CAN
bus (cf. chapter 3). It is achieved on the hardware level by
a synchronous bit transmission approach. All receivers of
a CAN message (including the sender) scan the bus and
analyze the current message status during the
transmission of every transmitted bit. If a node locally
detects a transmission failure, it immediately invalidates
the current message by intentionally producing an
detectable error on the bus. Every node including the
sending node now is aware that the message transfer
failed. Automatically, the sender will eventually



retransmit the message. If no transmission error is
detetcted, all operational nodes have received and
accepted the message. A more detailed description of this
feature and its exploitation for atomic group
communication is given in [[14]][[28]].

The basic inter-object communication in systems like
JAVA and CORBA focus on a point-to-point
communication. There are some one-to-many
communication methods in JAVA like the
observable/observer class [[1]] or recently, the iBus [[24]].
Both mechanisms are based on a explicit registration of
clients at the server which differs significantly from a
general group communication mechanism which is a
many-to-many communication paradigm.

 The transparent communication mechanism used e.g.
in MARUTI [[25]] enables the objects to use a send
primitive without specifying the receiver(s). This is done
by specifying the communication channel bindings in the
MARUTI configuration language (MCL). The goal is to
separate functional and non-functional issues. However,
the binding is performed during compile time. No

dynamic changes of the communication relations are
possible.

The communication model which we adopt is similar
to that of autonomous decentralized systems (ADS)
[[26]]. In this model, software subsystems autonomously
manage themselves and coordinate their activities with
other subsystems. This coordination is achieved by the
data field, which represents global information. The
autonomous entities can extract relevant information from
the data field. Based on this mechanism, groups of
objects, sharing a subset of the global information, can be
constructed.

In order to support real-time object groups with
consistent information, the group communication protocol
must deliver real-time messages to all members of a
group both timely, and in a consistent order. In section 4

we describe how to guarantee timely multicast delivery by
exploiting the CAN bus arbitration mechanism. Given the
guarantee of timely message transmission, we have also
shown in [[15]] that the deadline can be used to
consistently order hard real-time multicast messages.

3. Use of time information.
Objects must have some notion of time to express

execution times of their methods, deadlines, and slack
time. In a dynamic real-time system, on-line scheduling
decisions are based on these assumptions which therefore
must be available at run-time. The temporal behaviour of
the object must be specified, verified, and monitored.  An
approach to bind time information to object classes and
monitor the temporal behaviour of the system is described
in [[10]]. It is planned to use these mechanisms to specify
and monitor the temporal behaviour of the system. In this
paper, however, we only describe the use of time
information for the dynamic reservation of the bus re-
source. This issue is discussed in more detail in section 4.

Group Communication Service
There are many group communication protocols

dealing with a reliable multicast[[3]][[4]][[13]]. Some of
them also consider real-time properties [[32]]. However,
using CAN bus as a basic communication medium, we
can relax many assumptions necessary for arbitrary
networks, resulting in a rather low overhead protocol. For
a detailed discussion the reader is referred to [[14]]. In
our system model, an object participating in group
communication, does not necessarily have any knowledge
about the number and location of other group members.
Therefore, the sender of a multicast usually does not
know whether it has to send the message locally, or
remote. This simplifies the design and implementation of
the objects, and minimizes the configuration effort when
adding or removing an object.

But consequently, there must be an instance in the
system, which knows the configuration. The
configuration is given by object groups, where a group
contains one or more objects. This configuration
information is maintained by distributed multicast agents,
one residing on every computing node. Every object
wishing to send a multicast message, requests its local
multicast agent (MCA) to deliver the message to other
group members.

Every MCA (Fig. 2-2) maintains following
configuration knowledge to support group
communication: firstly, a list of object groups, from which
at least one member resides on its host (private group list
PGL). Secondly, for each object group, a list of ‘local’
objects, which belong to that group (private membership
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PGL ... private group list
PML ... private membership list
GML ... global membership list
MCA ... multicast agent

Fig. 2-2: The multicast agent



list PML). And thirdly, for each object group, a list of
nodes, which host at least one member of that group
(global membership list GML). The former two lists are
used for delivery of incoming messages, and the latter two
lists are necessary for sending multicast messages. The
communication services of the MCA guarantee reliable
delivery and consistent order of messages at non-faulty
sites.

The MCA also acts as a broker for the group
membership services Join and Leave, because an object
requesting a group membership service does not know
where it is located, and hence cannot provide necessary
configuration data to the global configuration server.

The MCA is a mechanism to separate the functional
behaviour of objects from non-functional configuration
structures. Different from MARUTI, the MCA maintains

this information during run-time, allowing dynamic
configuration changes.

Communication Delay as a Critical Timing Factor
A real-time activity has to be completed within a given

deadline. Even if the client and the server have negotiated
a feasible schedule, the bus may become a bottleneck.
This is because it is a central resource that can be used
asynchronously by other nodes. On a CAN bus, messages
are non-preemptive, and the message transmission on a 1
Mbit/s bus takes between 66 and 154 µsecs. Compared to
the speed of processors, this a substantial time. If the
communication activities are not completed timely, the
end-to-end method deadline will be missed in despite of
feasible schedule for the client and the server. In chapter
4, we present a mechanism which guarantees timeliness
of messages in spite of decentralized bus arbitration. Fig.
2-3 illustrates a timing diagram for the invocation of a
method. Here, the time between the method invocation
request (t1) and method response (t8) depends on

communication times (t4-t1 and t8-t5) as well as the
method execution time (t5-t4) at the server site.

3. Exploiting the CAN Message Format for
Method Invocation

Due to the restricted computational power of cheap
microcontrollers and the constrained bandwidth of a field
bus, one of the very important issues in such an embedded
real-time system is efficiency. The available resources
have to be optimally exploited. As a consequence, low
level features have carefully to be considered to achieve a
higher functionality without too much overhead. There
are different application-layer communication protocols
available for CAN bus [[6]], [[7]], [[8]]. However, non of
these protocols supports object groups, and deadline-
driven scheduling of the communication resource.
Therefore, we discuss the issue of invocation on a rather
low system level. Also, the semantics and synchronization
of the invocation mechanism is not fixed at this level.
Rather, we provide a uniform invocation format and
discuss the planning of the necessary communication.
Because we assume a homogeneous system without
inheritance and dynamic binding, method invocation
collapses  to addressing and resource planning.

The invocation of an object is a distributed activity
consisting of communication and computation actions.
To initiate a service, a request message is sent to the
server. This message contains the identification of the
server, the method name, and the method parameters. If a
response is expected, the identification of the client, and
optionally the response deadline, are included in the
parameter list.

Due to the strictly limited size of CAN messages, the
structure of a message must be chosen very carefully.
Fig. 3-1 shows the general structure of a CAN Data
Frame. Up to 8 bytes of the message are user data (Data
field). The remaining fields are used for bus arbitration
(Arbitration field), format control (Control field), cyclic
redundancy check (CRC field), and fields for
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CAN

t1 t3 t5 t6 t7 t8t2 t4

t8 ... Queueing time at sender

t1 ... Client requests Service
t2 ... Request transmission starts
t3 ... Request transmission ends
t4 ... Server receives request
t5 ... Server returns the result
t6 ... Result transmission starts
t7 ... Result transmission ends
t8 ... Client receives the result

t8 ... Delay due to busy bus
t8 ... Transmission time
t8 ... Computation on server

t8 ... Delivery time at receiver

Fig. 2-3: The activities of a method invocation
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Fig. 3-1: CAN message format (Data Frame)



synchronizing the message between transmitter and
receivers (Start/End of frame, ACK field, Interframe
spacing).

The data field and the arbitration field are under user
control. CAN provide a connectionless protocol, where
the arbitration field identifies the message. It is also used
to resolve collisions on the bus. The value of the
arbitration field determines the priority of the message in
the bus arbitration process. If the arbitration field is
interpreted as a binary number, the priorities are defined
in decreasing order, i.e. ‘0’ represents the highest
priority, and ‘229-1’ the lowest priority. Whenever several
transmitters compete for the bus, eventually the message
with the highest priority wins the arbitration, and can be
transmitted without additional delay. As a consequence,
two messages which may be sent at the same time, must
have different arbitration fields.

The CAN controller has a built-in associative message
recognition hardware. If the arbitration field complies to a
certain pattern, the message is accepted. This associative
filter can recognize groups of messages by masking the
respective comparison bits. By exploiting this mechanism
and appropriately structuring the arbitration field, we
want to achieve:
� applying dynamic priority access control (as described

below),
� selectively addressing object groups or individual

objects.
The dynamic priority is encoded in the 8 most

significant bits of the arbitration field. It is called
dynamic, because its value is changed over time by the
transmitting node. By relating the priority to the time
until transmission deadline, a deadline-driven scheduling
can be achieved. The transmission deadline denotes the
point of time before which a message has to be sent. In

chapter 4, the detailed encoding of the dynamic priority
field is described.

The next field (TxNode) identifies the sending node.
The ID of the sending node is included to guarantee that
different senders may never generate equal arbitration
fields, hence no two messages competing for the bus have
the same arbitration field. The remaining fields are
utilized to address objects as shown in Fig. 3-2. Within
this field, we can freely trade the number of groups,
specified in the RxGroup field against the number of
group members, indicated in the RxObj field. The method
name and method parameters are contained in the data
field.

Multicast Addressing and Message Filtering
CAN is a broadcast medium. In order to implement

group communication on CAN, we exploit the feature
that the receive buffers can be programmed to receive
messages selectively. The group name is used as the key
field of the associative filter. All other parts of the
arbitration field are masked out. All messages which pass
the filter belong to groups, from which at least one
member resides on the node. The MCA now uses the
RxObj field to decide whether the group message is
directed to the entire group (RxObj = ‘0’), to a local
group member, or to a group member not residing on the
node. In the latter case the message is discarded.

4. Guaranteeing Timely Method Invocation

We assume four classes of activities in our system,
which have been introduced in [[30]]. Critical activities
are hard real-time and their deadlines are absolute in
time. To guarantee the timely execution of critical
activity, all their occurrences have to be predicted and

respective resources have to be scheduled in advance.

Max. 256 groups, group size < 32 Priority TxNode RxGroup RxObj

5 bits8 bits8 bits8 bits

Max. 512 groups, group size < 16 Priority TxNode RxGroup RxObj

4 bits9 bits8 bits8 bits

Max. 1024 groups, group size < 64 Priority TxNode RxGroup RxObj

3 bits*10 bits8 bits8 bits

*) in this large system, for individual addressing of group members, at least 3 bits
of addressing information must be placed into the data field.

Fig. 3-2: the structure of the partitioned CAN
arbitration field



Essential activities have deadlines relative to their start
times. If the system grants an essential task, it guarantees
the resources for a timely execution. However, the system
can refuse a guarantee. Approaches dealing with essential
tasks are e.g. the Spring kernel guarantees[[30]], and
TAFT[[27]]. Soft real time activities have deadlines
which are considered by the system but no guarantees are
given to meet such a deadline. Soft real-time activities are
executed on a best effort basis, however, as shown later,
an EDF-like scheduling is used to assign resources. Non
real-time activities can only use resources which are not
requested by a real-time activity.

The global scheduling in a distributed system requires
consensus between all participants about the usage of
shared system resources. Particularly, if a joint action will
be performed, all local resources must be available and
reserved for the respective computation. The global plan
has to be enforced by all participants, based on their local
information. In a completely static system, a global
calendar is available and each participant has its relevant
entries referring to its activities in a global time scale. A
local activity may only be started according to this
schedule. In a more dynamic system where critical,
essential, soft real-time and non-real-time tasks coexist
things are more complicated. If a computing resource is
free it may start computation and request resources. In
this case, it must be guaranteed that it does not block an
activity with a higher criticality. In this section, the
enforcement of the global schedule for the shared bus
resource is described.

There are several approaches to achieve a global
schedule for real-time communication on CAN bus. The
deadline-monotonic approach [[2]], [[31]] guarantees
meeting deadlines as planned by an off-line scheduler for
a static system with periodic tasks. In [[33]], an EDF-like
approach has been proposed to schedule the CAN bus.
However, this approach makes unrealistic assumptions
about CAN – e.g. 10 Mbits/s – and exhibits a rather
restricted scheduling ability due to a short time horizon
[[23]].

Our scheduling approach for hard real-time
communication requires access to a global time reference.
Once a time slot is reserved, the respective action can be
started locally. To guarantee that it does not interfere with
another time slot, the time reference of all nodes must be
synchronized. The lower the clock accuracy, the larger
the gap between two subsequent time slots in the global
bus schedule. Fig. 4-1 shows a situation, where a too low
clock accuracy causes a collision of different time slots. In
order to provide a global time reference with high
accuracy, clock synchronization mechanisms have to be
applied, e.g. as described in [[20]].

For hard real-time communication, a deadline is
guaranteed by reserving a time slot on the bus. The
transmitter enforces the reservation by dynamically
increasing the priority of the message according to its
laxity relative to the reserved time slot. Thus, the message
gains the highest possible priority at the beginning of its
reserved time slot.

Soft real-time messages are scheduled by the EDF
strategy, and non real-time messages are scheduled by
assigning fixed priorities.

All of these scheduling mechanisms share a unique
priority scheme. We guarantee timely transmission of
hard real-time messages, because firstly, hard real-time
messages always have higher priorities than other
messages, and secondly, a hard real-time message gains
the highest possible priority at the beginning of its
reserved time slot. Hence, a hard real-time message is
guaranteed to be started at the beginning of its reserved
time slot or earlier. We guarantee optimal scheduling of
soft real-time messages, because firstly, their priorities are
higher than that of non real-time messages, and secondly,
the priority of a soft real-time message depends directly
on the time remaining until its deadline, thus realizing
EDF scheduling. We schedule non real-time messages by

Node1

times2 d2

Global
schedule

Reserved
timeslot of

node2

s1 d1

Node2

Reserved
timeslot of

node1

Clock offset of node1 = -1
Clock offset of node2 = 2
Time skew of node1 and node2 = 3
The gap between the reserved timeslots = 2

Since the gap between consequent timeslots is less
than the time skew, reserved timeslots interfere!

Fig. 4-1: Collision of reserved time slots due to
low clock accuracy



fixed priority assignment, because the importance of a

non real-time message does not depend on the passage of
time.

As we already discussed in section 3, the priority of a
CAN message is placed into the first byte of its arbitration
field. Fig. 4-2 illustrates how the ‘time to deadline’ and
laxity of real-time messages are encoded into the first byte
of the CAN arbitration field. This value is decreased by
the passage of time, thus increasing the message priority
dynamically. Since the dynamic changes to the message
priority are applied by periods which are as short as the
shortest possible message transmission time (66 bit-
times), the priorities of all pending messages are
increased by each arbitration round. The prefix ‘0’ of the
hard real-time laxities guarantees that hard real-time
messages always have higher priorities than other
messages. The prefix ‘10’ of the soft real-time deadlines

guarantees that soft real-time messages always have
higher priorities than non real-time messages.

Our approach supports efficient reservation of time
slots for hard real-time communication by defining the
beginning of the reserved time slot of a message as its
latest start time. Fig. 4-3 illustrates a situation, where
several transmitters compete for the bus access, near the
reserved time slot of message k. Messages i and k are
ready to be transmitted after t0, where the transmitter of j
has started transmission. Because CAN message transfer
is non-preemptive, message j is completed regardless of
its priority. As the bus becomes idle at t1, messages i and
k compete for the bus according to their priorities. We
assume that the next reserved time slot after t1 begins at
sk, and belongs to the message k. Then message k is
guaranteed to have the highest priority at t1, and to win
the arbitration process.

Note that k may be delayed by one message, which is
started before the time when k becomes ready. We define
ΔTmax as the longest possible message transmission time
including all overheads. Then a hard real-time message k
- with its reserved time slot beginning at sk - must be
ready before sk - ΔTmax, in order to tolerate the non-
preemptive transmission of the longest possible message.

In order to guarantee the collective timeliness of hard
real-time communication, the following requirements
must be met:
(R1) for each hard real-time message, an exclusive time-

slot is reserved, which ends before the transmission
deadline of the message,

(R2) the reserved time-slot of each message is as long as
the worst-case transmission time of the message,
including all overheads,

(R3) the reserved time slots of hard real-time messages do
not overlap,

(R4) every hard real-time message is ready for
transmission at least ΔTmax before the beginning of
its reserved time slot. This means that the laxity of
every hard real-time message at its ready-time is
large enough to allow the longest possible message
of the system to be transmitted first.

(R5) the priority of a hard real-time message depends on
its laxity (Fig. 4-2)

0Hard RT messages Laxity* TxNode RxGroup/Object

1Soft RT messages 0 Deadline*

1Non-RT messages 1 Priority

* due to the wired-AND implementation of CAN, 0 means a higher priority than 1

TxNode

TxNode

RxGroup/Object

RxGroup/Object

Fig. 4-2: Encoding message priorities into the
arbitration field
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timesk dk
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Message k
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timeslot of
message k
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ri

rk

t1

ri ... ready time of Message i
si ... latest start time of

message i
di ... deadline of message i

Fig. 4-3: The competition for the bus near a
reserved time slot



Given these assumptions, every hard real-time message
will be transmitted timely under fault-free conditions.
Assume (Fig. 4-4) that Mi is the first hard real-time
message after the system startup, which cannot start at the
beginning of its reserved time slot si, hence missing its
transmission deadline di. Since Mi is ready at si - ΔTmax, it
participates in at least one arbitration process before si. If
Mi does not start before si, then another message Mi-1 wins
the arbitration against Mi, and following conditions are
true:
(C1) Mi-1 is a hard real-time message,
(C2) the reserved time slot of Mi-1 begins at si-1, where

si-1 < si, because of R5, and
(C3) Mi-1 is not completely transmitted until si.

From R3 and C2 we conclude that the transmission
deadline of Mi-1 lies before si, i.e. di-1 < si. Due to C3, Mi-1

misses its deadline di-1, because it is completed after si,
and di-1 < si. This is a contradiction to the assumption
that Mi is the first hard real-time message after system
startup, which misses its deadline.

In order to guarantee timely hard real-time message
transfer in the presence of faults, redundancy must be
provided. Space redundancy would require multiple CAN
busses. If we apply time redundancy to tolerate a single
communication failure, we have to schedule two
subsequent transmissions plus the fault handling
mechanism of the CAN bus, which consumes bounded
time [[29]]. This strategy is also used in other real-time
communication protocols, e.g. the Time-Triggered
Protocol [[19]]. However, in contrast to statically planned
communication, we can use the redundant time slot for
other messages if the first transmission was successful. In
the case that a hard real-time message is not transmitted
before its deadline, it will be discarded, and the sending
object is notified.

For the soft real-time communication, our mechanism
does not guarantee a deadline. This is because it is always
possible to dynamically schedule additional hard real-

time communication activities. However, optimal
utilization of resources is approached to meet soft real-
time deadlines, according to EDF which is known to be
optimal.

5. Conclusion and Future Research

The paper focuses on the problem of real-time object
invocation in a distributed object-oriented real-time
system connected by the Controller Area Network (CAN).
considering a simple object model, two issues were
discussed in detail. Firstly, we introduced a naming
approach for the remote method invocations based on
CAN-messages, which supports object invocation by
multicasting, and hardware message filtering. Secondly,
the problem of guaranteeing timely message delivery was
discussed. An EDF-like scheduling mechanism for CAN
bus was introduced, which expresses transmission
deadlines by dynamic priorities. Based on this
mechanism, an approach to schedule hard real-time
communication under certain fault assumption was given.

Our approach is especially tailored for systems using
the CAN bus. It exploits special features of CAN, namely
the priority-based CSMA/CA medium access protocol,
and the consistent view of the message status by all
operational receivers.  In CAN, this feature is efficiently
realized on a low network level. Logically, the CAN bus
acts as a global dispatcher, dispatching the message with
the highest priority to the network.  This feature is unique
to the CANbus. To extend our approach to other
communication networks, it is necessary to define a
network abstraction which provides a similar
functionality which, in general, is difficult to achieve.

Currently, we are working in two main directions:
1. An internet gateway for the embedded system. Here our

goal is to visualize and control the embedded system
over the Internet. An animated VRML-model of the
embedded system is connected to the real system and a
JAVA application which models and simulates the
objects of the embedded system. The simulation is a
front end for the embedded system taking control input
from the local workstation and real data from the
embedded system, e.g. the current position of the
servos. The real-world data is fed to the visualization
to give an indication of the current status. The control
signals are transferred to the real system and to its
visualization. Clearly, all internet communication is
considered to be non-real-time. But this may be the
communication paradigm for future embedded systems
working in distant environments only reachable
through a narrow, disturbed channel. Autonomy of the
system becomes inevitable.

di-1 timedi

Reserved
timeslot of

Mi

siri si-1

MiMi-2 Mi-1Mi-3

Reserved
timeslot of

Mi-1

Laxity of Mi

ΔTmax

Fig. 4-4: A hard real-time message
missing its deadline



2. Another field of our future research is the development
of robust communication protocols for wireless LAN to
support distributed embedded real-time systems
composed of physically decoupled objects.
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