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INSTITUT FÜR EINGEBETTETE SYSTEME/ECHTZEITSYSTEME

Self–description mechanisms for
embedded components in

cooperative systems

Dissertation
zur Erlangung des Doktorgrades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

der Fakultät für Ingenieurwissenschaften und Informatik
der Universität Ulm

Hubert–Marcus Piontek
aus Ulm

2007



II



III

Amtierender Dekan: Prof. Dr. Helmuth Partsch

Gutachter: Prof. Dr. Jörg Kaiser
Prof. Dr. Franz J. Hauck
Prof. Dr. Wolfgang Schröder-Preikschat
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Abstract

A new class of applications based on smart embedded devices is emerging
thanks to advances in microelectronics. There is one common characteristic
to most of these new applications: the devices are networked. They are ex-
pected to cooperate dynamically. As an example, consider yourself driving
home in your car. Right as you pull up your driveway, your garage door
opens, and the light in the house is turned on. Another example is a mobile
robot moving through an instrumented smart environment, e.g. in a factory.

Dynamic cooperation requires awareness and knowledge of the services
the environment provides. Device and service descriptions that are avail-
able on–line are suitable to provide the required information.

Current description languages, especially for embedded systems, pro-
vide only basic low–level information. They do not allow to describe a sys-
tem in enough detail, and cannot provide the necessary semantic informa-
tion.

Device and service descriptions can also have equally important uses
during the complete device life cycle, i.e. they may be useful during the
design and implementation phase of devices, as well as during their inte-
gration phase into larger systems. Most current description facilities fail to
provide support in such a broad way.

The CODES (COsmic embedded DEvice Specifications) approach pre-
sented in this thesis provides a component description language that sup-
ports the complete life cycle of components, and lays the foundation for dy-
namic cooperation. Together with the underlying communication middle-
ware COSMIC, which targets small autonomous components, it provides
a description language for components and their services combined with
a range of supporting tools and techniques. The description language is
based on XML, and thus easily allows the integration with a number of well
tested and widely used technologies. XML also eases the extension of the
presented description language. CODES descriptions capture a component
both in terms of the component as a whole with information about e.g. its
manufacturer, and in terms of the services the component offers and relies
on for its operation. The services’ descriptions are based on the underlying
COSMIC abstractions. While the COSMIC abstractions provide a high–level
view of a component’s interface, the descriptions are detailed enough to al-
low the completely dynamic setup of communication, including the encod-
ing and decoding of the data exchanged. A seamlessly integrated parame-
terization facility allows the descriptions to be split up into a static part for
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easy storage, and a variable part for customization. However, whenever the
descriptions are actually used at run–time, the parameters are transparently
merged into the descriptions, easing interaction for outside parties.

The supporting tools and techniques cover the component’s life cycle.
During the design phase, an editor for the description documents is pro-
vided. Part of the component’s service implementation can be generated
from the descriptions. Compatibility checking eases the integration of mul-
tiple components into larger systems. On–line discovery and query mecha-
nisms allow the dynamic use of services. Discovery and query is important
both during normal system usage, and during system maintenance.



Zusammenfassung

Dank Fortschritten in der Mikroelektronik bildet sich derzeit eine neue Klas-
se von Anwendungen heraus, basierend auf intelligenten eingebetteten Sys-
temen. Die meisten dieser neuen Anwendungen haben eine Gemeinsamkeit:
die Geräte sind vernetzt. Die Nutzer erwarten, dass sie dynamisch miteinan-
der kooperieren können. Als ein Beispiel kann etwa die Fahrt nach Hause
im eigenen Auto dienen. Sobald das Auto in die eigene Einfahrt einbiegt
öffnet sich das Garagentor und das Licht im Haus geht an. Ein anderes
Beispiel ist ein mobiler Roboter, der sich durch einen instrumentierten intel-
ligenten Raum bewegt, etwa in einer Fabrik.

Dynamische Kooperation setzt voraus, dass die in der jeweiligen Umge-
bung verfügbaren Dienste wahrgenommen werden und genügend Wissen
zur Nutzung der jeweiligen Dienste verfügbar ist bzw. gemacht wird. On-
line verfügbare Geräte– und Dienstebeschreibungen sind ein probates Mit-
tel um diese Informationen zur Verfügung zur stellen.

Aktuell verbreitete Beschreibungssprachen, speziell aus dem Bereich der
eingebetteten Systeme, bieten nur einfache low–level Informationen. Sie
erlauben es nicht, ein System in allen nötigen Details zu beschreiben und
sie können nicht die nötigen semantischen Informationen bereitstellen.

Geräte– und Dienstebeschreibungen haben außerdem wichtige Anwen-
dungen während des gesamten Lebenszyklus eines Geräts, d. h. sie sind
während der Entwurfs– und Implementierungsphasen von Geräten genauso
nützlich, wie während der Integration in größere Systeme. Die meisten ak-
tuellen Beschreibungsmechanismen bieten keine solch breite Unterstützung.

Der in dieser Arbeit vorgestellte CODES-Ansatz (COsmic embedded DE-
vice Specifications) bietet eine Komponentenbeschreibungssprache die den
kompletten Lebenszyklus einer Komponente unterstützt und eine Grund-
lage für dynamische Kooperation legt. Zusammen mit der darunter liegen-
den Kommunikationsmiddleware COSMIC, die auf autonome kleine Sys-
teme abzielt, bietet der Ansatz eine Beschreibungssprache für Komponen-
ten und deren Dienste, kombiniert mit einer Auswahl an unterstützenden
Werkzeugen und Techniken. Die Beschreibungssprache basiert auf XML
und erlaubt daher die einfache Integration mit verschiedenen erprobten
und weit verbreiteten Technologien. XML vereinfacht außerdem die Er-
weiterung der vorgestellten Beschreibungssprache. CODES Beschreibun-
gen erfassen eine Komponente sowohl als Ganzes, z. B. mit Informationen
über den Hersteller, als auch in Bezug auf die Dienste die die Komponente
bereitstellt bzw. für ihren Betrieb benötigt. Die Beschreibungen der Dien-
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ste basieren auf den zugrundeliegenden Abstraktionen von COSMIC. Die
COSMIC Abstraktionen bieten eine high–level Sicht auf die Schnittstelle
einer Komponente. Die Beschreibungen sind detailliert genug um einen
komplett dynamischen Aufbau der Kommunikation zu erlauben, inklusive
der Kodierung und Dekodierung der auszutauschenden Daten. Ein nahtlos
integrierter Parametrisierungsmechanismus erlaubt es, die Beschreibungen
aufzuteilen in einen statischen Teil, der sich leicht speichern lässt, und einen
variablen Teil, der der Anpassung der Komponente dient. Immer wenn
die Beschreibungen zur Laufzeit tatsächlich genutzt werden sollen, werden
die Parameter transparent mit den Beschreibungen verschmolzen. Das er-
leichtert anderen Teilen die Verwendung der Beschreibungen.

Die unterstützenden Werkzeuge und Techniken decken den Lebenszyk-
lus einer Komponente ab. Während der Entwurfsphase steht ein Editor für
die Beschreibungen bereit. Ein Teil der Serviceimplementierung einer Kom-
ponente kann während der Implementierungsphase aus den Beschreibun-
gen erzeugt werden. Kompatibilitätsprüfungen vereinfachen die Integra-
tion mehrerer Komponenten zu größeren Systemen. Online Discovery und
Abfragemechanismen erlauben die dynamische Verwendung von Diensten.
Discovery und Abfrage sind sowohl während des normalen Systembetriebs,
als auch während Wartungsphasen wichtig.
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Chapter 1

Introduction

Decreasing size and cost of microelectronics make a vision of a networked
world a reality. In this world, arbitrary devices may interact with each other
and their environment. As an example, consider yourself driving home in
your car. Right as you pull up your driveway, your garage door opens,
and the light in the house is turned on. Another example is a mobile robot
moving through an instrumented smart environment, e.g. in a factory. The
building blocks for such applications are smart devices. These devices are
small, cheap, autonomous, and easy to replace. Units of use, e.g. mobile
robots, are each composed of a number of such small devices. These small
smart devices usually have limited capabilities. Most of the time, they are
complemented by a few more powerful components for higher level func-
tionality.

For entities, such as mobile robots, a centralized approach is often taken.
Peripheral components are connected to a single central entity. The periph-
erals are essentially polled. This often leads to a big block of monolithic
code on the central processor that is hard to maintain.

By moving towards networked smart components, such systems can be
unitized into handy pieces. The pieces are easier to maintain, however the
complexity of wiring them together in a functioning way increases. Fur-
ther, distributed setups allow for much greater extensibility, adaptability
and configurability. Such manifold flexibility also means, that reconfigura-
tions are probably necessary from time to time.

COSMIC (COoperating SMart devICes) is a communication middle-
ware. It targets small smart devices, such as mentioned in the previous
paragraph. Despite their limited resources, these smart devices act au-
tonomously. COSMIC’s main goal is to support predictable interaction of
devices. Unlike other communication middleware frameworks, COSMIC
allows to specify predictability parameters at the application level using
suitable abstractions. COSMIC’s communication model is based on a pub-
lish/subscribe scheme. Such an anonymous communication pattern is very
beneficial in constantly changing systems, as there is no need to change or
register addresses in applications, i.e. changes of the system are transparent
to the application as long as the required input is satisfied. The development
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2 CHAPTER 1. INTRODUCTION

of COSMIC was partly embedded in the CORTEX (CO–operating Real–time
senTient objects: architecture and EXperimental evaluation) project (Project
IST–2000–26031). The CORTEX project was concerned with autonomous
applications, running without direct human control. As key characteristics,
sentience, autonomy, large scale, time and safety criticality, geographical
dispersion, mobility and evolution where devised [26]. Within the project,
the design of an interaction model of so–called sentient objects (see sec-
tion 2.1.2) was a large part. The development of COSMIC and the design
of the CORTEX interaction model were closely related.

A clear and concise description of the individual components is crucial,
especially when building large–scale systems. Once dynamic autonomous
cooperation of systems is intended, the descriptions must be machine read-
able and processable. Unfortunately, such description mechanisms were
not directly elicited during the CORTEX project. However, due to the large
scope of CORTEX, the problem of achieving broad and dynamic interop-
erability became apparent. The experience gained during the CORTEX
project, and during the development of COSMIC and applications based on
COSMIC in particular, significantly inspired and contributed to this work.
This result is a flexible, easily processable description mechanism. Unlike
other mechanisms (see chapter 5), the descriptions not only contain tech-
nical details about e.g. data encoding, but also integrate higher–level in-
formation, such as the corresponding physical unit, and quality attributes
in a machine–readable manner. Despite the focus on small systems, XML
has been chosen deliberately as the basis for the description mechanism. A
number of related techniques have been selected to achieve a seamlessly
integrated tool–chain. This fosters the reuse of well–tested and widely em-
ployed techniques. Thus, there is no need to reinvent and reimplement the
respective processing techniques. Further, this sparks familiarity, and there-
fore lowers the learning threshold necessary to successfully employ the pro-
vided mechanisms.

The description mechanisms should not only be useful for cooperation
activities, but also during the rest of each component’s life cycle. This way,
the descriptions do not become an extra burden for the component devel-
oper, but can be used profitably as the central entity of the component’s life
cycle.

This thesis provides an approach towards specifying smart components
in order to

• ease development of the smart components,

• document the components,

• configure components,

• ease the composition of smart components,

• check for compatibility,

• provide a basis for dynamic interaction of components.
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The approach is called CODES (COsmic embedded DEvice Specifications).
As the name suggests, it is based on COSMIC; the device specifications
therefore are closely related to COSMIC notions. Current approaches, as
presented in chapter 5 lack this broad support for the component life cycle.

CODES and COSMIC are not only suitable for the creation of mobile
robots, as used for demonstration purposes during the CORTEX project.
The approaches are also adequate in industrial automation, sensor net-
works, or automotive applications; or short wherever embedded systems
interact with their environment.

A publish/subscribe based anonymous communication scheme ideally
fits this world. It allows to decouple individual devices from each other, in-
stead of introducing artificial dependencies between devices that may easily
pose enormous problems.

The main target platforms are small systems, mostly 8 and 16 bit ar-
chitectures with very limited RAM. Yet, the techniques presented are also
usable with much more powerful machines. Most of the benefits apply to
all architectures. Software development for such small devices is a tedious
process. Usually, software for small micro controllers is written more or less
from scratch for each device. Using C, and possibly a small executive is
considered state of the art. High level tools, such as UML or MDA tools are
rarely used, partly because the generated code is too bloated, and partly be-
cause the abstractions these tools offer are not suitable for devices like smart
sensors. Tools like Matlab, however, are used more often. Yet, these tools
focus on processing data. The burdensome task of successfully integrating
the output of Matlab into a distributed system, that is supposed to use other
components as well, is completely left to the developer. The CODES ap-
proach is different: the developer of a smart component is to be relieved of
as much housekeeping work as possible. The device specifications are not
only the basis for the component’s implementation, but also for its docu-
mentation, and for proxy code that helps components to interact with each
other.

The approach was born through work within the CORE group. When we
were developing prototypes using the COSMIC middleware, we ran into a
number of pretty much well–known problems:

• How to coordinate different developers?

• How to clearly specify a component’s interface?

• How to implement more efficiently on small systems?

• How to manage configurations? Which component is there, and what
version of its software is it running?

• Missing documentation in general, and sometimes even missing spec-
ification of components

• How to accomplish dynamic interaction?
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• How to achieve generic monitoring and logging?

• How to emulate components before they are finished?

The CODES approach tries to tackle these challenges, specifically in the
context of small distributed embedded systems.

1.1 Benefits of the device descriptions

The embedded device descriptions1 are meant to be useful throughout the
complete life cycle of a component (see section 2.1.1):

• During the component design phase, the device specifications allow the
designer to formally specify a component’s interface at a suitable
level–of–detail early on. The tool–chain supports this with an editor
for the device specifications. The editor ensures that the produced
specifications adheres to the CODES grammar, and that a number of
sanity checks beyond the grammar pass.

• During the component development phase, the device specification is
used for code generation. While tools like Matlab produce data–
processing code, the code generated from the device specifications is
mostly house–keeping code relieving the developer from tedious re-
curring tasks like the declaration of data structures, the declaration
of tasks for event publication, or proxies for use and generation of
events. The aim is to automate as much house–keeping as possible, so
the developer can keep his mind on the actual service to be provided,
e.g. the handling of a sensor and the conversion of raw sensor data to
meaningful values.

• During the system–construction or system integration phase, the device
specifications are used to integrate multiple components into a larger
system and to ensure the compatibility of the employed devices by
cross–checking the specifications by a set of rules. Some parameters in
the specifications are user–configurable in a configuration phase, e.g.
the period with which an event is generated. This allows preparing a
component for use in a specific system.

• During the use phase, the device specifications are available through a
query service for dynamic use. They inform a user of the devices ca-
pabilities. Intelligent users (human operators, or possibly intelligent
components) may dynamically analyze the specifications, and subse-
quently make use of the provided services. To achieve the possibility
of dynamic usage, the specification needs to be sufficiently detailed

1The terms specification and description are used synonymously when referring to
CODES descriptions/specifications, as these documents contain both a general descriptive
part, and a detailed specification part.
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and it needs to contain enough semantic information to be useful.
While IDLs are capable of describing the technical details like param-
eter types and their encoding, they lack the possibility to contain se-
mantic information, i.e. they do not transport the meaning behind
an operation declared using some IDL. The CODES structure allows
to extend easily the specifications in terms of semantics beyond the
currently implemented level, e.g. by integrating semantic web tech-
nology. The specifications are also useful for an admission test where
the system decides, whether a newly attached component is compati-
ble with the existing system, and thereafter decides whether the new
component is allowed to participate or not. This can effectively be
done at system start–up, or generally as part of the configuration pro-
cess that is taking place when a component is attached to the system.

• During maintenance, the specifications allow service personnel to de-
termine what components are available, what services they provide,
and what version they are.

• For disposal or preferably recycling of hardware, the manufacturer of the
component is of interest for plain monetary reasons. Also, the speci-
fication contains information that allows efficient waste management
by independent parties.

The specifications are meant to be the only interfaces between component
designers, component developers, system designers, component users, and
maintenance professionals.

Many parameters cannot be determined at design time. They may for
example be fixed during the integration phase. Some may change during
the life–time of the component. Some description mechanisms support only
static descriptions and move such parameters out of the description itself,
and into the operational interface of the component, e.g. UPnP (see sec-
tion 5.2). Others make a distinction between a static description without pa-
rameters, and a fully configured description, e.g. LIN (see section 5.6). This
work presents a different approach. The descriptions may contain param-
eterized elements. These parameters are stored separately from the static
part of the description. Whenever the description needs to be processed,
the parameters are included into a temporary copy of the description. This
yields a description containing all parameters.

1.2 Contributions of this thesis

This work presents a description scheme for small embedded components.
The description scheme distinguishes itself from comparable description
schemes in a number of points. It provides maximum flexibility while pre-
serving machine processability. This becomes apparent e.g. the way at-
tributes for events are specified, and the way physical units are represented.
Being based on XML, a wide range of supporting processing technologies



6 CHAPTER 1. INTRODUCTION

are available, most notably XSLT. XML also ensures that the description lan-
guage is extensible. The goal of enhancing descriptions of embedded devices
with semantic information to achieve dynamic interaction, as briefly out-
lined in section 7.7, is unique. The simple, yet very powerful parameter-
ization mechanisms described in section 7.2.2, combined with the concept
of accessing complete descriptions including all parameters whenever han-
dling components at run–time is also unique. Finally, supporting the com-
plete component life cycle (section 2.1.1) with the description language and
the associated tool–chain is a unique contribution.

1.3 Overview of this thesis

Chapter 2 introduces the terms, concepts and base technologies important
for this thesis. It also formulates requirements for descriptions, which are
important for the design of the description mechanisms described in this
thesis. Chapter 3 discusses the software development process for small
components, covering the phases design through implementation of the
component’s life–cycle. Beneficial support for these phases is one of the
core aims of the presented approach. Chapter 4 is concerned with require-
ments for integrating components into larger systems. These requirements
are meant to be met by the CODES approach. Chapter 5 presents other mid-
dleware approaches and their description techniques, and compares them
to this work. Chapter 6 briefly introduces the main concepts of COSMIC,
and it introduces the COSMIC middleware. COSMIC forms the platform
on which the CODES approach is based. The CODES approach, comprised
of a description language and a supporting tool–chain is presented in chap-
ter 7. The thesis closes with a conclusion in chapter 8.



Chapter 2

Terms and Concepts

This thesis is about describing components, and the benefits of these de-
scriptions. The first section will define the notion of a component in detail.
Components were already mentioned, and one can probably get an intuitive
grasp of the respective notion. Nevertheless, it is vital to define this notion
in a more formal manner. An introduction to real–time systems forms the
second section. Embedded real–time systems are the primary target of the
proposed description mechanisms. Real–time environments not only pose
special requirements on the software, but also on the description mecha-
nisms to be beneficial. The third section then details about descriptions in
general. Several requirements that are later used to classify different de-
scription mechanisms are presented. These requirements are meant to be
fulfilled by the proposed description mechanism. Closing this chapter, the
relevant key representatives from the XML family of technologies are pre-
sented. XML forms an increasing popular basis for description mechanisms.
Besides its flexibility, its widespread use and the readily available support-
ing standards, and software make XML the prime choice to base component
descriptions on.

2.1 Components

Components play a key role in this work. Each CODES description specifies
a component, more specifically, it describes a sentient component’s1 interface
to the world. Thus, not only a definition of what a component is is given.
There is also a rather broad discussion about what a component is and how
it relates to types, classes and objects known from object oriented program-
ming.

The notion of software components dates back to at least 1968, when they
were mentioned at a NATO sponsored conference on software engineer-
ing [93]. Even though the notion back then was rather vague, the criteria

1During the CORTEX project, sentient components where called sentient objects. It
should become clear after this discussion that sentient component is a more precise term
for the (same) concept. This is why the term sentient component is used instead of the term
sentient object.

7
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applied to components nowadays (e.g. exchangeability, unit of deployment)
were already discernible.

Numerous definitions of what a (software) component is can be found
in the literature (e.g. [128], [104], [35], [94], [109], [149]).

The most straight forward definition can be found in [128]. SZYPERSKI
defines a software component as follows:

A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is
subject to composition by third parties.

In the following discussion of further details about components, and their
relations to classes and objects, this definition will be clarified.

Unit of composition According to [109], component–based software devel-
opment represents a shift from traditional statement–oriented coding
towards building systems by plugging together components. To be
composable, a component needs to be sufficiently self–contained. It
must come with a clear specification of its requirements and its ser-
vices. If there was only a single component world, it would be suf-
ficient to enumerate all required interfaces of other components to
specify all context dependencies. As there are competing component
worlds (e.g. Microsoft’s COM, Sun’s JavaBeans), the supported com-
ponent world must be specified, too [128]. Unfortunately, in most
component worlds, not even the list of required interfaces is normally
available, deferring the discovery of missing components to run–time.
The emphasis in component descriptions is on provided interfaces. To
achieve ease of composability, a component’s external dependencies,
and its own services, must be limited to a concise set. According to
MEIJLER and NIERSTRASZ [94], composition of components is done
by binding their parameters to specific values or other components.
Compositions are seen as configurations that may name components
to be used, but due to the black–box approach, actual implementa-
tion choices may be delayed to link or run–time. Black–box reuse of
components refers to reusing an implementation without relying on
anything but the component’s interface and specification, much like a
typical application programming interface [128].

Components and interfaces Components are not necessarily based on spe-
cific programming language concepts. It must be possible to imple-
ment components in any programming language, and the resulting
entities must be able to interact. In other words, one of the goals of
component–orientation is programming language independence. To
achieve this, standards for describing components have to be estab-
lished, e.g. in textual form as interface definition languages (IDLs) [109].
On the downside, the commitment to a specific programming lan-
guage is traded for the commitment to a specific IDL. According to
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[129], IDLs are only around to support the definition of interfaces sit-
ting between interface implementations and interface clients — nei-
ther of which logically owns the interface. Interfaces written in an
IDL define the interface’s operations in terms of call signatures. They
must be transformed to a given target programming language by a
compiler. As the IDL definition does not capture semantics and doc-
umentation in general, any documentation referring to the interface’s
signature must be transformed to the target language, as well.

Components and programming languages Modules, well–known from
languages like Ada and Modula–2 can be seen as minimal compo-
nents [109] [128]. The main characteristics that such modules share
with components are separate compilation and the possibility of type–
checking across module boundaries. Abstractions like name spaces
and packages also come rather close to the notion of components [128].
For components, the kind of programming language does not matter,
i.e. they can be implemented using object–orientation, functional or
procedural programming, or any combination of these.

In object–orientation, types, classes and objects are differentiated. Be-
fore discussing the relation between components and these terms, a
short introduction to the terms type, class, and object is given. Each
concept is exemplified in C#.

A type is an abstract notion defining attributes and operations on these
attributes. Most types have a correspondence in the ”real world”,
however not all do. As an example, consider a distance sensor. It
can be modeled as a type DistanceSensor. As an attribute, there is the
sensor’s distance reading. As an operation, there is a method that will
trigger a measurement. These abstract types are also called specifica-
tion types [10]. Most OO languages have no means to represent spec-
ification types. At the other end of the spectrum of types, so called
implementation types can be found. They are more commonly found
in object–oriented languages like C++. Some modern object–oriented
languages offer interfaces, which come closest to representing speci-
fication types in the programming language. The DistanceSensor type
can be represented in C# as follows:

public interface DistanceSensor {
public double distance {get;}

public void trigger_measurement();
}

Any semantic information behind the attributes or operations can-
not be represented in the programming language. It is usually docu-
mented in textual form, either as comments in the code, or in separate
documents.
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Types and classes are fundamentally orthogonal concepts. A class is
an implementation of one or more types. Types need not be fully
implemented by a certain class, i.e. a class may only implement a
type partially. Classes are abstractions of the programming language.
Languages like C++, however, do not distinguish between types and
classes, and offer them as a single concept. To continue with the ex-
ample of a distance sensor, consider the following C#–class that im-
plements a distance sensor:

public class CDistanceSensor : DistanceSensor {
private double distance _distance = 0.0;
private int _adc_channel = 0;

public CDistanceSensor(int adc_channel) {
_adc_channel = adc_channel;
}

public double distance {
get { return _distance; }

}

public void trigger_measurement() {
InitADC();
_distance = ReadADC(adc_channel);
}

}

An object is an instance of a class. Objects only exist at run–time. They
have identity, i.e. different instances can exist at run–time, and they
can be identified [94]. Again, in C#, the following code instantiates a
distance sensor and uses it:

static class MyProgram {
public static void Main() {
CDistanceSensor front_ir = new CDistanceSensor(7);

while( true ) {
front_ir.trigger_measurement();
if( front_ir.distance < 100 ) {
// perform emergency stop

}
}

}
}

In object–oriented languages, classes are the unit of reuse. Composi-
tion of classes is done at the language level — usually limiting the use
of classes to a single language [109].

While both components and classes encapsulate concepts, classes tend
to be finer grained than components. Classes tend to have a vast



2.1. COMPONENTS 11

amount of external dependencies, quite in contrast to the goal of
component–orientation of minimizing external dependencies. Com-
ponents are meant to abstract meaningful subsystems [109] — often
represented by a number of tightly coupled classes [130]. Of course,
some components may well be implemented using a single class. If
classes are used to implement components, individual classes are con-
fined within the component, i.e. an individual class cannot span multi-
ple components. Just as classes can depend on other classes (via inher-
itance), components can depend on other components via their input
interfaces [128].

Similar to classes, components are static entities needed at system
build–time. At run–time, their structure is not necessarily visible, or
even existent [94].

component weight Components can have widely varying complexity
ranging from individual functions to complete applications. A com-
ponent’s size is not only depending on the complexity of the offered
services, but also on the component’s external dependencies. If all de-
pendencies are included with the component, it is easily usable, yet fat
and possibly inflexible. Also, such monolithic blocks thwart the idea
of handy, pluggable components. If, on the other hand, all dependen-
cies are external, reuse of the component is severely impacted by the
explosion of context dependencies. Class hierarchies tend to be at this
end of the spectrum [128].

If components have minimal dependencies on their environment, they
are likely to be widely usable [129].

component deployment Components are a unit of independent deploy-
ment. They must be well separated from their environment and other
components. A component is never deployed partially [128].

Components are shipped in a binary, executable format. They contain
all information about their static dependencies beyond the component
platform. Components may contain more meta–information, such as
deployment attributes [130].

Currently established component technology (such as IBM’s SOM,
Microsoft’s COM or Sun’s JavaBeans) fails to offer meta information
about the components within their description [109]. These technolo-
gies represent only low–level connection standards [128].

Components cannot have state It must not make a difference, which of a
number of replicas of a component is actually used at run–time. There-
fore, a component cannot have state that influences its functionality
[130].
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Reasons to use components

Reuse: Components are independent building blocks for systems.
They are supposed to be reusable in different systems [109] [128]
[94] [129] [130].

Extensibility: New features can be added to a system in such a way
that the ”old” system can interact with the it [130].

Evolvability: Old components can be replaced by new ones to im-
prove the system in terms of quality, functionality, or both [130].

Lean software: Instead of having huge monolithic applications, com-
ponents need only be loaded on demand. This helps to slim down
applications in terms of program size and memory use [109].

Closing the discussion about components, some prominent characteris-
tics for this work are given:

• A component is like a traditional piece of hardware. Thus, it is univer-
sally usable, replaceable, interchangeable and reliable in terms of its
services. A component may include software and hardware. In fact,
the practical part of this work is greatly concerned with components
including both software and hardware. Thus, the terms component and
node are used synonymously.

• Components are implemented using the sentient component notion
developed in the CORTEX project [29] [31] [27] [28].

• Components interact using events, as described in the CORTEX
project [30] [33] [27] [28].

Conclusively, it can be noted that the notion of components fits a world
of many networked, autonomous systems very well.

A component is only usable, if its description (low–level interface and
semantics) is known. The component’s interface is the lowest level of de-
scription. It encompasses technical issues like calling conventions, param-
eter encoding, etc. Above these low–level details, the interface is described
in terms of operations or services that the component offers. To be pro-
gramming language independent, interface definition languages were intro-
duced. They allow the definition of method signatures and there are com-
pilers that transform the interface definitions to the programming language
to be used. An interface definition in an IDL does not contain any informa-
tion beyond the signatures of the supported operations. The semantics of
the parameters, e.g. the physical dimension of a measurement value, and
the semantics behind the complete component are missing from the tradi-
tional interface definitions. This information is usually represented in a tex-
tual notation separate from the interface definition. The work presented in
this thesis provides a means of enhancing the component descriptions in a
machine–readable manner.
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Figure 2.1: Component Life Cycle with typical transitions

A component can only be dynamically used, if its description is avail-
able dynamically. This is why this thesis proposes to store the description
within the component itself. They are available trough a standardized in-
terface. Beyond the definition of the event signatures, the proposed device
specifications also contain semantic information for individual data fields,
events, and the whole component. This semantic information is currently
stored in a semi–structured way. Storing the specifications as XML allows
to enhance these structures in the future without sacrificing compatibility
to older software. This essentially takes extensibility and evolvability from
components to their descriptions. At the far end, the specifications can be
enhanced to include e.g. semantic web technology.

2.1.1 Component Life Cycle

A component’s life cycle (see figure 2.1) starts with the component’s design
phase. The design phase includes the specification of the component. After
the design is done, the development or implementation phase is next. Both
design and implementation can occur in an iterative way, and both phases
usually occur at the manufacturer of a component, be it hardware, software,
or a combination of both. Of course, the implementation phase also includes
a thorough testing stage. The outcome of the development phase crosses
from the realm of the component manufacturer to the system integrator.
In the construction or integration phase, individual components are inte-
grated into larger systems by plugging them together in hardware, and by
configuring their parameters in software to achieve the desired interaction
among them. As with the implementation phase, the integration phase en-
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Figure 2.2: A sentient object

compasses system testing. The integration phases’ output crosses from the
integrator’s realm to the user’s realm. The user typically has few, if any, pa-
rameters to configure. Afterwards, the system is employed as intended. In
case of failure, upgrade, or for other reasons, the system, or individual com-
ponents of the system can go into maintenance. If the whole system needs
maintenance, usually the integrator performs the maintenance tasks; if an
individual component needs maintenance, the component’s manufacturer
is probably the right partner. Maintenance usually requires the identifica-
tion of a component as a first step. Further, the components configuration
is of interest; it might need to be changed. Once the system is decommis-
sioned, or parts of it fail, it is taken apart. The individual components are
then disposed of, preferably by their manufacturer. Of course, figure 2.1
cannot capture all possibilities, e.g. defective components going straight
from maintenance to disposal, however these details would only clutter the
presentation here.

Interface definition languages are useful throughout most of a compo-
nent’s life cycle. What is missing from current approaches is the support
for disposal. As traditional IDLs are only concerned with software compo-
nents, disposal might at first seam to be out of place. However, correctly
uninstalling a component can be a complicated and tedious task on its own,
depending on the component technology. While in .NET, it mostly suffices
to delete the component’s files, COM+2 component uninstallation usually
requires extensive cleanup of the system registry.

2.1.2 Sentient Components

In the CORTEX project (CO-operating Real-time senTient objects: architec-
ture and EXperimental evaluation, Project IST-2000-26031), the notion of
sentient objects has been a central entity. In [50], sentient objects are described
as being mobile, intelligent software components. Defining sentient objects to
be software only, however, is restrictive.

Sentient objects are able to sense their environment using sensors. These
sensors may either be hardware sensors able to sense the physical environ-

2COM+ is the predecessor of the .NET technology.
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ment, or software sensors, able to detect events in software. More details
can be found below. Sensors are the only means of input to sentient objects.
After consuming an input event via its sensors (left side of figure 2.2), a sen-
tient object uses its internal control logic to decide, whether it will in some
way react to the event, i.e. change its internal state, or not. When a sen-
tient object changes its internal state, it may employ its actuators to produce
outgoing events via its actuators (right side of figure 2.2), so other sentient
objects can be aware of said change. This production may either manifest
itself via a software event being transmitted via a communication network,
or via a physical actuation of some kind, e.g. switching on a light or turning
on a motor.

Sentient objects are the building blocks for applications according to the
CORTEX paradigm. They can be composed recursively. Sentient objects are
components in the sense of section 2.1: they interact with their environment
solely through event consumption and production. Their internals are of no
concern to the user. Thus, the term sentient object is misleading. This is the
reason why they are called sentient components in this work.

Sensors and Actuators

Sensors and actuators are a sentient component’s means of interaction with
its environment, be it physical or virtual. A sensor for the real–world is
an entity that produces (object internal) software events in reaction to oc-
currences in the physical environment. It consists of both hardware and
software. The hardware converts real–world occurrences into software ac-
cessible measurements. The software uses these measurements to generate
software events. A software sensor is a piece of software that monitors the
system environment (e.g. for incoming events or variables like free mem-
ory).

Accordingly, an actuator is an entity that consumes object internal soft-
ware events and causes a change in the environment. Again, this can be
both the (virtual) system environment, as well as the real–world environ-
ment. Change to the system environment may e.g. be the transmission of
an event message or the deletion of old temporary files to free up disk space.
To achieve changes to the physical environment, hardware is controlled, e.g.
a motor.

Each sentient component has sensors residing on its consuming side,
and actuators sitting on its producing side. Sensors and actuators are small
entities that are rather similar to sentient components, themselves: they con-
sume input and produce output according to a usually linear and small
piece of control logic.

Context Awareness

As sentient components interact with their physical environment, they need
to be aware of the situation they are in, e.g. to properly support safety re-
quirements.
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In [50], context is defined as:

Any information sensed from the environment that may be used
to describe the situation of a sentient object. This includes in-
formation about the underlying infrastructure available to the
sentient object.

Context–awareness is in turn defined as follows:

The use of context to provide information, to a sentient object,
which may be used in its interactions with other sentient objects,
and/or the fulfillment of its goals.

In the CORTEX project, inference engines were proposed for implement-
ing the components’ internal control logic. Depending on the complexity of
the context, this decision makes more or less sense. For very simple objects,
e.g. an infrared distance sensor, this is certainly not necessary. Such sensors
only require a linear flow of control.

Interaction

Sentient components are expected to use anonymous, event–based commu-
nication. This form of communication supports loose coupling between sen-
tient components, and thus allows for a more dynamic interaction among
components.

Sentient components communicate and cooperate with other sentient
components both through software events and via the physical environ-
ment. A sentient component is not limited to consume only software or
only real–world events. Neither is it limited to the production of only one
of the two. Sentient components may arbitrarily consume and produce any
combination of events.

Implementations of sentient components may use a range of different
networking technologies. Middleware, such as COSMIC (see chapter 6),
supports the creation of sentient components by transparently masking the
actual networking technology in use while still providing the possibility to
influence quality aspects of the communication.

2.2 Real–time systems

Real–time systems must exhibit special temporal behavior. The German
DIN defines real–time processing as [38]:

Real–time processing is a processing mode of a computer sys-
tem, in which programs are ready constantly for the processing
of new incoming data. The processes provide their results within
a pre–defined time span.
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Depending on the application, the data may become ready ac-
cording to a random distribution over time, or at pre–defined
points in time.3

Processing must not necessarily be as fast as possible, but it must be com-
pleted within defined bounds in time. Safety critical applications strongly
rely on this property. It must always be met. Outdated results or actions
may even be harmful to the system. This class of applications is called hard
real–time. For some applications, slightly outdated values may still be of use.
These are classified as soft real–time [81]. Some applications may cope with
a few missed deadlines by adjusting their behavior [32]. Also, in real–time
systems, there may be processes that require only best effort services.

Writing real–time capable software is a non–trivial task. Compared to
other software, the aspect of meeting a deadline is an additional constraint.
The typical platforms running real–time software add additional burdens to
the developer, mainly due to their limited processing power and memory.
Embedded real–time systems are mostly produced in large quantities, and
therefore cost is crucial. Many well–known technologies, e.g. libraries or
communication protocols, are not suitable in embedded environments, as
their temporal behavior is not predictable.

Most real–time systems must work autonomously without any or with
only minimal interaction with a user or operator. Instead, they interact di-
rectly with their physical environment through sensors and actuators. The
level of reliability necessary is mostly above that of other software, espe-
cially when the software is used in safety–critical control applications.

The special requirements of real–time environments also adds require-
ments to the description mechanism to be used. This mechanism must e.g.
include support for temporal properties. The information is crucial espe-
cially during the integration phase. If it is not available, integration can-
not rely on the descriptions only. Temporal information can be used to e.g.
schedule communication on a network. The information is also necessary
to check composability of (software) components into an application with
its own temporal requirements.

2.3 Descriptions

Descriptions are common on different levels, ranging from informal textual
descriptions with or without any given structure to mathematically verifi-
able specification languages. Depending on the entity to be described and
the target audience of the description, different approaches are useful.

2.3.1 Formality

The most common form of description certainly is informal, plain text in
a natural language. Its main advantages are that its use comes natural to

3The original definition is in German, translated by the author.
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people. A natural language’s expressiveness is enormous, yet most words
do not have a fixed interpretation. Obviously, plain text descriptions are
easily readable, but they may be hard to understand, even for humans, as
misinterpretations cause confusion. Analyzing and processing plain text
with a computer is especially hard. Even though programs like ELIZA or
IVR systems tend to impress people, the technology is far from being able
to understand the meaning of a piece of text, let alone automatically process
it further in a way, suitable to e.g. generate application code.

Descriptions should be written in a formal language. This eases auto-
mated handling and allows automatic checking for errors. Having a concise
semantics in formal languages prevents misunderstandings.

Most programming languages are based on context–free grammars, yet
they are not really context–free. Variables e.g. must be of the proper type
in many languages. Therefore it is easily possible to write syntactically cor-
rect programs that will not compile all the same. This approach still has
been proven to work quite well, tremendously easing the construction of
parsers. Checking a few rules outside the grammar is feasible and fre-
quently done [121], [57].

2.3.2 Processability and readability

Whenever descriptions are meant to be used automatically, the processabil-
ity of their format is of importance. Processability is strongly related to for-
mality. Descriptions formulated in regular and context–free grammars are
easier to parse and process than others. Descriptions in natural languages
are especially complex to process, not only because of their grammar. The
semantics of (key) words in formal languages is usually precisely defined,
whereas in texts written in a natural language, the semantics behind a spe-
cific word may change in subtle ways throughout the text. Descriptions
may also be given in non–textual formats, i.e. in binary formats that are ex-
tremely easy to process, as no parsing needs to be done. If the structure is
fixed, access to a specific parameter can be done in constant time. Such de-
scriptions are not human readable, however. They also tend to be inflexible
and hard to extend.

Readability can be considered the inverse of processability. While binary
descriptions are easily processable, they are unreadable for humans, unless
special tools are provided. At the other end of the spectrum, descriptions
in a natural language are easily readable, but hard to process. In between,
descriptions based on technologies like XML provide an interesting trade–
off: they are readable by humans — possibly requiring some training — and
they can be processed by machines pretty well using well–known libraries
and utilities — provided enough memory and processing power is avail-
able. Description formats that are human readable because they contain all
necessary information in the description itself, e.g. the name of parameter
together with its value, as is the case with XML formats, are often called
self–describing [148], [36], [90]. As parameter names often are far from being
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truly self–describing, such description formats are called self–contained for
this work. The term self–description is associated with a different meaning
(see the following section).

2.3.3 Level of Detail

Descriptions should be written with a suitable level of detail, depending on
the application of the description. While for an end–user, a rather coarse–
grained description of a black–box unit, defining its service and functional-
ity to the world, is enough, it will not suffice for the developer of said entity.
Description languages should therefore provide the possibility to describe a
system in varying, refinable levels of detail. This refinement can continue to
a level where the description is equivalent to a (complete) program written
in a traditional programming language. The key is to offer a description lan-
guage that allows to describe a system at a level that is abstract enough, so
there is a gain compared to programming languages that makes using the
description language seem worthwhile. On the other hand, it should allow
such a fine–grained description that it can be turned into useful pieces of
code.

2.3.4 Completeness

To be attributed complete, a description must contain all aspects of the com-
ponent described that are relevant for its application. This especially means
that no ambiguities may be left. Determining the completeness of a spec-
ification is a non–trivial matter in general. For some areas, approaches to
automatically verify completeness of some sort have been proposed, e.g.
[55], [68], [56].

2.3.5 Extensibility

Besides advances in the component architecture, the transition to new ap-
plication areas also demands for extensibility. Any description format that
is intended to be usable over time should be extensible, so future features
can be included. But identifying all conceivable attributes when introduc-
ing a description format is impossible. To properly support extensibility, a
description format must allow the seamless integration of new attributes,
and it should provide a versioning scheme, associating a description with
the proper version of the description format. Binary description formats of-
ten obstruct extensibility. XML based formats have been proved to support
extensibility in a seamless way, provided the tool chain does not completely
choke on unknown elements. Here, the need for a versioning scheme be-
comes apparent: if a particular description lacks a certain element, is this
because of a flaw in the description or because the description adheres to
some older standard?
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2.3.6 Standardization

The support framework for any description format should be kept as simple
as possible to reduce complexity both for implementors of the framework,
and for its users. Description formats should be based on well–known stan-
dards and mechanisms. This makes them easier to implement, as there are
tested and trusted libraries available. The potential spread can be maxi-
mized, as users tend to be familiar with at least part of the concepts, easing
migration. Proprietary technology tends to consume vast amounts of effort
for successful market introduction. Further, using open standards ensures
availability over time, even as manufacturers come and go.

2.3.7 Operation signatures

Operation signatures encompass three elements:

• The name of the operation. The operation’s name is the only part of the
signature that may contain hints towards the operation’s semantics.

• The operation’s return value’s data type.

• The name, data types, and order of the operation’s parameters.

Similarly, in message–based systems, the declaration of data structures lacks
semantic information.

The operation’s semantics is usually described in another language, be it
as a comment right at the signature’s declaration, or in a separate document.
These descriptions usually lack a standardized structure. Therefore, they
are not analyzable automatically.

If an operation’s signature is written in a specific programming lan-
guage, the resulting component is only usable in this language. If other
programming languages need to interact with the component, compatible
signatures must be written, mostly by hand. Because of technical differ-
ences, this might not even be possible, e.g. because of different calling
conventions (who puts parameters on the stack, in which order are they
put there, and who removes them from the stack), or because of differing
type systems or type representations. As a remedy to this situation, inter-
face definition languages (IDLs) were introduced. IDLs are commonly called
language–independent, however, they represent nothing else than a lan-
guage for declaring operation signatures. For IDLs, compilers are available
to transform the IDL signatures to (multiple) programming languages.

To be dynamically usable, more information than typically can be de-
scribed in signatures, is necessary; especially in systems that exchange sen-
sor measurements: given a parameter distance, it is not clear, whether the
values are metric or imperial, or with what scaling factor the values are en-
coded. If this were to be encoded in the type system, it would lead to an
explosion of data types. Also, the value’s scaling is conceptually not part of
the data type, but rather an attribute of the data field.
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2.3.8 Usage spectrum

The usage spectrum of descriptions can cover a wide range:

• Documentation: Documentation for end users and system integrators
describes the component as a black box. It should contain all informa-
tion necessary to successfully run the component in a user–defined
environment. Therefore, the documentation must contain informa-
tion about its parameters, and how to set them. Documentation also
contains a description of what the component is supposed to do, and
sometimes, how this is accomplished. A human user is thus able to
determine, which component may be used for what purpose.

• Specification: During the development process of a component itself,
a specification of the component is produced. This specification not
only contains information about the component’s external interface
(as the documentation), but usually also contains information about
the internal setup of the component. Such specifications are produced
in varying levels of detail. During the development process, they are
usually refined iteratively, especially when the development process
employs the MDA approach. Specifications mostly are written in lan-
guages situated above the programming language level, i.e. in either
a specification language like Z or UML, or in a natural language.

• Code generation: For some formal specification languages, transforma-
tion to other languages — most importantly programming languages
— are available [4]. Code generation from specifications makes sense,
if the specification is detailed enough. Choosing the optimal point to
transform a specification into code (that still needs to be completed) is
non trivial. The amount and type of code produced may vary greatly,
ranging from empty function stubs, or class structures to almost com-
plete applications. Also, the size and speed of the code produced can
vary [14].

• Testing: With tool support, assisted or even automated generation of
tests for a component is possible, whenever the component’s inter-
face is specified completely in the description. This includes not only
input and output parameter ranges, but also timing properties, and
possibly other quality attributes at the interface level. There are even
approaches for gray–box testing, e.g. [5].

• Plug and Play: If a component can be identified, and information about
its communication capabilities are available (in its description), it can
be integrated into a system automatically, i.e. low–level setup of com-
munication parameters can be completely automated. Of course, this
not only requires access to the description, but also that the descrip-
tion is machine–readable and that there is a least common denomina-
tor for interacting with the component. This e.g. includes automatic
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bit rate detection on a communication bus. Also, if a TDMA commu-
nication scheme is involved, it is potentially necessary to create a new
communication schedule. This can also be automated, if all respective
information is contained in the component descriptions.

• Discovery and dynamic cooperation: Besides the basic component iden-
tification necessary for plug and play, it is desirable to be able to dis-
cover new components at a higher level. Once components can be
discovered by applications, they may be used dynamically. To dynam-
ically use a component, knowledge about the component and how to
use it is necessary. Making the component’s description available to
applications at least provides the basic information necessary for dy-
namic use. Depending on the kind of (semantic) information, varying
degrees of dynamics can be achieved, ranging from hard–coded rules,
or manual assistance by an operator to true dynamic interaction.

• Configuration management: In complex systems a tool based configura-
tion management is essential to handle complexity. Having machine–
readable descriptions — including possible and current configuration
settings — readily available for the configuration management tool, is
a prerequisite for efficient configuration management.

Descriptions that include all necessary information to achieve at least
plug and play and discovery are called self–describing.

2.4 XML

In this section, XML technologies important for this work are briefly reca-
pitulated. This description of course cannot be exhaustive. It provides a
coarse overview that will ease the understanding of CODES in chapter 7.

Since its introduction in 1998, XML [140] has been a rising star. XML
is a simplified subset of SGML. XML is used to structure data and docu-
ments. XML files — also called XML documents — contain nested tags.
Tags are elements that structure the XML document. They are enclosed
in angle brackets (<, >). For each element, there is an opening tag and
a closing tag: <tag> is the opening tag, and </tag> is the closing tag.
Empty tags can be written either as <tag></tag> or as <tag />. XML
documents start with an XML header, such as <?xml version="1.0"
encoding="utf-8"?>. The header is followed by a document element.
The document element may contain child elements. If the document ele-
ment does not contain siblings, and otherwise adheres to the previous de-
scription, the document is called well–formed. Further, if the document can
be successfully validated against a document type definition (short DTD),
or against a XML Schema document (see chapter 2.4.2), it is called valid. Val-
idation ensures that a given XML document is compliant with the grammar
defined in either the DTD or the schema document. XML dialects defined
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by XML Schema documents or DTDs are mostly called languages, e.g. XSLT
(see section 2.4.4). While some people argue that the XML dialects still are
XML, calling them languages is common practice in the XML world. Thus,
the XML Schema presented in chapter 7 also presents a language.

An element’s content can either be text, child elements, or both. Further,
an element can have attributes. Attributes are directly included in the tags:
<tag attribute1="value" attribute2="value">.

An XML document’s hierarchical structure of elements can be repre-
sented in a document tree — called Document Object Model (DOM). While
there are other possibilities to parse and process XML documents, the rep-
resentation as document tree is very useful, especially for technologies like
XSLT and XPath.

XML is as successful because it constitutes a simple, standard way to ex-
change structured textual data between applications. Data is also readable
and writable by humans. XML satisfies two important requirements:

• Separating data from presentation: if data is to be used ubiquitously, it
must be separated from its presentation. Weather forecast data, e.g.
is rather useless if it comes wrapped in HTML or other presentation
centered formats.

• Transmitting data between applications: data must be exchanged between
applications every day. As software integration projects tend to con-
sume enormous amounts of time and money, more flexible ways to
exchange data are needed.

2.4.1 XML name spaces

As XML was being widely used, conflicting tag names became a problem.
The problem of colliding names is already well–known from programming
languages. In programming languages, the notion of name spaces is a
proven cure to the problem. It stands to reason that name spaces where also
introduced in XML [139]. Name spaces are referenced in documents using
attributes; usually the document element lists all name spaces to be used,
e.g. <tag xmlns:prefix="uri1" xmlns="uri2">. Here, xmlns in-
troduces a new name space. To distinguish tags from different name spaces,
a prefix is prepended. The prefix and the tag name are separated by a colon.
There can be a default name space for a document, e.g. the name space uri2
in the previous example. All tags without prefix are assumed to belong to
the default name space. Name spaces are identified by a URI. Usually, the
name space identifiers look like URLs, however they do not need to actually
point to anything.

2.4.2 XML Schema

Both DTDs and XML Schemas [133], [141], [142] are used to define the gram-
mar of an application specific XML dialect. DTDs lack expressiveness, e.g.
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it is not possible to specify that an element must contain an integer, as DTDs
essentially lack the notion of data types.

XML Schemas are a more powerful replacement for DTDs. XML
Schema documents are XML documents themselves. The usage of XML
Schemas requires using XML name spaces, specifically the name space
http://www.w3.org/2001/XMLSchema.

XML Schema introduces a type system. Elements of the target language
must adhere to one of the predefined types, or the schema developer must
derive user–defined data types.

The type system differentiates among simple types and complex types. Sim-
ple types cannot contain any child elements.

Types can be derived in three ways

• restriction: Types are created by adding constraints to a given type.
XML Schema itself uses derivation by restriction, e.g.
xs:positiveInteger is derived from xs:integer.

• list: List datatypes allow defining structures within the content of a
single element. List data types are rarely used because current XML
APIs do not allow accessing individual elements of the list’s structure.

• union: Derivation by union allows defining new data types by com-
bining the lexical spaces of several other data types.

2.4.3 XPath

XPath [77], [143] is a language that allows processing of values conform-
ing to the XPath data model. Among other things, the XPath data model
specifies how XML documents are represented as trees.

XPath is intended to be embedded in another language; notably it is
embedded in XSLT (see chapter 2.4.4) and XQuery [89]. XQuery is a data
retrieval language, much like an ”SQL for XML”. In both XSLT and XQuery,
XPath’s purpose is to select a set of nodes from a document tree.

Node selection is done by specifying a path into the document tree. Sev-
eral shortcuts are available, e.g. //name selects all elements named name,
no matter where in the document hierarchy. Further, regular expressions
can be used in XPath expressions. Indexing for result sets is also possible,
e.g. //name[5] selects the fifth element called name. XPath expressions
may be nested. They may also rely on context provided by the containing
language, e.g. in XSLT stylesheets, XPath expressions can rely on XSLT con-
text. While this feature appears rather strange, it is the key to seamlessly
embed XPath into other languages. The integration of XPath into XSLT is
discussed in great detail in [77] and [78].

XPath version 2.0 is in many ways superior to XPath 1.0. Many of the
path expressions written for this work would be nearly impossible to write
in XPath 1.0.
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2.4.4 XSLT

XSLT (Extensible Stylesheet Language for Transformations) [144] is lan-
guage for processing XML documents. [78] defines XSLT as follows:

XSLT is a language for transforming the structure and content of
an XML document.

An XSLT processor takes an XML input document, an XSLT stylesheet,
and produces an output document by applying the XSLT stylesheet to the
XML input document. XSLT distinguishes three output methods:

• XML: the XML input is transformed into XML output. This can e.g.
be useful to transform the output of program A into a structure that is
readable by program B.

• HTML: the XML input is transformed into HTML. This is usually used
to produce web pages. Currently, it constitutes for the main usage of
XSLT.

• Text: the XML input is transformed into arbitrary text. This is e.g.
used to produce application code skeletons in CODES (see chapter 7).

The XSLT transformations developed during this work relies heavily on
features introduced with version 2.0 of XSLT. XSLT version 1.0 still was
pretty focused on rendering XML documents in HTML. Applying structural
changes to a document often were tedious to do. The pattern recognition ca-
pabilities were much weaker (cf. XPath 2.0 vs. XPath 1.0).

XSLT transformations heavily rely on pattern matching and subsequent
application of transformation templates. The patterns to be matched are
written in XPath.

As XSLT is a declarative language, there are no side effects. This permits
the XSLT processor to apply templates in any order, and for any number
of times without changing the result. Another reason why declarative lan-
guages are desirable is that they are optimizable. This was first claimed
in 1970 in [22]. In the meantime, this has been proven correct with rela-
tional optimization techniques in relational databases. Unfortunately, cur-
rent XSLT processors use little, if any optimizations.

The transformation process (see figure 2.3) has multiple steps:

• Parsing of input: both the XML input, and the XSLT stylesheet are
parsed and represented as trees. The document tree model of an XSLT
processor is somewhat similar to the DOM, yet they are not equiva-
lent.

• Structural transformation: the input data tree is converted to the output
tree according to the rules of the XSLT stylesheet. Conversion is done
by applying the template rules of the stylesheet to the document input
tree.
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Figure 2.3: The XSLT transformation process

• Formatting: the output tree is serialized into the requested format, i.e.
to XML, HTML, or text.

Usually prefixed with xsl, XSLT tags are in the name space
http://www.w3.org/1999/XSL/Transform.

A typical XSLT stylesheet consists of a sequence of template rules. Each
rule describes how a particular construct should be processed. The rules
can appear in arbitrary order.



Chapter 3

Development for small
components

Traditionally, small embedded systems were used in isolation, e.g. to con-
trol a washing machine, or similar appliances. Today, small embedded
systems are used ubiquitously not only in appliances, but also in machin-
ery and cars. They are not used in isolation anymore, but they are inter-
connected using various networking technologies. As networking became
mandatory, software complexity exploded. Context awareness is on the up-
rise, also increasing complexity. Typical tasks of such embedded devices
are:

• data acquisition

• data filtering

• data conversion

• data fusion

• communication in a timely manner

All of these tasks may need to be performed in a different way, depending
on context.

The technology employed in such devices is mainly chosen by cost and
size factors. Energy consumption often also plays an important role. Thus,
these devices tend to have very limited capabilities in terms of processing
power and memory. Power consumption limits the possible clock frequency
and memory sizes. Cost limits pretty much every parameter in system de-
sign.

Powerful chips become cheaper, smaller and more energy efficient. Yet,
older, less powerful chip designs are pushing forward into markets and ap-
plication areas where the usage of micro controllers was unthinkable only
a short time ago. Extremely limited architectures, such as the MARC4 [7]
are newly developed and introduced. The MARC4 features a 4 bit CPU
core. Even members of this family provide communication facilities, e.g.
the ATAM682-x [8], which provides UHF ASK/FSK communications.

27
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It is essential, that adequate development support is provided, even for
the most cumbersome platforms.

3.1 UML and MDA

The Unified Modeling Language (UML) is a standardized modeling language.
It includes a standardized graphical notation. This graphical notation is
used to create the so–called UML model of a system. Different diagrams
each represent a partial view of the complete model [3], [119]. The concepts
in UML are based on object–orientation [3].

UML is defined via a meta model [3]. The UML meta model is expressed
using the OMG’s Meta Object Facility (MOF). Notably, the MOF specifies
how models can be accessed and interchanged. It defines the XML Meta-
data Interchange (XMI) format. XMI is used to exchange UML models with
different tools.

In UML, multiple views of a system are defined, and each view has a
number of diagram types associated with it [3]:

• The User View shows the system from a user’s perspective. This view
is composed of Use Case Diagrams, which describe the system’s func-
tionality.

• The Structural View contains the static aspects of a system. Two dia-
gram types are used in this view:

– Class Diagrams contain classes and associations. They describe
the static structure of a system.

– Object Diagrams describe the structure of a system at a particular
time during its life. They represent examples of structure.

• The Behavioral View comprises a system’s dynamic aspects.

– Sequence Diagrams are used to specify the system’s behavior to-
wards its interactors.

– Collaboration Diagrams, which were renamed to Communication di-
agrams in UML 2.0 show which classes of a system realize its be-
havior.

– Statechart Diagrams specify the states and changes of objects par-
ticipating in behavior due to outside interaction.

– Activity Diagrams describe a class’ behavior in response to inter-
nal processing, rather than external stimuli. They communicate
flow of control and information.

– Interaction Overview Diagrams are a mixture of activity diagrams
and sequence diagrams [52].

– UML Timing Diagrams are used to show timing behavior in real–
time systems.
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• The Implementation View covers structural and behavioral aspects of
the model’s realization. Component Diagrams define the organization
of software components, and their dependencies.

• The Environment View covers the aspects of the domain in which the
system must be realized. Deployment Diagrams describe the processing
resource elements, and the mapping of software components to the
processing elements.

Extensibility is provided by the means of so–called UML profiles. New
concepts may be introduced to the language via so–called stereotypes. These
define new concepts via the means of UML itself [119].

UML profiles are used to define domain–specific languages. This fos-
ters the view of UML not as a single language, but as a family of lan-
guages, e.g. the UML Profile for Framework Architectures [51], the Real–
Time UML [39], [40], or Executable UML [95].

UML forms the necessary basis for the evolution of model–driven ap-
proaches, specifically the model–driven architecture (MDA).

In MDA, the focus is on transforming Platform Independent Models (PIMs)
into Platform Specific Models (PSMs). A PIM can possibly be transformed into
a number of different PSMs, one for each platform. The generation of code
from a model can essentially be seen as another PIM to PSM transformation.
Transformations are performed by applying mapping functions to the input
models [96].

The OMG defines four modeling layers, termed M0 to M3. Layer M0
represents the running system in which actual instances exist. Layer M1
contains models, e.g. UML models. It defines the concepts instantiated in
layer M0. In other words, each element at layer M0 is an instance of an ele-
ment at layer M1. Layer M2 specifies the elements available for instantiation
at layer M1, e.g. the concept of a class or an attribute is defined at layer M2.
Again, each member at layer M1 is an instance of an element at layer M2.
The relationship of layer M2 and layer M1 is the same as the relationship
of layer M1 and layer M0. The model residing at layer M2 is called a meta
model. E.g. the UML meta model resides at layer M2. Every UML model at
layer M1 is an instance of this meta model. Likewise, layer M3 contains the
model of layer M2, called the meta meta model. Within OMG standards, the
MOF resides at layer M3. Modeling languages like UML are instances of the
MOF. To prevent an infinite recursion, the OMG defined that all elements of
layer M3 must be defined as instances of concepts at layer M3 itself [79].

This meta modeling structure is used in MDA to

• provide a mechanism for defining modeling languages and to

• allow transformations of models in a source language into models in
a target language using transformation rules. These rules employ the
meta models of both the source and the target language to define the
transformation.
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MDA endorses Domain Specific Languages (DSLs) based on the MOF. In
practice, MDA encourages using UML profiles [137]. By providing a DSL
based on the MOF and a transformation definition to another language,
MDA can be extended.

Modeling smart real–time components (as targeted by this work) using
UML was not deemed desirable. The requirement for a readable description
format (as discussed in section 7.1), paired with easy processability are the
main reasons for not using UML. Further, the modeling of pure data struc-
tures in UML is awkward. Data structures would have to be modeled via
classes without functionality [101]. The amount of machine–readable de-
tail necessary in the descriptions would further complicate UML modeling.
Nevertheless, the outlook of basing the CODES language (see chapter 7) on
OMG’s MOF would essentially make it a DSL in terms of the MDA.

3.2 Software development for small components
in practice

3.2.1 Resource constraints

In practice, it is still very common to program micro controllers without the
help of any high–level tool. On very small devices, it is even necessary to
use assembly language, as these micro controllers do not offer any RAM or
stack space to speak about. The Atmel ATtiny15L [6], e.g. has only 32 8 bit
registers, and not further RAM. It is equipped with a small stack capable
of storing three return addresses. Its program memory can hold up to 512
instructions. There is no tool beyond an assembler available for this class
of microcontroller. Programs are usually debugged in software simulators;
an interface to a in–circuit emulator is not very common. This is tedious
work, but it can be done, as these programs certainly are limited in size and
complexity. Of course, all advantages and drawbacks of using assembly
language become apparent: the code is very efficient, but it is hard to main-
tain, as a lot of optimizations and side effects are used up to their possible
extents.

A little further up the scale, e.g. for the Freescale HC081 or Atmel AVR2

families of micro controllers (8 bit cores, a few kilo bytes of RAM, several
kilo bytes of instruction memory), compilers are available. The most com-
mon programming language for these devices is C. Some vendors also offer
stripped down versions of C++, Pascal or even Basic. Most of these compil-
ers come with declaration files that define the locations of Special Function
Registers on common devices. Language support is often limited to a sub-
set of the corresponding standards (especially for C++). On the other hand,
the compiler vendors enhance the language to make certain features of the

1http://www.freescale.com
2http://www.atmel.com



3.2. SOFTWARE DEVELOPMENT IN PRACTICE 31

hardware platform available3: some devices offer a special addressing mode
for certain locations of the address range4. Especially C compilers tend to
have default settings that will not put local variables onto the stack, but
onto the heap. While this allows to limit the stack size, it breaks with the se-
mantics that programmers are used to, and provides a common pitfall when
using some sort of recursive calling of a function. Most compilers also come
with some libraries for common tasks. Despite the premium price vendors
usually charge for embedded compilers, these and also their libraries often
show serious bugs that a programmer has to work around. The Cosmic C
Cross Compiler for the HC08, Version 4.1 [34], e.g. has an undocumented
off–by–one (byte) bug when computing the amount of stack space needed
for functions with more than four parameters. Its C library has similar bugs
throughout its memory management functions (e.g. calloc, free)5. On
this device class, compact operating systems can be found, e.g. ProOsek
from 3soft [1]. Some of these provide real–time scheduling capabilities, e.g.
the real–time executive developed by Kilian Rall at the Core group in Ulm
[117]. Furthermore, communication middleware like COSMIC is available
for this class of devices, though sometimes with restrictions. COSMIC, e.g.
supports only Hard Real–Time and Non Real–Time communication on the
HC08. Soft Real–Time would use up too much CPU resources. The avail-
ability of operating systems and communication middlewares greatly eases
software development. The developer can reason in terms of tasks, and
does not need to ensure correct scheduling manually over and over again.
A communication middleware provides the developer with an API that is
hopefully easy to use and relieves him of the duty to write device depen-
dent functions that must manipulate device specific registers. If both oper-
ating system and middleware are integrated with each other, as is the case
with COSMIC, the developer is also freed from the task of scheduling mes-
sages manually on the network. Higher level tools such as UML designers
and code generators are used rarely, mostly because of the limited device
resources and missing language features of the compilers. Application soft-
ware complexity on these types of system, however, tends to grow with the
degree of distribution.

Climbing the next step in terms of micro controller performance, 16 bit
devices offer not only more CPU power, but often also considerably more
memory. Compilers are common, assembly language is used only occasion-
ally. Compiler vendors still enhance their tools with device specific special-
ties, however their number tends to be lower than with 8 bit controllers.
As the peripherals become richer in functionality, so does their complexity.
Therefore, device manufacturers offer configuration tools that try to ease
application specific device setup. Infineon e.g. offers DAvE (Digital Appli-

3Unfortunately, this usually happens in an incompatible way — even for different com-
pilers for the same device.

4The HC08 family, e.g. has a special addressing mode for the first 256 bytes of memory.
5The impact of these bugs is rather low, as these functions are rarely useful on devices

with only 2 kilo bytes of RAM.
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cation virtual Engineer) [64], a tool to interactively configure their C166 and
C166V2 families of controllers. Rudimentary device drivers for on–chip pe-
ripherals are available, e.g. Infineon offers a CAN driver [65] for its C166
family. Operating systems are commonly used. Supporting development
tools and debugging facilities are readily available and sometimes well–
known as older PC technology makes its way to the embedded market, e.g.
x86 compatible controllers and the MS–DOS operating system.

Currently, state–of–the–art micro controllers are equipped with a 32 bit
core. ARM6 and PowerPC7 are among the most popular families in this cat-
egory. Memory and processing constraints are almost unheard of, as RAM
sizes reach mega bytes and clock frequencies reach a few hundred mega-
hertz. Operating systems are readily available from various vendors. Com-
pilers mostly do not have any limitations when compared to workstation
compilers. More recently, powerful 32 bit micro controllers with only some
kilo bytes of RAM started to become available. These allow for rather cheap
devices that need lots of processing power for small applications. Even
though operating system support is limited because of the limited memory,
compiler and tool support is the same as for full–blown 32 bit systems.

Most advances in software engineering require rather large amounts of
resources. Therefore, they are only available for powerful platforms, mainly
in the 32 bit class. Often people reason that computing power will be cheap
and vastly available soon, even for embedded applications. While it is
certainly true that prices for hardware equipment are constantly falling,
tiny devices like 8 bit or even 4 bit micro controllers are still extremely
widespread. 8 bit micro controllers still accounted for the largest market
share in terms of units shipped8. They will surely not be replaced by more
powerful devices, as they continue to be cheaper and more energy efficient
than their counterparts. Volume prices for 8 bit micro controllers in low
pin count packaging average around 40 US cents per part, whereas low
end 32 bit controllers cost around five US dollars in volume quantities. Of
course, more sophisticated parts are substantially more expensive, e.g. the
68HC908AZ60A, which provides an 8 bit core, combined with 60k of Flash,
2k of RAM, and a CAN controller, comes in a 64 pin TQFP package and cur-
rently (April 2007) averages around 9 US dollars per part an 1000+ quan-
tities. 32 bit designs, e.g. the MAC7101, providing an ARM7 core, 512k
Flash, 32k RAM, and four CAN controllers, cost an average 16 US dollars
per part in 1000+ quantities9. Thus, it is important to come up with new
ways of developing software efficiently on those limited controllers, as they
continue to be used in ever more challenging ways, especially in terms of
networking.

6e.g. from http://www.nxp.com
7e.g. from http://www.freescale.com
8Source: Gartner Dataquest August 2003
9Source for prices: Freescale semiconductor
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Figure 3.1: Kurt, one of our robot testbeds

3.2.2 Examples of common problems

While a middleware API like COSMIC’s (see section 6) is helping a lot, there
are still open problems, especially when different devices from different de-
velopers need to interact. Insufficient documentation and misunderstand-
ings provide a rich ground for hard–to–find bugs in the software. Each
developer will test his component until it works to his satisfaction. When
putting different components together, strange things can happen, however.

As an example, think of a mobile robot application where two au-
tonomous robots (called Kurt and John Silver) are supposed to move in
coordination. Both robots are equipped with a tank–like drive system that
employs one motor per side (see figure 3.1). There are two developers in-
volved — say Carlos and Hubert — and they make use of the COSMIC
middleware.

Among others, the following components are involved:

motor control: the motor control component takes the desired speed for
both motors as an input event. It will keep both motors running at
the given speed. As the involved robots differ mechanically, the motor
control component differs on both robots, but it has the same “inter-
face” (see below).

coordination control: this high–level component coordinates both robots
and “instructs” their motor control component by generating appro-
priate events. As both motor control components have the same in-
terface, only one coordination control module that can control both
robots is to be developed.

Carlos specifies (in a clear–text document) the “common” interface for
the motor control component: the desired speed is to be given in encoder
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ticks per second10 for convenience. He gives a function that relates encoder
ticks per second to actual wheel speed in centimeters per second for John
Silver. Further, he writes that in the event’s contents, there are two fields,
the first one for the left motor, the second one for the right motor. Both fields
are encoded as a 16 bit integer. Positive values are to be mapped to driving
forwards, while negative values will make the motor turn backwards. Car-
los programs his motor control component for John Silver and hands the
specification to Hubert, so Hubert can write the motor control component
for Kurt.

Later, Hubert writes the higher–level coordination control module. For
testing, Hubert uses his own motor control component on Kurt. It is basi-
cally equivalent to Carlos’.

When testing the coordination control module on John Silver, nobody
notices anything. However, once both robots engage in their cooperation
task, the problem becomes apparent: the two robots move at different
speeds. How could this happen? Unfortunately, Hubert did not pay enough
attention to the function that maps encoder ticks per second to centimeters
per second, which is slightly different for both motor control components.
So even though the coordination control module works correctly, and in
principle, so do the motor control components, the application fails. While
this bug is rather easy to find, the causes for subtle differences in behavior
may be extremely hard to find in other cases.

Yet another thing could be done wrong in this example: imagine that
Hubert mixed up the order of the fields within the speed event. The
result would be that Kurt would turn exactly the opposite way as it
is supposed to. Suppose he programmed his motor control component
in C, and the event’s content is declared as a simple array: int16 t
event content[2]. As he is a lazy programmer, he does not intro-
duce any named variables for access that would make the code quite a
bit more readable. Also, for his internal operations, he uses yet another
array int16 t internal desired speed[2]. According to Murphy’s
law, the association of left and right is just the other way round for both ar-
rays, but Hubert does not pay attention and simply copies the array’s con-
tents. This will result in the behavior stated earlier: Kurt will do all turns
exactly in the opposite direction.

From this example, two important lessons can be extracted:

1. All physical entities should be represented in universally usable for-
mat derived from the SI units, e.g. speed should be represented in
meters per second, optionally multiplied by a constant factor, or offset
by a constant value. If specified explicitly, this ensures that miscon-
ceptions like two different “ticks per second” units in the example, are
avoided.

2. Access to fields within data structures should only be done via named
members.

10On each motor, there is an optical encoder that is used to get a speed feedback.
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Though these points might seem rather obvious, and most developers will
state that they adhere to them, they are violated in practice, if they cannot
be enforced or automated. In COSMIC data sheets, physical entities must
be specified with a unit derived from the SI units. It is simply impossible to
define “ticks per seconds” as the unit for a speed field. Instead, a common
reference is enforced. Also, named fields and automatic code generation
ensures that the programmer will get a code skeleton with named members
as a start. Even though this cannot completely solve the second point, it
provides a good starting point and at least enforces the programmer to use
named access to input or output fields when receiving or publishing events.
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Chapter 4

Requirements for successful
system integration

The construction of a system based on components is ideally limited to
wiring the selected components together into a specific configuration. Dur-
ing this integration phase, it is crucial to have tool–based support for (1) de-
termining whether the selected components will be able to cooperate suc-
cessfully and for (2) managing the created configuration. The presented
requirements should be met by the CODES approach as presented in chap-
ter 7.

4.1 Compatibility Checks

Compatibility checks are situated on a number of differing levels ranging
from basic low–level issues concerning technicalities of communication up
to semantics behind certain operations:

• All components must be from an identical component world. Of course,
this is rather obvious. Components that are not based on the same
abstractions will not be able to cooperate, e.g. .NET components and
JavaBeans. Bridging components are a means of integrating different
component worlds, yet it is extremely hard, if not impossible, to retain
real–time and other end–to–end properties across such gateways, as
some necessary abstractions may be missing on either end.

• Communication must be technically possible among components, i.e. they
must share a common physical layer, i.e. network media, voltages, bit
rates, etc. Even if the components run on a single node, they must
agree on the communication protocols to be used.

• Data encoding in messages exchanged must either be known and
agreed on by all components, or it must be deducible. The latter is
easily possible by either exchanging the encoding to be used before
operational communication, or by using a universally decodable mes-
sage format, e.g. suitable XML encoded messages.

37
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• Interfaces must match for both the provider and the user of an inter-
face. This includes the name of the operations, and the name and type
of the parameters involved, i.e. the operations’ signatures. The usage
of only valid ranges on parameters cannot be enforced by most ap-
proaches. Unfortunately, many components do not check their param-
eters profoundly on invocation of an operation. This not only leads to
malfunctioning components, but also to a wealth of security problems,
as documented in the news almost daily. For an embedded system
where safety of operation is a major issue, special precautions must
be taken. Any tool–based support greatly eases this error–prone and
tedious task.

• Whenever (hard) real–time communication on a TDMA basis is in-
volved, the respective communication schedules must match, or it must
be possible to modify them at run–time without introducing faults.

• The use of bandwidth on the communication bus must be kept at feasi-
ble levels. This is an issue especially on field busses which have rather
low bandwidths. When weak nodes are participating, the bus load
may not even reach 100%, as these nodes are not able to process mes-
sages at full bus speed. The Freescale HC908AZ60A, e.g. is perfectly
able to run the CAN bus at 250kbps, 500kbps, and even 1000kpbs. Yet,
it is not able to process messages at full rate. It is capable of processing
only about 100 to 200 CAN messages per second using the COSMIC
middleware. Since it has only a single receive buffer, message loss will
occur on burst transfers that otherwise would be well below the pos-
sible limit. Therefore, a feasible bandwidth use for such a node also
means that communication must adhere to a minimum inter–arrival
time in order to keep the CPU load at a feasible level.

• Cooperating components must agree on the semantic meaning of mes-
sages and operations. For truly dynamic cooperation, this is the hard-
est problem that needs to be solved, as the semantics must be encoded
and processed by a machine, preferably without any intervention of a
human user.

While most of these issues seem obvious and are handled pretty well al-
ready on ”full–size” computers like PCs, they still are very current problems
in the field of small networked embedded systems. Here, the overhead of
communication middleware must be kept to a minimum; technologies like
CORBA and .NET are too bloated. Also, in embedded systems, there is a
much greater heterogeneity of communication media, communication pro-
tocols, and computational platforms. This situation has become especially
visible in the automotive domain, and there are efforts to remedy the situa-
tion. Most notably, the AUTOSAR1 organization published their first spec-
ifications including a sort of communication middleware in October 2005.

1http://www.autosar.org

http://www.autosar.org
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Unfortunately, there is basically no material publicly available without an
NDA.

Compatibility checking is essential not only during system integration.
If possible, it should be done at the following points in time:

• At system design time a number of system and application constraints
are defined. All components in the system must comply with these
constraints. Further, it must be ensured, that all designated system
components are compatible with each other.

• At System start up, automated compatibility checking should be exe-
cuted. This will ensure that a system remains in a compatible state
throughout its life–time. Checking on start up addresses replaced or
added components.

• On dynamic integration, e.g. when a new component is added to an
already running system. The main concern for safety critical systems is
that the existing system can continue to operate without being affected
or even compromised.

4.2 Configuration management

Configuration management is an essential part for the maintenance of dis-
tributed systems. For any service personnel, it is vital to determine, what
nodes are present in the system, and what their particular configuration is.
A maintenance task may consist of changing the configuration because the
system is about to be used for a new application.

The configuration information mostly consists of the following informa-
tion:

• Some form of unique identification of each node. Mostly the identifiers
are meant to be unique worldwide, so the name space must be large
enough. 48, 64, and 128 bits are common sizes. 48 and 64 bit identi-
fiers usually require a centralized scheme where a certain number of
bits is reserved for a manufacturer id. This manufacturer id must be
allocated with some registry. One well–known example is the Ether-
net family, where each NIC has its own unique 48 bit identifier. 24 bits
are used to identify the manufacturer. The manufacturer identification
is called Organizationally Unique Identifier (OUI). Manufacturers must
register with IEEE 2 to allocate an OUI [151]. 128 bit and larger identi-
fiers are mostly produced locally in a decentralized fashion. Collisions
are statistically improbable. One such scheme, the universally unique
identifier (UUID), has been proven to work reliably for more than a
decade now [152].

2OUI assignments can be done at http://standards.ieee.org/regauth/oui/index.shtml.

http://standards.ieee.org/regauth/oui/index.shtml
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Even though in some systems, e.g. in COSMIC systems, it is not neces-
sary to be able to identify a certain node during operation, it is essen-
tial that each node can be identified and addressed for configuration.
It is e.g. possible to have two functionally identical components in a
system. Yet, each of them must have a slightly different configuration
for the application at hand. Therefore, the configuration facilities must
provide access to each device individually.

• Communication parameters. All parameters necessary for successful
communication are part of the device configuration, e.g. the bit rate
used on the bus. Further, any predefined schedules, e.g. for hard real–
time communications are also part of the configuration. Communica-
tion parameters may also include quality attributes.

• Component specific parameters. Depending on the kind of component,
differing parameters are part of the configuration, e.g. the sampling
period of an infrared distance sensor. For this reason, the configu-
ration facilities must provide a generic way of specifying parameters
and their values.

Configuration management tools assist the user in the following areas:

• Planning and building distributed systems. During the planning phase,
the configurations of the individual nodes are taking on form. Param-
eter by parameter, settings are defined. Simulation of the system in this
stage is often a desirable feature in this stage.

As the system is being constructed, it may be desirable to emulate
those parts that are not yet implemented ”for real”.

• Automated configuration. It is desirable to automatically define as many
parameters as possible. Interesting candidates are low–level commu-
nication parameters, such as the bit rate. With the knowledge of e.g.
how many messages need to be exchanged per second, these parame-
ters can be set to a valid starting point.

• Discovery in the system. Whenever the system needs maintenance, it is
necessary to detect all components in the system. Also, for diagnostic
purposes, it is important that all (active) components are found. This
provides a fast way of detecting components in a fail–stop state.

• Queries to the system. If components carry their description and their
configuration, an on–line query mechanism can be included in the sys-
tem. Such a query mechanism tremendously eases maintenance and
analysis of an hitherto unknown system, as the relevant information
can be obtained quickly.

Configuration management facilities may either be included in the nor-
mal operational interface of a component, or they may be provided via a
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dedicated interface. Having these facilities included in the normal opera-
tional interface has the advantage of keeping the number of access meth-
ods down, and therefore reducing complexity on the technical level. How-
ever, this bears the danger of hiding the configuration management facil-
ities, which should at least provide a distinct interface on the conceptual
level.
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Chapter 5

Related Work

There is a large amount of description and specification languages. For most
uses, one can even choose among a number of them for the same purpose.
It would be impossible to discuss all languages. Therefore, a number of
interesting technologies featuring description mechanisms have been cho-
sen. Web services, Universal Plug and Play (UPnP), and Jini represent gen-
eral purpose approaches. Web services are mostly not written according to
a centrally defined standard. As interchangeability suffers in such decen-
tralized worlds, UDDI was introduced to provide central registries, which
also enable the discovery of Web services. UPnP’s most interesting features
are its centrally defined device architectures that ensure basic compatibility
among vendors, and its integrated discovery mechanism allowing for the
dynamic integration of new devices. The complete network setup is auto-
mated and completely configuration–free. Jini is a middleware framework
bearing resemblance to UPnP. In contrast to UPnP, Jini is limited to the Java
language, and in practice, to RMI mechanisms for interaction. Further, Jini
does not offer a dedicated description language for the services offered. In-
stead, Java interfaces are used to identify services of interest. While this
demonstrates that an extra description language may not be necessary in
all cases, it also shows that programming languages are inadequate as com-
ponent descriptions in some cases. More specifically, whenever detail in-
formation beyond e.g. the data type of a parameter is necessary, solutions
based on programming language type systems tend to be inadequate. If
the necessary information can be encoded at all with the required flexibility,
the number of types necessarily explodes. The second part of this chap-
ter is concerned with examples from the embedded systems domain. IEEE
1451 is focused on low–level issues of sensors and actuators without direct
access to a network. The flexible and machine–readable representation of
physical units is of special interest. CANopen is especially interesting be-
cause it is running on CAN. Optionally, CANopen devices may store their
own description within themselves. While CANopen’s description mech-
anism is concerned with individual devices, LIN also features the descrip-
tion of clusters. Further, LIN provides the possibility to seamlessly simulate
not–yet–existent nodes. In contrast to most other description languages, it
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is possible to define in–band flagging explicitly in the LIN signal defini-
tion. TTP/A may be viewed as a direct counterpart to COSMIC. Besides the
communication protocol, a description language for TTP/A nodes exists.
Unlike the preceding examples from the embedded world, TTP/A smart
transducer descriptions are XML based. Similar to LIN, complete clusters
are described in cluster configuration descriptions. An extensive tool–chain
exists, and continues to be extended.

5.1 Web Services

According to the W3C, the programmatic interface of an application, made
available on the web, is referred to as a Web service1.

Because of the inherent distributed and dynamic nature of the web, dis-
covery and description of Web services are essential for their success. A
Web service’s programmatic interface is described using WSDL (see sec-
tion 5.1.1). The WSDL descriptions contain all necessary information to
technically interact with the service. It does not, however, contain any se-
mantic information. UDDI provides discovery facilities for web services.
The data stored in the UDDI registries contains information describing web
services on a higher level, e.g. using UNSPSC (see section 5.1.3).

5.1.1 Web Services Description Language

The Web Service Description Language (WSDL) [15] is supposed to provide
documentation and the possibility for automating details of communication
between the service and its clients.

Essentially, WSDL captures web services in a way comparable to method
signatures. WSDL is a XML grammar structuring web service descriptions
into seven sections:

Types: The Types section contains all relevant types needed for the message
exchange. Types are defined in terms of XML Schema types.

Messages: Messages are composed of Parts. Parts have a name and a type
associated with them. Parts can roughly be compared to parameter
declarations of methods.

Operation: Operations are individually invokable entities of a web service.
Operations can be likened to methods.

PortType: A port type groups operations on an abstract level.

Binding: A binding specifies exactly one protocol to be used for a port type,
e.g. SOAP.

Port: A port specifies exactly one network address for a binding.

1http://www.w3.org/2002/ws/, last modified 2006/06/29

http://www.w3.org/2002/ws/


5.1. WEB SERVICES 45

Service: A service groups a number of ports.

Currently, bindings to SOAP 1.1, HTTP GET/POST, and MIME are de-
fined in [15], whereas [156] leaves the definition of bindings to an extra stan-
dard [157]. While WSDL 1.1 was defined using an informal syntax, WSDL
2.0 is defined using the Z specification language [124].

5.1.2 Semantic Annotations for WSDL

The Web Services and Semantics Project2 recently published a first work-
ing draft of their Semantic Annotations for WSDL (SAWSDL) recommenda-
tion [158]. SAWSDL introduces extension attributes to WSDL (both 2.0 and
1.1). These attributes allow the linking of WSDL constructs to concepts in
semantic models defined outside of WSDL. SAWSDL is independent of any
specific ontology expression language, as the extension attributes to WSDL
only contain URIs to the respective concepts. It is recommended that these
URIs resolve to a document containing the referred concept’s definition.
There are three extension attributes defined:

modelReference: Each modelReference attribute specifies the association be-
tween a WSDL entity and a concept in a semantic model. It can be
used to annotate XSD types, elements, attributes, as well as WSDL
operations and interfaces. The purpose for annotating services at the
interface level is to enable dynamic discovery, which is only possible
when services are published, cataloged, and annotated with seman-
tics. The categorization defined using SAWSDL can be used as input
when publishing the service in a UDDI registry (see section 5.1.3). The
annotation of operations provides a high level description of said op-
eration.

liftingSchemaMapping: This is list of URIs that reference mapping defini-
tions defining how an XML instance document conforming to the ele-
ment or type defined in a schema is transformed to data that conforms
to a semantic model. In other words, the output of this operation is se-
mantic data.

loweringSchemaMapping: Similar to the liftingSchemaMapping, the map-
pings referred to by loweringSchemaMapping allow transforming se-
mantic data into XML instace data. XSLT is proposed as a schema
mapping language.

5.1.3 Universal Description Discovery & Integration

Universal Description Discovery & Integration (UDDI) [9] is a directory ser-
vice for web services, and in principle, any other services. It is itself a web
service, accessible via SOAP. Conceptually, UDDI is composed of three dis-
tinct directories:

2IST-FP6-004308
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• The White Pages is a name register.

• The Yellow Pages is indexed by taxonomies, e.g. the United Nations
Standard Products and Services Code (UNSPSC).

• The Green Pages gives information about technical details of services.

Entries in the directory service provide meta information about web ser-
vices. Without this information, a web service remains uninteresting. The
information targeted by UDDI encompasses providers and services. It is
written in an XML grammar defined by the standard. The XML structures
describe business entities, business services, and technical information needed
for interaction with the target service. The technical information is con-
tained in so–called binding templates that refer to tModels which in turn de-
scribe unique concepts [9]. Further, a large API for accessing the directory is
defined by the standard.

Discovering a service based on a client’s criteria, such as support inter-
face, and access method is the main use of UDDI. This includes gaining
access to a service’s WSDL description.

5.2 Universal Plug and Play

Universal Plug and Play (UPnP) [98], [97] aims at enabling zero–confi-
guration, invisible peer–to–peer networking for all kinds of devices ranging
from portable devices to full–grown PCs. The main focus of UPnP is home
automation in a very broad sense from managing one’s LAN and Internet
connectivity (the traditional IT domain) to lighting, monitoring and heating
(the traditional home automation domain) to home entertainment systems
(covering TVs, DVD players, and DVRs).

UPnP was introduced in 2000 with Microsoft Windows ME. It is man-
aged by the UPnP Forum. The UPnP Forum was formed on October 18,
1999. On their web site3, the UPnP Forum describes itself as follows:

The UPnP Forum is an industry initiative designed to enable
simple and robust connectivity among stand–along devices and
PCs from many different vendors. As a group, we are leading
the way to an interconnected lifestyle.

5.2.1 UPnP key features

no binary device drivers: UPnP components can interact without tradi-
tional device drivers. UPnP uses declarative network protocols along
with machine readable descriptions to eliminate the need for tradi-
tional device binary drivers.

3http://www.upnp.org

http://www.upnp.org
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device and service descriptions: Devices are described electronically in de-
vice description documents and service description documents. Writ-
ten in XML, they play a key role in enabling autonomous peer–to–peer
interaction between devices. These description documents can be seen
as a form of device drivers: The description allows to dynamically call
any of the offered operations.

based on common Internet protocols: All Interaction is based on widely
used Internet protocols like IP, UDP, TCP, HTTP, and SOAP.

platform and programming language independence: Contracts are
solely based on declarative protocols. Therefore, UPnP is platform
and programming language independent. All messages are expressed
in XML and communicated via HTTP.

network media independence: Because UPnP uses IP, any kind of base
network can be used if there is an IP stack available and the medium
provides sufficient bandwidth.

no API: UPnP does not specify API design on its components. Similar to
TCP/IP, UPnP only specifies a network protocol, not an access method
like e.g. the Berkeley socket interface for TCP/IP.

device control: UPnP enables device control in two ways. Remotely invok-
able service actions enable programmatic control. An optional HTML
presentation page hosted on the device itself is intended for direct user
control.

interoperability: Standardized device types and service types enable de-
vice interoperability across different vendors.

designed to work with firewalls: By using common Internet protocols like
HTTP, UPnP works in a firewalled environment, in fact, the standard
firewall of Windows XP is UPnP enabled4.

extendability: Usage of the Flexible XML Processing Profile (FXPP) ensures
that UPnP is extendable by non–standard or not–yet–standard fea-
tures. FXPP parsers ignore any unknown tags in an XML document.

zero–configuration networking: UPnP features zero–configuration net-
working by using DHCP and Auto IP. All UPnP components feature
automatic device discovery.

device architecture: Device and service template definitions are done by
the UPnP Forum according to a common device architecture [131]
provided by the UPnP Forum. According to this device architec-
ture, UPnP components are structured into three basic building blocks:
(1) devices, (2) services, and (3) control points. Devices can be containers

4Which can be a problem of its own from a safety point of view.
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Figure 5.1: VCR device structure

for other devices. They can offer any number of services. There is a set
of services defined for every standardized type of device. The struc-
ture of a device is captured in the device description document. A
service is the elementary unit of control. It exposes actions and mod-
els its state with state variables. A service is defined by its service
description. Services consist of three parts: (a) the state table, (b) the
control server, and (c) the event server. The state table represents the
service’s state and updates its state variables. The control server re-
ceives and executes action requests. The event server publishes events
to subscribers on state variable changes. Control points are capable
of discovering and controlling other devices. Most UPnP components
are expected to incorporate control point functionality to enable true
peer–to–peer networking without the need for a large central system
like a PC running Windows or Linux. Control points can subscribe to
events of services.

legacy device integration: Non–native components can be connected to a
UPnP scenario via UPnP bridges, e. g. a legacy weather station can be
connected to a UPnP bridge and thus become UPnP enabled.

5.2.2 Description Documents

In UPnP, the electronic description of a (physical) component is partitioned
into two logical parts: (1) device description and (2) service description.
Both parts together authoritatively document the implementation of the de-
vice.

The device description structures a UPnP component into its logical de-
vices, and lists the services that these devices offer. To give a short example
(see figure 5.1), a VCR can be split into the VCR itself as a root device, and
a tuner, a tape drive, and an alarm clock as embedded devices. Each of
these logical devices has its own set of services associated with it. The list
of services in the device description contains a URL for each service that
points to the service’s description document. Service descriptions specify



5.2. UNIVERSAL PLUG AND PLAY 49

alarm clock

SetAlarm
CancelAlarm

service:
alarm

state variables:

alarm_time
armed
currently_active

service:
time

current_time
state variables:

actions:

SetTime

device:

actions:

Figure 5.2: Device: alarm clock

what can be done with a certain device. A service can offer any number of
actions that can be invoked from the outside. It also offers at least one state
variable that can be queried or subscribed to. Again, as an example, con-
sider the mentioned VCR, more specifically its embedded alarm clock (see
figure 5.2). This (extremely simple) alarm clock offers two services: (1) time,
and (2) alarm. The time service offers one action SetTime that allows some
other device to synchronize the VCR’s clock with its own. The time ser-
vice also offers the current time as a state variable that can be subscribed
to. The second service — alarm — offers the two actions SetAlarm and Can-
celAlarm. In terms of state variables, it offers the alarm time, whether the
alarm is armed, and a variable called currently active. While the first two
are rather obvious, the third one deserves a closer look. When the current
time matches the alarm time, and the alarm is armed, then any user of the
alarm clock will obviously expect some sort of alarm, or notification. In
UPnP, if one subscribes to the alarm clock events, all state changes of any
state variable are generating an event message. Such an event message can
be mapped to the expected alarm signal. To do so, an extra state variable
currently active of type boolean is introduced. It’s value changes once the
current time equals the alarm time. Before another alarm can be generated,
this variable needs to be reset. This can be done in various ways, for now,
it can be simply assumed that the alarm clock itself resets this variable once
the current time and the alarm time do not match anymore. This will gen-
erate another event message.

Both device and service descriptions are written in XML by the device
vendor. There are templates available for standardized devices and services.
These templates are written in an XML dialect called UPnP Template Lan-
guage. The UPnP Template Language (for devices and services) is derived
from XML Schema (Parts 1 and 2). This ensures that UPnP device and ser-
vice descriptions are machine–checkable in terms of completeness, syntac-
tical correctness, and data types of values.
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Figure 5.3: device and service descriptions

Device Descriptions

The device description document can be found at the URL given in the
discovery response message or the presence notification message (see fig-
ure 5.3). Retrieval is done by making a standard HTTP GET request with the
given URL. TCP is used as the transport layer protocol. Device description
documents structure the UPnP component at hand into logical devices. The
outermost device is called root device. The root device can contain a number
of embedded devices. Besides this structural information, device descriptions
contain information like the type of (root) device, its name, its model num-
ber, its serial number, and the like. Important from a UPnP point of view
are the UDN (Unique Device Name), which is a UUID for the device that
must survive reboots, the serviceList that lists all services offered by the de-
vice, and the deviceList that lists any embedded devices. These descriptions
are written in an XML dialect called UPnP Device Template. This UPnP
Device Template is produced by a working group of the UPnP Forum. All
UPnP device templates are written in the UPnP Template Language for devices.
The main goal of having UPnP device templates is to standardize devices.
Currently (February 2007) standardized UPnP device templates are freely
available at the UPnP Forum’s website.

Service Descriptions

Service descriptions contain a list of all supported actions the service sup-
ports, a list of their arguments, and a list of its state variables (called service
state table), as well as their data type and either range or list of allowed val-
ues. Each argument of an action should correspond to a state variable to en-
force simplicity of the service model. A service can have any number of ac-
tions, including zero, but it must have at least one state variable. Such a ser-
vice without an action forms an autonomous information source. Like de-
vice descriptions, service descriptions are written in an XML dialect called
UPnP Service Template (also standardized by the UPnP Forum). UPnP Ser-
vice Templates in turn are written in the UPnP Template Language for services.
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Figure 5.4: The UPnP Protocol Stack

Again, the main goal is to standardize services. Standardized UPnP service
templates are freely available at the UPnP Forum’s website.

5.2.3 Networking

The UPnP protocol stack

As a common base for networking, the IP protocol is used. Each device
must obtain a unique IP address on connection to the network. To do so,
each device must incorporate a DHCP (Dynamic Host Configuration Proto-
col) client, and an Auto IP implementation. If a DHCP server is available,
the UPnP device must use the IP address assigned by the DHCP server. If no
DHCP server is available, the device must choose an IP address according to
the Auto IP standard. If a DNS server is available, the device should make
use of it to provide more user friendly network addresses (“VCR (living
room)” is easier to remember than “192.168.1.211”). For all discovery com-
munication, UDP is used on top of IP. Device and Service Advertisements as
well as search requests are made using a standard multicast address/port
combination. HTTP in various variants plays a core part in UPnP network-
ing. Advertisements are delivered via a multicast HTTP variant that is ex-
tended by GENA methods and headers, and SSDP headers. Search requests
are delivered via a multicast HTTP variant that is extended by SSDP meth-
ods and headers. Search responses are delivered via a unicast HTTP vari-
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Figure 5.5: UPnP communication steps

ant that is extended by SSDP. For any other communication, TCP is used.
Specifically, for description document retrieval, plain HTTP is used. For ac-
tion invocation, SOAP over HTTP is used. For eventing, HTTP extended by
GENA is used. For any optional presentation pages, plain HTTP is used.
These optional presentation pages are entirely vendor specific. For all other
parts, the UPnP Device Architecture defines their usage in general terms.
Depending on the device type, more specific requirements are made. The
vendor finally can enhance its devices by introducing further non–standard
services.

Communication steps

UPnP communications take place in four steps (see figure 5.5). Communi-
cation starts by setting up the lowest level: the IP level. After that, device
discovery generates a model of the reachable network. Third, descriptions
are retrieved as needed. Then, the setup is complete and UPnP devices of
interest can be put to use by three different means: control, eventing, and
presentation.

0. IP addressing: UPnP devices use either DHCP or Auto IP to obtain a
unique IP address. DNS is optional, but should be used if available.

1. Discovery: On connection to a network, the UPnP discovery protocol
requires the newly connected device to advertise its presence and its
services to the network. As advertisements are given with a timeout,
they must be renewed by the device before the timeout expires. Also,
the device should send a bye–bye notification before leaving the net-
work to enable graceful shutdown. Whenever a control point is added
to the network, it can search for other devices by issuing search re-
quests. The control point can repeat searches at any convenient time.
Both in advertisements, and in search request responses, only few es-
sential specifics about the device(s) are transmitted. Among these,
most important, is a pointer (URL) to more detailed information.
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2. Description: Once a control point has discovered a device, it needs to
retrieve that device’s device and service descriptions before the device
can be used. The discovery messages contain the URL of the device
description document, which in turn contains the URLs of all offered
services. Device and service descriptions are covered in more detail in
section 5.2.2.

3a. Control: Usage of a UPnP device can be partitioned into three parts:
(1) control, (2) eventing, and (3) presentation. (Remote) control is an
active way of putting a device to use. Control points can invoke ac-
tions on any of the services provided by a UPnP device. Invoking an
action is similar to a traditional RPC: the control point sends an action
request to the service, which executes the specified action, and returns
any results or error codes via a response message. Just like an RPC,
UPnP device control is primarily designed to be done programmati-
cally. Action request messages are expressed in XML and packed in
a SOAP envelope. They contain the name of the action, and all argu-
ments that the action needs, as well as their values. The response is
also expressed in XML and packed in a SOAP envelope. It contains
any return values and out arguments specified in the service descrip-
tion, as well as their values. If the service encounters any errors, it
returns an error response, also as a SOAP encoded message. A service
must complete an action and respond within 30 seconds. Actions that
take longer must be defined to return early and send an event when
complete. Error handling of missed response deadlines is application
specific. If an action has any effects, these are modeled by changes
in the state variables of the service. Besides invoking actions, con-
trol points can also query the values of state variables. State variables
must be queried one at a time. While many state variables can also be
subscribed to, some are not evented. These must be explicitly queried
if their value is of interest. In case a state variable is moderated (see
below), querying the variable can yield more up–to–date data than
those provided by eventing. Again, a service must respond within a
time frame of 30 seconds.

3b. Eventing: If one or more state variables are evented, the service pub-
lishes updates to all subscribed control points whenever any of these
variables change. Control points subscribe to eventing by sending a
subscription message to the service. The service response includes a
duration for the subscription. To keep the subscription active, the con-
trol point must renew the subscription before it expires. Subscriptions
can be canceled if they are not needed any more. Subscribers should
also monitor discovery messages: if a publisher cancels its advertise-
ments, subscribers must assume that their subscriptions have been ef-
fectively canceled. After first subscription, an initial event message is
sent to the subscriber that contains the names and values of all evented
variables. This allows the subscriber to initialize its model of the state
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of the service. Whenever at least one state variable changes, the service
sends an update message containing the name and new value of the
changed state variable(s) to all subscribers. This implies that a control
point cannot subscribe to a subset of the state variables, but only to the
complete set. Event messages contain a 32 bit sequence number called
event key. Event keys are assigned per subscription. The initial event
message has its event key set 0. For every event message, the event
key is incremented. If a subscriber detects a gap in the event key, it
must cancel its subscription and resubscribe to get a complete status
update. The event key must wrap to 1. All event messages must be
acknowledged by the receiver within 30 seconds. If the receiver fails
to do so, the service should abandon the current message, but keep the
subscription active until it expires. Some state variables may contain
values that are too large and would generate too much traffic when
used with eventing. These can be marked as non evented and are never
sent to subscribers. However, they can be queried as described above.
Some state variables will change too often to be useful for eventing.
Such variables can be moderated. For moderated values, the service
description can contain the optional annotations maximumRate or min-
imumDelta. maximumRate specifies that the concerned variable will not
be part of an event message more often than the specified number of
seconds. This is useful for continuously changing variables, such as
e.g. CPU temperature. minimumDelta–annotated variables will not be
part of an event message unless the value has changed by more than
the specified number. This is only useful for variables that are defined
as number or real data types, e. g. for an interrupt counter.

3c. Presentation: Unlike control and eventing, Presentation is targeted at
human operators. Presentation is an optional feature that allows UPnP
devices to hold one or more HTML page(s) that can be displayed in a
browser for user interaction. The contents and capabilities of the pre-
sentation feature is completely up to the device vendor, but should
be written in HTML version 3.0 or later. Presentation pages can con-
tain anything from static information about the device to current de-
vice status and remote control features. Localizing presentation pages
is recommended. The HTTP standard’s ACCEPT-LANGUAGE and
CONTENT-LANGUAGE features are used to determine the correct
language.

5.2.4 Developing UPnP components and applications

The fact that no APIs are specified by the UPnP Forum is both a blessing
and a curse. Such a specification is not necessary for UPnP components to
be interoperable. UPnP stacks [99], [122], [66], [67] can be tailored to differ-
ent device categories, or even single devices. However, when developing
a UPnP enabled component, as a best–case, the developer has to choose
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among different implementations with their specific advantages and disad-
vantages, which are possibly unknown or undocumented. As a worst–case
scenario, one has to develop a new UPnP stack without any guidelines. In
practice, if a device is powerful enough to run a standard operating sys-
tem such as Linux, Windows CE, or Windows XP, a developer can choose
among different UPnP implementations from different vendors, e.g. the
open source libupnp project hosted on SourceForge [67], Microsoft’s UPnP
stack [99], Intel’s UPnP Microstack [66], or Siemens’ UPnP stack [122].

5.2.5 Discussion

The major drawback of UPnP is its rather large protocol stack and the need
for XML processing. Protocols like TCP/IP and HTTP are easily handled
on PCs or devices with 32 bit micro controllers and a memory size of a few
megabytes. However, when moving to 8 bit micro controllers, they put a
serious burden on those devices in terms of CPU and memory load. On
very limited devices with only a few kilobytes of RAM (e. g. 2 kilobytes on a
common Motorola 68HC908AZ60A), it is practically impossible to run these
protocols together with any other application, especially an XML processor.

UPnP does not take real–time into account. The only timing–related re-
quirements are request timeouts of 30 seconds. Also, UPnP does not require
any clock synchronization5. Using TCP/IP as a base protocol already defies
real–time guarantees.

Media–independence is one of the main features claimed by UPnP. How-
ever, this is constrained by the use of the TCP/IP stack and therefore the
availability and — more important — the suitability of a TCP/IP stack for
a given medium. Running TCP/IP over a CAN bus is certainly possible,
however, TCP/IP stacks for the CAN bus are not readily available. Even
more, TCP/IP is not suitable on the CAN bus, as the maximum data pay-
load per CAN message is 64 bits — so a single CAN message is barely able
to hold a TCP/IP header structure. TCP/IP over CAN generates an enor-
mous overhead.

UPnP does not take security into account. The Microsoft Platform
SDK [99] states:

Security Note: Because a UPnP service can potentially be re-
motely activated without authentication, it presents an area of
vulnerability for a networked system. When UPnP services are
deployed in a controlled environment, such as a home or busi-
ness intranet where all the users are trusted, the risk of malicious
attack is lessened.

UPnP is not proven to scale well. In practice, scalability is not an issue
currently, as there are not very many UPnP enabled devices around. Until
now, the UPnP Forum defined only twelve device types apart from the basic
device that offers no features. The standardized device types do not even

5Of course, a clock synchronization service could be constructed.
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cover all scenarios mentioned in the UPnP white paper (dated June 2000),
specifically a generic storage device is missing. Other scenarios mentioned
are not even described in enough detail to determine all device types neces-
sary.

For some purposes, e.g. the increasingly popular streaming media ser-
vices, UPnP is not able to handle all necessary communication. Other com-
munication protocols are then used to handle this situation. The respective
architecture documents [118], e.g. lists a number of so–called out–of–band
transfer protocols. Currently published service descriptions are not capable
of referring to these external dependencies.

5.3 Jini

The Jini middleware framework [145] is completely based on Java, and just
like Java, Jini strives to overcome heterogeneity in distributed computing
environments.

Jini’s focus is on connecting appliances, such as PDAs, printers, cameras,
and PCs. As Sun’s Jini implementation relies on the Java VM, and HTTP and
RMI over TCP/IP for network communication, it consumes vast amounts
of resources, currently limiting its use to rather powerful devices like PCs.

Jini is designed to be robust, evolvable and administration–free, to sup-
port plug–and–play, and to allow spontaneous networking. It is built on a
number of core principles [41]:

Discovery: Jini supports the discovery of services, most notably, the lookup
service. Discovery works in three distinct ways:

• Discovery requests are sent using UDP Multicast.

• Discovery announcements are also sent using UDP Multicast.

• Direct discovery uses TCP unicast to known addresses. Jini lists
this as discovery, even though there is no real discovery involved.

Services offer functionality to clients. Services are accessed by Java inter-
faces.

Communities: A community is formed by the services that are close to each
other in a network–specific manner. A community usually stretches as
far as UDP Multicast packets are routed.

Lookup Service: A lookup service aggregates information about services in
the vicinity, as well as proxies to access the services. Clients can query
the lookup service for what they need.

Leasing: To conserve and reclaim resources, Jini consequently employs
leasing to manage the life–time of resource allocations. Jini uses a
more prominent term for resource reclamation: self–healing.
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Remote events: Somewhat similar to (local) Java events, Remote events al-
low the asynchronous notification of applications.

Transactions: Jini provides a model for distributed transactions, including
a transaction manager service.

5.3.1 Lookup Service

The lookup service deserves closer attention for how lookups can be per-
formed. Jini clients present the lookup service with a template of what they
are looking for. This template has three properties:

• A known Service ID. The Service ID uniquely identifies a service
in time and space. It allows to identify a (well–behaved) service
doubtlessly that is registered with multiple lookup services.

• An array of interfaces that the service must all support.

• An array of attributes that the service must comply with.

The matching algorithm is that each field that is null is treated as a wildcard,
i.e. all potential services match this field, whereas each field that is not null
must match exactly.

When searching for a yet unknown service, a client can characterize its
needs in terms of Java interfaces and attributes. Attributes conceptually
are name–value pairs that can describe a service beyond its interface. Jini
defines a set of standard attributes. Their semantics are well–known. The
standard attributes are

• Address: Provides geographical information.

• Comment: Allows to provide a free–form string.

• Location within an organization, e.g. floor, or office.

• Name: Human–readable name for the service.

• ServiceInfo: Provides generic information about the service, e.g. its
manufacturer, and model name.

• ServiceType: Human–readable description that can describe the ser-
vice.

• Status: Provides information on the current operating state of a ser-
vice. Status is meant to be sub–classed to service–specific types of sta-
tus.

Other attributes may be defined by the service vendor. Attributes can be
ServiceControlled, i.e. the service is able to automatically keep their informa-
tion up to date, e.g. the status of a printer can automatically be changed to
out–of–paper once the printer runs out of paper. Other attributes can not be
ServiceControlled, such as location or address. These must be administered
manually through the service’s administration interface.
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5.3.2 Resource requirements

Sun’s Jini implementation is resource intense. According to [59], Jini on
a Java2 VM has a memory footprint of almost 18 MB. This is divided up as
follows: The VM requires 0.5 MB, the Java core classes take up some massive
17 MB, and the actual Jini communication package requires 258 kilo bytes.
This is obviously too large for small devices, even for most PDAs.

A number of projects, e.g.[59] and [37], therefore tried to reduce mem-
ory requirements. The project described in [59] implemented Mini (which
stands for minimalistic Jini). Mini requires only 26 kilo bytes, and the VM
Kaffe that it is based on requires 100 kilo bytes for the VM and 1 MB for
the core classes. While this is a significant reduction in size, it is still too
much for most small devices. Further, Mini is not compatible with Sun’s
Jini anymore, as a few protocol changes where introduced.

5.3.3 Discussion

While the attribute mechanism that can be used with the lookup service
is flexible, there is no defined set of standard attributes. In other words,
the mechanism is only useful within an organization that manages the at-
tributes in a consistent manner.

Further, it is rather awkward to have a standard administrable interface
in a system with the explicitly declared goal of being administration–free.
While it is understandable that some services may need administration, it is
astounding that the lookup service itself needs administration, even though
it is a central entity of Jini.

Jini’s requirements for resources prohibits its usage on very small de-
vices. This is mainly due to the fact that Jini is based on Java. Jini devices
are also limited to the Java world, i.e. it is not possible to build a Jini device
not running Java.

Similarly, the use of RMI is not mandatory. Yet, implementations using
different modes of transportation will not be able to communicate with each
other. Therefore, Sun’s implementation sets the standard. All other vendors
will adhere to this standard to avoid a commercial fiasco.

Due to its non real–time capable basis, Jini is not able to offer quality of
service features.

Physical units for measurement values cannot be encoded directly. They
would have to be integrated into the type system, leading to an explosion
in the number of types.

In terms of dynamic cooperation, the classic approach with Jini is to
know the interfaces of interest a–priori. If this is not the case, calls to previ-
ously unknown interfaces can still be made via the help of the Java reflection
services. Yet, it is hard to imagine a successful machine based dynamic co-
operation using only reflection without any further meta–data.
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5.4 IEEE 1451

The IEEE1451 family of standards [60], [61], [62], [63], [86] aim towards stan-
dardizing smart transducer communication. Figure 5.6 presents the relation-
ships within the standards.

In the IEEE 1451 world, a transducer is defined as

a device that converts energy from one domain into another [88].

A transducer is typically connected to a microcontroller running a suitable
application. The microcontroller is also connected to a network. This setup
is then termed networked transducer. A smart transducer delivers more than
just a correct representation of a sensed or controlled physical quantity. [88]
lists the following requirements for a smart transducer:

• It provides additional functionality easing the transducer’s integration
into a networked application environment.

• It is able to perform self–identification to the system.

• It has the capability to provide key information about itself, e.g. its
performance parameters. The information is represented in a stan-
dardized format, preferably using as little memory as possible.

• On power up, or on query, the transducer identifies itself to the host
processor. This enables the automation of diagnostic, configuration,
and identification procedures.

More specifically, smart transducers are connected to a microcontroller via
a defined digital interface. The processing element, termed Network Capable
Application Processor, is connected to the network. The individual standards
in the family define these building blocks:
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• IEEE 1451.1 [60] defines a common object model for the components of a
networked smart transducer. It provides two interfaces:

– The interface to the transducer block mapping the details of the
transducer hardware implementation to a simple programming
model.

– The interface to the NCAP (Network Capable Application Processor)
block and ports, which encapsulates the different network pro-
tocols behind a small set of communications methods, i.e. IEEE
1451 devices are independent of any specific network technology.

The object model permits an application to retrieve a transducer’s
TEDS [120].

• IEEE 1451.2 [61] defines the Transducer to Microprocessor Communica-
tion Protocol, the Transducer Electronic Data Sheet (TEDS), and the Smart
transducer Interface Module (STIM). Being the most interesting part of
IEEE 1451 for this work, the TEDS are described in more detail below.
The Transducer to Microprocessor Communication Protocol specifies
how a smart transducer can be accessed right down to the pin layout of
the connector. The STIM consists if the transducer itself, a signal con-
ditioning stage, the conversion circuitry, the memory chip containing
the TEDS, and the necessary logic to implement the digital interface.
A STIM may host up to 255 transducers, each of which is defined as a
channel.

• IEEE 1451.3 [62] introduces so–called Multidrop Systems. Multidrop
systems connect multiple physically separated transducers to a single
NCAP by using a bus. The main feature is self–identification of trans-
ducers on the bus.

• IEEE 1451.4 [63] defines so–called mixed-mode transducers. A mixed–
mode transducer is an analog transducer, connected via a two–wire
interface. It has the ability to use its two–wire interface for both digital
communication, and analog signal transmission; however, not both at
the same time. This enables transducers to transmit their TEDS, and
subsequently switch to their analog mode of operation.

• The IEEE P1451.5 group will propose a standard for wireless commu-
nication protocols [146].

5.4.1 Transducer Electronic Data Sheet

The TEDS is stored within the STIM itself, using a nonvolatile memory
chip. It contains the transducers description in a binary format, requiring
only 178 bytes for the mandatory data [87]. Because the TEDS identifies a
transducer, and contains all important sensor parameters, plug–and–play of
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transducers is possible, e.g. when upgrading a temperature sensor to a new
version with improved accuracy.

The TEDS is structured into five parts (see figure 5.7):

• Meta–TEDS: This part contains the information common to all trans-
ducers on the STIM, e.g. overall description of the TEDS data struc-
ture, worst case STIM timing parameters, etc.

• Channel TEDS: There is one Channel TEDS per transducer. It contains
information like physical units, upper/lower range limits, warm–up
time, etc.

• Calibration TEDS: Contains calibration parameters, and the calibration
interval. This part is optional.

• Application–specific TEDS: Reserved for end–users. This part is op-
tional.

• Extension TEDS: Reserved for implementing future and industry ex-
tensions. This part is optional.

Meta–TEDS

The Meta–TEDS contains information about the STIM and its interface. The
following table6 lists all defined fields.

Meta TEDS
Field # Description Field Type

Data Structure related information
1 Meta–TEDS Length U32
2 IEEE 1451 Standards Family U8

Working Group Number
3 TEDS Major Version Number U16
4 Future Extensions Key U8
5 CHANNEL ZERO Industry Extensions Key U8
6 End User’s Application Specific TEDS Key U8
7 Number of Implemented Channels U8
8 String Language Code U8
9 Bytes per Character U8

6All TEDS structure tables are reproduced exactly as in [155].
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Meta TEDS
Field # Description Field Type

Timing Related Information
10 Worst Case Channel Data Model Length U8
11 Worst Case Channel Data Repetitions U16
12 Worst Case Channel Update Time F32
13 Worst Case Channel Write Setup Time F32
14 Worst Case Channel Read Setup Time F32
15 Input/Output Response Time F32
16 Calibration TEDS Write Time F32
17 Worst Case Data Clock Frequency U32
18 Worst Case Channel Sampling Period F32
19 Worst Case Unit Warm Up Time F32

Channel grouping related information
20 Channel Groupings Data Sub–Block Length U16
21 Number of Channel Groupings U8
22 Group Name Length U8
23 Group Name STRING
24 Group Type U8
25 Number of Group Members U8
26 Member Channel Numbers List array of U8

Data integrity information
27 Checksum for Meta–TEDS U16

Data Structure related information
28 Meta–Identification TEDS Length U32

Identification related information
29 Manufacturer’s Identification Length U8
30 Manufacturer’s Identification STRING
31 Model Number Length U8
32 Model Number STRING
33 Revision Code Length U8
34 Revision Code STRING
35 Serial Number Length U8
36 Serial Number STRING
37 Date Code Length U8
38 Date Code STRING
39 Product Description Length U16
40 Product Description STRING

Data Integrity Information data sub–block
41 Checksum for Meta–Identification TEDS U16

The flat, static structure of a TEDS is clearly visible. Strings are stored in
a Pascal–like manner with their length preceding the actual string.
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Channel TEDS

For each sensor or actuator, there is one channel, and hence one Channel
TEDS. Most sensors measure some physical entity, so there is the possibility
to express physical units in a TEDS. Physical units are encoded as products
of the SI base units, each having its exponent encoded [155]:

Physical Unit Encoding
Field # Description Field Type

1 ENUMERATION
0: Unit is described by the product of SI
base units raised to the powers recorded in
fields 2 — 10.
1: Unit is U/U , where U is described by the
product of SI base units raised to the pow-
ers recorded in fields 2 — 10.
2: Unit is loge(U), where U is described by
the product of SI base units raised to the
powers recorded in fields 2 — 10.
3: Unit is loge(U/U), where U is described
by the product of SI base units raised to the
powers recorded in fields 2 — 10.
4: The associated quantity is digital data
and has no unit. Fields 2 — 10 are set to
128.
5 — 255: Reserved.

U8

2 (2 * <exponent of radians>) + 128 U8
3 (2 * <exponent of steradians>) + 128 U8
4 (2 * <exponent of meters>) + 128 U8
5 (2 * <exponent of kilograms>) + 128 U8
6 (2 * <exponent of seconds>) + 128 U8
7 (2 * <exponent of amperes>) + 128 U8
8 (2 * <exponent of kelvins>) + 128 U8
9 (2 * <exponent of moles>) + 128 U8

10 (2 * <exponent of candelas>) + 128 U8

The enumeration field contains more detailed information as to how the
physical unit must be interpreted, and if the data has a physical units asso-
ciated with it at all. There is no further description of digital data. Exponents
of the SI base unit are encoded as (2 ∗ exponent) + 128. A value of 128 in
the TEDS therefore eliminates the respective SI base unit from the result.
Further, it is possible to specify exponents in increments of 0.5, allowing the
declaration of e.g.

√
Hz. As each exponent is encoded in eight bits, the max-

imum representable exponent is 63.5, the minimum representable is −64.
The Channel TEDS itself contains information about the channel’s con-

straints, like its lower and upper range limit. The corresponding physical
units are encoded as described above. If available, a connection to the cor-
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responding Calibration TEDS is included:

Channel TEDS
Field # Description Field Type

Data Structure related information
42 Channel TEDS Length U32
43 Calibration Key U8
44 Industry Extension Key U8

Transducer related information
45 Lower Range Limit F32
46 Upper Range Limit F32
47 Physical Units UNITS
48 Unit Type Key U8
49 Unit Warm Up Time F32
50 Self Test Key U8
51 Uncertainty F32

Data Converter related information
52 Channel Data Model U8
53 Channel Data Model Length U8
54 Channel Model Significant Bits U16
55 Channel Data Repetitions U16
56 Series Increment F32
57 Series Units UNITS
58 Channel Update Time F32
59 Channel Write Setup Time F32
60 Channel Read Setup Time F32
61 Data Clock Frequency F32
62 Channel Sampling Period F32
63 Timing Correction F32
64 Trigger Accuracy F32

Data Integrity Information
65 Checksum for Channel TEDS U16

Data Structure related information
66 Channel Identification TEDS Length U32

Identification related information
67 Manufacturer’s Identification Length U8
68 Manufacturer’s Identification STRING
69 Model Number Length U8
70 Model Number STRING
71 Revision Code Length U8
72 Revision Code STRING
73 Serial Number Length U8
74 Serial Number STRING
75 Channel Description Length U8
76 Channel Description STRING
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Channel TEDS
Field # Description Field Type

Data Integrity Information
77 Checksum for Channel Identification TEDS U16

Calibration TEDS

In [155], the sophisticated representation of calibration parameters is pre-
sented. The Calibration TEDS has the familiar flat structure:

Calibration TEDS
Field # Description Field Type

Data Structure related information
78 Calibration TEDS Length U32

Calibration related information
79 Last Calibration Date–Time U32
80 Calibration Interval U32
81 Number of Correction Input Channels U8
82 Correction Input Channel List U8
83 Correction Input Channel–Key List U8
84 Channel Degree List U8
85 Number of Segments List U8
86 Segment Boundary Values Table F32
87 Segment Offset Values Table F32
88 Multinomial Coefficients F32

Data Integrity Information
89 Checksum for Calibration TEDS U16

The layout of the TEDS parts is strict, inflexible, and not extensible. All
extensions must be implemented using Extension TEDS, or Application–
specific TEDS. Extension TEDS must be approved by the IEEE 1451 body.
Any fields that are not used still use up space. As all TEDS are encoded in
binary format, the resulting structure is very compact.

5.4.2 Discussion

TEDS are not readable without a special tool. Without such a tool, or the
standard at hand, decoding is impossible. Dynamic use is virtually impos-
sible, especially considering extension TEDS — there is no self–describing
information encoded in the TEDS itself.

5.5 CANopen

CANopen is a higher level protocol based on the CAN bus. It’s main tar-
get area is industrial automation. CANopen is looked after by the CAN
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Figure 5.8: CANopen device model

in Automation (CiA) e. V. There are a number of standards that make up
CANopen, starting at the physical layer [21], which essentially references
the original CAN specification from Bosch [11]. On top, the standards 201–
207 [16] define an application level communication model. This communi-
cation model most notably takes care of the automatic assignment of CAN
identifiers, and introduces network management capabilities for initializ-
ing, configuring, starting, stopping, and resetting nodes. DS 301 [17] intro-
duces the CANopen device model with the object dictionary. The standard
also encompasses the definition of data types, and their representation on
the network. The object dictionary is accessed using Service Data Objects
(SDOs), while real–time communication is handled using Process Data Ob-
jects (PDOs). Finally, the standard introduces the notion of device profiles. A
number of device profiles have been standardized by the CiA, each of them
having a standard document number in the 400 range, e.g. the Device Profile
for Generic I/O Modules [20]. The device profile classifies the type of device,
and defines what parts of the object dictionary must be present, and what
kind of functionality the device provides. As the object dictionary is the cen-
tral interface of a CANopen device, this is the part covered by the CANopen
Electronic data sheets (EDS) [19]. The module concept, as described in [19],
with a bus coupler device that can be extended by modules, is very similar to
IEEE 1451 (see section 5.4), where the NCAP corresponds to the bus coupler,
and the STIM corresponds to the module.

5.5.1 Object Dictionary

According to the device model introduced in [17], a device is generally
structured into three parts (see figure 5.8):

• The communication function unit provides communication objects and
functionality to transport data via the network. The actual CAN con-
troller hardware provides most of this functionality.
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• The object dictionary is a collection of all data items having an influence
on the behavior of the application objects and the communication ob-
jects.

• The application comprises the functionality of the device with respect
to the interaction with the process environment.

What parts of the object dictionary address space are implemented is de-
fined in the device profile. The dictionary is addressed using a 16 bit index;
each entry may in turn be indexed by an 8 bit sub–index. The dictionary’s
overall structure is given in the following table:

Index (hex) Object
0000 not used
0001–009F Data Types
00A0–0FFF Reserved
1000–1FFF Communication Profile Area
2000–5FFF Manufacturer Specific Profile Area
6000–9FFF Standardized Device Profile Area
A000–BFFF Standardized Interface Profile Area
C000–FFFF Reserved

The data types section contains the definition of standard data types, and
manufacturer or profile specific data types composed of the standard types.

The communication profile area contains communication related param-
eters, such as bitrate and other low–level timing parameters, the device pro-
file, general node information´and identification, and PDO parameter map-
pings, which essentially define the real–time communication. PDOs, unlike
SDOs, do not incur any protocol overhead, so communication partners must
agree on the contents of PDOs beforehand.

Optionally, a device may choose to implement index 0x1021, allowing
the storage of the device’s description file within the device itself. [17] states
three advantages to this scheme:

• The EDS does not need to be distributed using disks.

• Management of different EDS versions for different software versions
is less error prone, if both are stored together.

• The complete network settings may be stored in the network, easing
analysis and reconfiguration.

It remains a mystery, why this feature was not declared mandatory, given
the stated advantages.

The manufacturer specific profile area is completely vendor dependent,
only the access methods to the respective functionality makes use of the
common access via the object dictionary.
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Figure 5.9: Physical unit representation structure

The contents of the standardized device profile area is defined in the
individual device profile standard documents, e.g. [20] CANopen DS 401
for general I/O modules offering digital and/or analog I/O.

As CANopen devices usually interact with the environment, measure-
ment values are communicated. For each relevant channel, e.g. for each
analog input channel of a generic I/O module according to [20], there is one
optional entry in the object dictionary describing the physical unit associ-
ated with the respective channel. The physical unit is represented in a 32 bit
structure defined in [18] (see figure 5.9). The prefix is an 8 bit signed integer
encoding the exponent of ten, by which the value is scaled. Valid values
range from -18 to +18, representing factors from atto (10−18) to exa (1018).
Both SI numerator and SI denominator are essentially an index to a lookup
table mapping these entries to physical units. The lookup tables not only
include the SI base units, but also a vast number of derived units. While
this scheme is not as flexible as e.g. IEEE 1451’s scheme, it results in a very
compact representation. The complete lookup table is defined in [18].

5.5.2 Electronic Data Sheets

Software tools play an important role in managing the complexity of
CANopen networks. These software tools greatly benefit from having elec-
tronic descriptions of the connected devices, as these eliminate the cumber-
some and error–prone task of manual input [19]. The Electronic Data Sheet
(EDS) serves as a template for a certain type of device A from vendor B. The
Device Configuration File (DCF) contains information about a specific config-
uration of a device, i.e. it is an instantiation of an EDS. The DCF actually
contains values for objects described in the EDS, e.g. for the bitrate, or the
node–ID of a device. The EDS is supplied by the vendor, together with the
device. Usually, the EDS is shipped on a disc accompanying the device.
Vendors may optionally choose to store the EDS on the device itself (see
section 5.5.1).

The EDS is a text file. It is structured into sections. A section is started
with the section’s name in square brackets. Within a section, name–value–
pairs form the section’s entries:

[section name]
name1=value1
name2=value2
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There are a number of restrictions to formatting the EDS, e.g. lines may
be up to 255 characters in length. Of course, this eases parsing, yet the
format is extremely intolerable even trivial noise characters like spaces.

Besides the description of the object dictionary, the EDS contains infor-
mation about the file itself (e.g. the file’s name, its version, and its last mod-
ification time), and some general device information (e.g. vendor informa-
tion, product name, and supported baudrates).

The description of the object dictionary defines which objects of the dic-
tionary are supported. This list is structured into mandatory, optional, and
manufacturer specific objects. Further, each object with each supported sub–
index is described in a separate section containing (among other fields) the
object’s name, its data type, its range limits, and its access type.

Comments may be included in the same format as other information by
defining a section called Comments:

[Comments]
Lines=2
Line1=This is a two
Line2=line comment.

A DCF is constructed by enhancing an EDS by all configuration values
for a specific, configured device. The DCF is structured exactly like the EDS,
but there are some additional entries, most notably ParameterValue entries
for each configured object in the dictionary description.

5.6 LIN

LIN is a communication concept developed in the automotive domain. The
LIN Consortium started out in 1998 as an initiative of Audi, BMW, Daim-
lerChrysler, Volvo, Volkswagen, VCT, and Motorola. LIN’s objective is to
provide a standard for low–cost communication in vehicles, usually as a
cheaper sub–bus to CAN [123].

The LIN 2.0 specification [25] includes the transmission protocol, the
transmission medium, the interface between development tools, and the
interface for software programming.

Communication is handled in a publish/subscribe fashion. Messages
have a unique identifier defining their contents. In a LIN network, there
can only be one publisher for a given identifier, but there can be an arbi-
trary number of subscribers. The bus itself follows a simple master/slave
concept. This simple scheme includes a self–synchronization feature. On
the physical layer, a single–wire implementation with speeds up to 20 kbit/s
is used.

A signal is the basic unit of communication. Either a signal is a scalar
value between one and 16 bits long, or it is a byte array between one and
eight bytes in length. Each signal is transported in the data field of a frame.
Several signals can be packaged into one frame. Actual communication
takes place in two steps:
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• The master node sends the frame’s header,

• and the corresponding publishing slave the response with the actual
contents. The header consists of a break and a sync pattern, followed
by an identifier essentially defining which slave node will be respond-
ing (see figure 5.10).

Plug–and–play of pre–manufactured nodes is one of the major goals.
To achieve this, each LIN node is accompanied by a node capability file
(NCF) [24].

Development of a LIN cluster is partitioned into three phases (see fig-
ure 5.11):

Design: During the design phase, individual node capability files are com-
bined to create the LIN Description File (LDF). This process is called
System Definition. For nodes to be newly created, NCFs can be created
either manually or via the help of a development tool. From the LDF,
communication schedules, and low–level drivers for all nodes in the
cluster can be generated (System Generation).

Debugging and Node Emulation: Based on the LDF, the LIN cluster can be
emulated and debugged.

System Assembly: In the system assembly phase, the final system is assem-
bled physically, and put to service.

A node’s description contains six main parts (see figure 5.12):

1. The node’s name.

2. Properties that specify the general compatibility with the cluster, e.g.
the supported protocol version, the supported bitrates, and the LIN
product identification. The LIN identification is composed of a 16 bit
supplier ID assigned by the LIN Consortium, a 16 bit function ID
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Figure 5.11: Development phases of a LIN cluster

defining the type of device, and a 8 bit variant ID, essentially encoding
a version number for otherwise functionally unaltered devices.

3. Diagnostic properties, e.g. the minimum time between a master re-
quest frame and the following slave response frame.

4. Frame definition: all frames that are published or subscribed by the
node are declared. The declaration includes the name of the frame,
its direction, the message ID to be used, the length of the frame in
bytes. Optionally, the minimum period and the maximum period can
be specified. The frame’s declaration closes with the associated sig-
nals’ definition. Each signal has a name, and a number of properties
associated with it:

Init value specifies the value used from power on until first set by the
publisher.

Size specifies the signal’s size in bits.

Offset specifies the position within the frame (number of bits).

Encoding specifies the signal’s representation. The representation
may be given as a combination of the four choices logical value,
physical value, BCD value, or ASCII value. Declarations of physi-
cal values include a valid value range (minimum and maximum),
a scaling factor, and an offset. Optionally, this can be accom-
panied by a textual description, mostly to document the value’s
physical unit. An example is given in figure 5.137

7The example is taken from [23], page 14.
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Signal

V_battery {
    logical_value, 0, "under voltage";
    physical_value, 1, 63, 0.0625, 7.0, "Volt";
    physical_value, 64, 191, 0.0104, 11.0, "Volt";
    physical_value, 192, 253, 0.0625, 13.0, "Volt";
    logical_value, 254, "over voltage";
    logical_value, 255, "invalid";
}

Figure 5.13: LIN signal definition
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5. Status management: This section specifies which published signals the
master node should monitor to detect if the slave is operating as ex-
pected.

6. The free text section allows the inclusion of any help text, or more
detailed, user–readable description.

The description file is a text file. The syntax is simple and rather similar to
C. Properties are assigned using name = value; pairs. Subelements are
grouped together using curly braces, equivalent to blocks in C.

5.6.1 Discussion

The LIN Configuration Language lacks the possibility to formally specify
physical units in a machine–readable manner. Currently, the language does
not allow the specification of non–functional properties.

Tool manufacturers must write their own parser. Though the syntax
is simple, this requires extra work (as opposed to using readily available
XML parsers). This is also the reason, why the language is harder to extend.
Legacy tools will not be able to successfully parse an enhanced version of
the configuration language. In contrast, with XML, the tool can simply skip
over unknown tags, enabling it to read even an extended version.

The NCFs are not stored in the nodes themselves, therefore one must
keep track of two items in parallel: the node, and its description file.

LIN clusters are a static setup. They cannot be dynamically extended.
There is no dynamic discovery possible.

Nodes are not addressable individually.

5.7 TTP/A

TTP/A [49] is a low–cost communication protocol that follows the time–
triggered paradigm [44]. It was mainly developed at the Vienna Technical
University as part of the Time Triggered Architecture (TTA). The purpose
of TTP/A is the interconnection of smart transducers [84], preferably using
only a single wire [46], or some other means of low–cost communication
infrastructure. Despite lowest cost, hard real–time communication facilities
are provided.

Smart transducers8 provide the infrastructure between sensing elements
and a digital field bus [107]. A smart transducer consists of either a sens-
ing or actuation element, combined with a microcontroller that in turn con-
tains a processing core, memory, and a network controller in one unit. With
MEMS (micro electro mechanical systems), even the sensing elements can
be integrated on one die together with the microcontroller [82]. Such tight
integration significantly lowers cost, as well as noise problems on analog
signals, that are now restricted within a single chip. Using the processing

8This term was first introduced in 1982 in [80].
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core, sensor data is pre–processed. The smart transducer can perform self–
calibration and self–testing. Further, spurious inputs are filtered out. Even
in case of a network failure, a node may potentially continue to retain some
degree of local control of its environment.

TTP/A is designed to provide all services essential for the successful
employment of such smart transducers, including timely communication,
remote on-line diagnostics, sensor parameterization, and plug–and–play ca-
pabilities [83]. Further, TTP/A harmonizes with the fault–tolerant bus sys-
tem TTP/C. TTP/A is designed to form a cost–effective sub–bus to TTP/C.
TTP/A can handle up to 250 slave nodes per cluster [43].

In [46], five key requirements to success for field buses are given:

Cost: Cost obviously must be kept as low as possible. This includes an
adequate plug–and–play scheme to reduce system set–up costs.

Bandwidth: The bandwidth provided should be as high as possible to serve
as many applications as possible.

Real–time capabilities: For real–time applications, a timely communica-
tion facility is a prerequisite.

Error diagnostics: Even for non safety–critical applications, an on–line di-
agnostic feature is relevant to keep maintenance cost low.

Extensibility: The structure of a system often is not constant during the
system’s lifetime. It must be possible to connect, detect and correctly
integrate new nodes.

As the name already suggests, TTP/A nodes use a TDMA scheme for
colision–free media access. Obviously, TDMA schemes require a common
notion of time in all connected systems [83]. Using TDMA also ensures mes-
sage ordering and a low maximum jitter. Architecturally, TTP/A is a mas-
ter/slave scheme. Communication is organized into rounds. The master
node initiates these communication rounds and provides synchronization
for the smart transducers, or slave nodes, for that matter. Each communica-
tion round is started with a so–called fireworks byte. This byte determines
the type of the round and is a reference signal for clock synchronization.
The communication pattern within each round is predefined via the RODL
(ROund Descriptor List). The RODL is stored in a distributed fashion across
all nodes. TTP/A supports eight different fireworks bytes. Their redundant
encoding allows for error checking and startup synchronization [54]. There
are two types of rounds: Multipartner rounds and Master/Slave rounds.
The former is used for the transmission of real–time service data, the latter
is used to access and configure single nodes for diagnostics and configura-
tion.

More specifically, multi partner rounds consist of a configuration depen-
dent number of slots. For each slot, a different sender (and receiver) is as-
signed (see figure 5.14). The complete round is defined in the RODL data
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structure. Obviously, the RODL must be configured in all slave nodes prior
to the execution of the corresponding multipartner round. In contrast, Mas-
ter/Slave rounds have a fixed layout that establishes a connection between
the master and a particular slave for accessing a node’s interface file system
(IFS). The IFS e.g. can be used to access the node’s RODL information. In
a Master/Slave round, the master addresses a data record in the IFS and
specifies an action (reading, writing, or executing). Master/Slave rounds
are scheduled periodically between multipartner rounds (see figure 5.15).
Thus, maintenance and monitoring is enabled during normal system opera-
tion without a probe effect. Addressing of nodes in a master/slave round is
done using a short logical node ID. This ID is only valid in the cluster. It is
either assigned at compile time or on–line when the node is integrated into
the cluster. The on–line assignment of this ID is called baptizing. Baptizing
enables true plug–and–play in TTP/A. The basis for baptizing a node is the
node’s physical name, which is stored in the node’s documentation file (see
section 5.7.1).

5.7.1 Interface File System

The Interface File System (IFS) [84] is a distributed file system shared by all
nodes of a TTP/A cluster. It supplies a structured name space for the data–
elements that are exchanged among the nodes of a cluster. It serves as a
basis for all higher–level protocols that assign meaning to the contents of
IFS file records. The assignment of meaning is done in TTP/A node de-
scriptions, termed Smart Transducer Descriptions (STDs). The address of an
IFS record is composed of the following three parts:

<file name><node name><record number>
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A record is the smallest addressable unit in the IFS. All records have
a constant length of 32 bits [49]. This simple structure is beneficial when
implementing TTP/A on very small nodes.

There are three operations on the IFS records: read, write, and execute.
Four different file types are distinguished:

Documentation files: These read–only files contain documentation about a
node. Two records of a node’s documentation file are reserved for the
node’s unique physical name that is the basis for TTP/A’s plug–and–
play features.

Input–output files are used to store observations and parameters.

RODL files obviously contain the round descriptions. The RODL file name
is also the round name. The master node can initiate the execution of a
specific RODL by naming it within the fireworks frame. RODL records
have the following structure:

<round position><op–code><file–name><length><file record address>

Such a record tells the node, at what position in the round an action
(read, write, or execute) is required. The op–code field specifies which of
these actions is required. File–name identifies the file that is involved
in the action. The length field specifies the length of the data frame,
and the file record address specifies which record is involved in case of
a read or write operation.

Since individual RODL files can be addressed and manipulated just
like any other files, programming of a new RODL can be performed
using the standard file access methods without the need to introduce
any special concepts and mechanisms.

Special command files contain executable program modules that can be
executed. The transmitted data of a round forms the input parame-
ters for such an invocation.

Single reads and writes from and to the IFS are atomic. If a higher level
of atomicity is needed, the user has to design an own concurrency control
protocol.

TTP/A gateways provide access to a TTP/A system via three distinct
interfaces views:

• The Real–time service interface (RS) provides time sensitive information
like sensor values.

• The Diagnostic and management interface (DM) enables monitoring and
administration functionality. This is even possible during normal sys-
tem operation, if rounds are scheduled appropriately. The master can
e.g. access and modify a nodes internal diagnostic data or calibration
values.
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• The Configuration and planning interface (CP) is used to initialize a net-
work. It can also be used to automatically detect nodes on the bus, to
baptize nodes, and to program the RODL files on the slave nodes.

5.7.2 Description mechanisms

Description is used twofold in TTP/A: Smart Transducer Descriptions (STDs)
describe smart transducers concerning their static properties. Cluster Con-
figuration Descriptions (CCDs) are concerned with configuration information
about a cluster of smart transducers. Both description types are written
in XML. The structure of these descriptions is defined with XML schemas.
Both STDs and CCDs are presented in the following sections. This presen-
tation is mainly based on [107], where all elements of the descriptions are
presented in detail.

STDs

Via the smart transducer interface specification [103], CORBA applications
gain access to smart transducers. The TTP/A clusters themselves do not
need to be changed. The TTP/A master node is connected to the CORBA
gateway using any convenient interface (see figure 5.16), e.g. RS232 [85].
Originally, CORBA was not concerned with hard real–time requirements.
In [91], an approach towards extending CORBA for hard real–time systems
is presented.

Communication within a TTP/A cluster is without redundant informa-
tion such as the name of an observation that is transmitted in a specific time
slot, as this information is intrinsically known via the RODL. At the CORBA
interface, the complete information about an observation (name, time of ob-
servation, and value) is made available.
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Since smart transducers have only very limited storage capacity, the
metadata describing the semantics of the smart transducer is stored exter-
nally to the smart transducer. It is accessible through a register service. The
metadata is composed of a description of the smart transducer in plain En-
glish, and an XML fragment describing the RODLs.

The register service takes care of linking a smart transducer to its de-
scription via the smart transducer’s physical name. In [103], the subdivision
of physical names into a series number defining the type (and manufacturer)
of device, and a serial number is proposed. Further, a yellow–pages–like ser-
vice is suggested.

Static STDs describe a type of node. Further, STDs may be used to repre-
sent individual nodes. These STDs can be seen as instances of a static STD.
They carry the dynamic properties of a node.

The STD’s structure is presented in figure 5.17. All elements termed
DMV are actually three distinct elements grouped together because of
space considerations. The three distinct elements are named Documentation,
MetaInformation, and View, short DMV. These general description elements
are used to supplement the document. The Documentation element is op-
tional. It may contain an arbitrary combination of text and sub–elements.
This appears to be mainly useful for additional user–readable documen-
tation. The MetaInformation element is supposed to hold additional infor-
mation for e.g. the presentation of an element in a tool. Finally, the View
element allows locally specifying stylesheets for the presentation of an ele-
ment.

STDs are structured into four major blocks. The first two blocks mostly
contain information for identifying and classifying a node. The processor
block is for documentation purposes. It contains detailed information about
the processor used, e.g. the processor vendor’s name, the processor’s name,
and a link to the processor’s data sheet. Further, details about the proces-
sor’s clock, like its frequency, type, source, and even clock drift information
is available. The node block contains properties important for node identifi-
cation, like node vendor’s name, device name, device version and revision.
In case of an STD describing a specific node, the unique node identifier is
contained. If the STD is part of a CCD, the short local node identifier is also
included. The protocol block consists of low–level information necessary for
the successful integration of a node into a network. It contains information
about the supported protocol version, and baud rates. Further, the type of
UART implementation (software or hardware), and even the UART’s jitter
are given. If the STD is part of a CCD, the RODLs relevant for the current
node are given. The description of the IFS file layout concludes the protocol
block. It describes what parts of the IFS are available, with what type of
memory individual parts are implemented (ROM, EEPROM, or RAM), and
how these parts can be accessed. The concluding node service block contains
a detailed description of a node’s capabilities. For each capability, the gen-
eral description structure is similar to a method signature: it consists of the
capability’s name, and its input and output parameters. For TTP/A, this en-
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compasses the IFS entries relevant for the particular capability. Individual
parameters are typed using the XML schema type system. This type system
can be enhanced by specifying local types. Each node service structure de-
scribes one distinct capability of a smart transducer. For services, a distinc-
tion is made between fixed services that cannot be changed, default services
that can be changed at run–time, and application services that are created by
the user application. The ServiceType defines, of which type a specific ser-
vice is. The ServiceName is used to assign meaning to a specific service. For
each of the blocks input, output, configuration, and internal state information,
parameters can be specified using identical structures. While the first two
sections are rather obvious, the latter two require a short explanation: config-
uration parameters are used to configure a service to a user’s need, usually
on system start up, e.g. setting a threshold value. Internal state information
provides information beyond a traditional method signature and specifies,
what internal parameters are accessible via the IFS, e.g. for diagnostic pur-
poses. For each parameter in these four sections, its data type is specified
in terms of XML schema types — including local enhancements. Further, if
the parameter represents a measurement value, its physical unit is given as
a string. To complete the parameter information, constraint information on
the parameter is given, e.g. value range, precision, and resolution.

CCDs

The main focus of TTP/A’s description framework is support for configura-
tion management [107] — the reason being the multitude of configuration
parameters in a modern field bus network, and the resulting complexity
of managing such systems. CCDs contain information about all relevant
system properties — static and dynamic — of a particular cluster, e.g. com-
munication baud rate, communication schedules, and a list of nodes in the
cluster.

The configuration information can be sub–classified into the following
categories:

Communication schedules: Time–triggered protocols need an a priori def-
inition of static communication schedules. In TTP/A, this information
is stored in a distributed fashion. Each node holds that part of the
overall configuration that involves itself.

Node parameterization information consists of parameters specifying
working modes, calibration information, and threshold values.

Local node application code can also be seen as part of the configuration
information, if it is dynamically replaceable.

A CCD is an XML file containing this information. With the help of a
software tool capable of accessing the cluster, it is possible to (re–) configure
a cluster.
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The CCD’s structure is presented in figure 5.18. As with the discussion
of the STD’s structure above, the elements termed DMV stand for the three
distinct elements Description, MetaInformation, and View.

The first of the five major parts, called ClusterDescriptionMetaBlock is con-
cerned with the description document itself. Notably, it contains the ver-
sion number of the description format in use (ClusterDescriptionFormatVer-
sion), and the cluster’s identification number (ClusterIdentificationID), which
is used to access a specific cluster from CORBA. A Round Sequence (ROSE)
defines the order of the executed rounds. It is defined in the ROSEBlock.
Individual rounds are described as references to the respective RODLs that
are defined in the following block. The ConfigurationBlock contains the defi-
nition of all RODLs, as well as all necessary low–level parameters for com-
munication, like the cluster’s baud rate. All parameters in the Configura-
tionBlock are valid for the whole cluster. The ClusterNodeBlock contains a list
of all nodes in the cluster. The list entries can either be references to STDs, or
instances of STDs containing a snapshot of the current configuration state
of each node. Finally, the ViewDisciplines block provides the definition of
views of the system. Each view consists of a viewer and a list of elements
that are shown in this view.

One of the tools making use of CCDs is the Configuration and Planning
Tool presented in [108]. It uses CCDs to visualize and configure clusters
semi–automatically. CCDs can be fairly large in size, [108] states 124 kbytes
for a demonstration setup composed of 8 smart transducers. Unfortunately,
it is unclear, whether the individual transducers’ STDs are included in these
124 kbytes, or not.

Application descriptions

In [48] and [47], a description scheme for distributed applications is pre-
sented. Distributed applications are composed of individual jobs. These
jobs run on nodes in a cluster. Jobs in an application interact with each
other via the real–time interface. This models the functional and data flow
linking between jobs. In addition, configuration dependent properties —
such as the sample rate of a sensor — and end–to–end requirements — such
as end–to–end signal delays in control loops — need to be specified. These
end–to–end requirements are expressed as dependencies. Three types of
dependencies exist:

Connection dependencies represent data flow. Each dependency is di-
rected from its source to its target. Inputs may have only one connec-
tion to another output, whereas outputs may feed an arbitrary number
of inputs.

Causal dependencies represent the subsequent execution of jobs.

Phase dependencies represent non–causal time–related dependencies.
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As stated in [48], these properties are mapped to XML descriptions in
a simple and straight–forward manner. Application descriptions are cur-
rently not based on XML schema.

[47] introduces the TTP/A scheduler to facilitate the automatic creation
of (static) communication schedules for TTP/A clusters using these appli-
cation descriptions. The generated communication schedules are verified.
The verification process also uses information beyond the contents of the
application description, e.g. the intended communication bandwidth. Any
unused bandwidth is allocated for diagnostic and management purposes.

To produce the communication schedules, the TTP/A scheduler trans-
forms the application description into a graph representing all jobs and
their dependencies. This graph is called Precedence Graph. Its vertices rep-
resent jobs. Directed edges stand for causal dependencies, i.e. direction of
data flow and precedence of that dependency. Undirected edges represent
phase dependencies. Phase dependencies are transient, which simplifies the
graph. The scheduling algorithm will then produce valid RODLs if

• there are no loops in the graph, i.e. a job must not depend on results
from itself (Control loops are still possible, as the feedback path is ex-
ternal to the model.),

• only one directed causal edge exists between a pair of jobs, and

• no phase dependency is given, if already a causal path exists between
two jobs, i.e. mutually dependent jobs must not be in phase.

5.7.3 Discussion

Software development for TTP/A slave nodes is independent of the de-
scriptions. The application developer is conceptually offered a shared mem-
ory interface to the communication layer. On the AVR platform, a hardware
abstraction layer and the TTP/A execution environment is available (Details
for TTP/A on the AVR architecture are given in [45]).

CCDs contain valuable configuration information in an automatically
processable way. STDs in contrast, are currently more suitable for docu-
mentation purposes: Data types of parameters are defined in terms of XML
schema types. While this provides valuable information if data is exchanged
in XML, it does not specify how these data types are encoded in binary form
on the TTP/A bus. Further, physical units of measurement values are en-
coded as strings. There is no further meta information, or even just a set
of recommended designations available, so it is virtually impossible to pro-
cess this information automatically. It is also not easily possible to represent
arbitrary scalings and offsets of values.
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5.8 Analysis and Comparison

5.8.1 Component orientation

LIN, IEEE 1451, CANopen, TTP/A, Jini, and Web services can all be thought
of as dealing with components in the sense defined in section 2.1. For LIN,
IEEE 1451, CANopen and TTP/A, components are actually hardware com-
ponents. Here, the terms node and component may be used interchange-
ably. For Jini and Web services, components are software entities. Possibly,
each component may be running on individual nodes, but this is neither a
prerequisite, nor the common case. All of these technologies make no as-
sumptions about any other dependencies between their components other
than the interface specified. With Web services, this interface is very flexible.
For the field bus technologies LIN, CANopen, TTP/A, and essentially IEEE
1451, the technical, operational interface of the components is rather fixed,
only a number of parameters will influence the component’s behavior, and
the kind of operation actually carried out. Of course, the semantics behind
the operations always depend on the type of nodes, and the application they
are used in.

UPnP might look like a real component–oriented approach, even more
than Jini. Yet, UPnP is seldom capable of providing the complete interface
necessary for a component. Consider the popular streaming media servers.
Most of the current devices provide UPnP access. Yet, UPnP is only used
for discovery, remote control, and setup purposes. Media transport is done
using different protocols, e.g. RTP streams [118], [111], [112], [113], [114],
[115], [116], [110].

5.8.2 Component life cycle support

This section discusses the presented technologie’s support for the compo-
nent life cycle as introduced in sectio 2.1.1.

None of the technologies presented in this chapter mentions component
design as part of their user support. Necessarily, vendors support the com-
ponent designer with tool chains, yet, these are proprietary. Data exchange
among tools of different vendors is only given by the means of component
descriptions, if available, e.g. in IEEE 1451, CANopen, and TTP/A. Notably,
LIN specifies the data format used to interchange information among tools.

Component implementation is inherently supported by Jini, as the com-
ponent’s interface is defined using Java interfaces. Obviously, this support
remains of a rather basic nature. It currently goes as far as having an IDE
automatically enhance a class with empty methods that will implement in-
terfaces. The UPnP standard does not address implementation issues at all.
The standard explicitly states that UPnP is a network protocol, not an API.
The UPnP stacks available on the market offer implementation support at
varying degrees, i.e. their API is more or less comfortable to use. For IEEE
1451, and CANopen, very little information is publicly available in terms
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of programming support. Vendors usually provide a protocol stack with
a defined, proprietary API. In the case of IEEE 1451, pure hardware solu-
tions for the smart transducers themselves may be favorable, completely
eliminating the need for software development support. With LIN, the API
is defined in the standard. For TTP/A, protocol stacks are available for a
wide range of platforms. To implement Web services, there are a number of
frameworks available. They mostly differ in terms of comfort offered to the
developer. To date, the most comfortable tool certainly is Visual Studio 2005,
which will turn a .NET component into a Web service by simply adding a
[Webservice] annotation to the component’s class, and a [WebMethod]
annotation to each operation that will constitute to the Web services inter-
face. Even the necessary WSDL descriptions are produced automatically
from the class’ interface.

Component integration is the phase that almost all presented technolo-
gies are most focused on. Both UPnP and Jini provide means to discover
services at run–time. Services with known interfaces may be dynamically
made use of. Usually, service usage is based on user interaction, e.g. a
user of a digital camera may want to print a picture. The user can then ei-
ther be presented a list of available devices, or he simply invokes a function
like print on any available printer. There are no widely spread planning and
simulation tools available for either UPnP or Jini. In terms of compatibil-
ity, UPnP devices must adhere to at least one of the device profiles defined
by the UPnP forum. No checking beyond the supported device profile at
run–time is possible. Jini ensures compatibility via the service’s interface.
For both, there are no means to check a system for completeness in terms
of available services, devices. They are designed to be inherently open and
dynamic networking technologies. In a LIN tool chain, the System Defining
Tool is used to set up a cluster. Individual nodes in the cluster are meant
to be replaceable, yet the cluster itself is not extensible without a complete
reconfiguration. Compatibility checking across nodes is not covered by the
standard. Smart transducers according to IEEE 1451 are meant to be re-
placeable parts in fixed configurations. As they are not directly connected
to a network, the integration phase for smart transducers is part of the de-
sign phase of the IEEE1451.1 device. The TEDS ensures that the IEEE1451.1
device can cope with slightly differing smart transducers. CANopen does
not provide any standardized tools or methods for integrating a number of
nodes into a system. TTP/A provides a tool for cluster planning, configura-
tion and simulation. Network schedules are generated automatically from
application descriptions. Verification tools, including bandwidth usage, are
provided. It would be possible to verify the correct data types and data
ranges across multiple nodes, however, verifying the correct physical unit
remains problematic due to their encoding as strings in the STDs. For Web
services, the quality of integration support varies with the tools used. UDDI
strives to provide a lookup service for finding the right service.

During Component usage, the components usually work invisibly in the
system. On some occasions, it may be desirable to retrieve information
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about a component for reference. UPnP devices not only provide their
(XML) descriptions on–line, but they also feature an optional HTML page
describing the device in a convenient format. IEEE1451 TEDS may be re-
trieved using special tools. For CANopen, the ability to store the device’s
description in the device itself is only optional. Otherwise, the description
file needs to be retrieved off–line, as with LIN. TTP/A STDs are stored on
a web server; their URLs can be retrieved from the devices. For Web ser-
vices, some servers are able to deliver a web service’s WSDL description.
Jini does not provide any on–line documentation facilities beyond the at-
tribute mechanism at the lookup service. Attributes are not retrievable from
the services themselves, however, unless they provide an appropriate, yet
non–standardized interface.

In section 2.1.1, two important steps of the maintenance phase are men-
tioned: identification and retrieval of the configuration information. It is of
great value, if the system can provide the maintenance personnel with this
information. Keeping configuration information only externally poses the
risk of loosing the data, and the risk of having outdated information. UPnP
devices and Jini services are identified using a UUID. Neither technology
provides a default interface for accessing configuration information. With
LIN, individual devices cannot be identified, and their configuration is only
accessible externally in the LDF. IEEE 1451.2 smart transducers support both
identification (through several entries in the Meta TEDS), and retrieval of
configuration information (via the respective TEDS entries). CANopen pro-
vides similar, yet less powerful facilities. It is important not to loose the off–
line DCF, otherwise the information is incomplete and those parts retriev-
able from the device cannot be interpreted correctly. Of course, CANopen
devices able to serve their own EDS provide an exemption to this problem.
With TTP/A, most necessary meta information is kept off–line in the STDs
and application descriptions. Web services obviously are easily identifiable
via their URL. Their configuration is usually off limits outside the server
machine.

Disposal is not addressed by any of the approaches presented in this
chapter.

5.8.3 Descriptive features

Jini lacks any special description facilities beyond the attribute facility used
with the lookup service. The achievable level of detail (section 2.3.3) is up
to the user, but since there is no standardized (section 2.3.6) default set of at-
tributes, the automated processability (section 2.3.2) is limited. On the other
hand, the set of attributes is easily extensible (section 2.3.5). Comments
in the source files may adhere to the Javadoc conventions [127] and thus
include the operations signatures (section 2.3.7). They can then be trans-
formed into human readable HTML documentation. Javadoc comments are
not available in the compiled byte code, i.e. they are external to the compo-
nent.
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UPnP description documents are (possibly large) XML files. They can
only be retrieved in one piece at run–time from the respective devices. De-
vice and service descriptions are machine checkable against their respec-
tive template languages. Thus, UPnP descriptions are written in a formal
language (sections 2.3.1 and 2.3.2). They can be checked for completeness
in terms of the underlying standards document (sections 2.3.4 and 2.3.6).
The descriptions do not concern themselves with low level communication
details, as they are setup automatic (section 2.3.3). The description of ser-
vice operations is essentially a description of the operation’s signature (sec-
tion 2.3.7). It contains its name, its parameters, their names, types and di-
rection. Errors are often reported using a parameter typed as integer. Valid
ranges are defined not in the description documents, but in the respective
UPnP service standards. The semantics behind all operations, and in fact,
the available set of operations, is also defined in the standards documents.
As operations cannot be sufficiently described in the service descriptions,
user defined services (i.e. services not approved and published by the UPnP
Forum) are of very limited use (sections 2.3.5 and 2.3.6). True dynamic us-
age is not possible.

Web service descriptions in WSDL (a formal language, sections 2.3.1 and
2.3.2) provide the operations’ signatures, i.e. its name, and parameters in-
cluding their details (section 2.3.7). Any semantics can only be encoded in
the name of the operation. Approaches like SAWSDL try to enhance WSDL
to include semantic information (section 2.3.5).

LIN descriptions are much more detailed in comparison: they provide
meta information about the node, and a detailed specification of all in– and
outgoing messages (section 2.3.3). The message definition covers the com-
plete parameter range. Each value can either be assigned to carry a logical
value, or a physical value. For physical values, the accompanying units are
encoded as strings, providing maximum flexibility, yet limited processing
possibilities (section 2.3.2). The possibility to describe the combination of
logical and physical values within a single parameter is unique. While this
in–band signaling certainly is highly efficient, it tends to complicate auto-
mated processing. Most encoded logical values will present some kind of
error condition, e.g. as shown in the example in figure 5.13. However, as
not all logical values are necessarily error conditions, automatic classifica-
tion is difficult to achieve: it can only rely on the logical value’s description.
Extensibility is rather hard to achieve in a backward compatible way due to
the descriptions’ syntax (section 2.3.5).

IEEE 1451.2 TEDS are focused around the features and properties of sen-
sors and actuators, they lack any communication properties (section 2.3.3).
What makes them stand out is the possibility to specify physical units in
a sophisticated, machine–readable manner (section 2.3.2). There is a slight
trade–off towards keeping the description very compact: exponents of SI
base units can only be given in increments of 0.5, and they are limited to
a range of −63.5 to 64. Of course, in practice, this is not a serious limita-
tion. The missing possibility to specify an offset weighs heavier. Otherwise,
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the TEDS may even include detailed calibration information. This feature
is not necessary in other schemes, such as COSMIC. COSMIC devices will
do calibration internally. Due to its binary notation, strict standardization
is necessary (section 2.3.6). The TEDS are complete in terms of the TEDS
standard (section 2.3.4).

CANopen EDS is focused on describing what parts of the device’s object
dictionary are implemented, and what parameters apply to the entries. The
EDS will mostly contain the description of a defined set of object dictionary
entries, as specified in the applicable device profile (section 2.3.6). It is pos-
sible to represent physical values. The representation is even more compact
than in IEEE 1451.2 TEDS: it uses only 4 bytes compared to the 10 bytes for
IEEE 1451.2. Clearly, quite a bit of flexibility must be sacrificed to achieve
this.

Besides providing general information about nodes, TTP/A STDs cover
two main topics. The first is concerned with protocol issues. It contains in-
formation about the RODLs on interest for the device (section 2.3.3). The
second describes the node’s functionality in terms of signatures containing
the function’s name, its address within the IFS, and its parameters (similar
to operation signatures, section 2.3.7). For each parameter, the correspond-
ing physical unit is given as a string. This seriously limits the possibility for
automated processing (section 2.3.2). It is possible to enhance each informa-
tion block by a block of meta information for documentation purposes. Fur-
ther, tools may store tool–specific information in the respective area for each
block. There are three features clearly distinguishing TTP/A STDs from the
other approaches:

• The integration of communication information.

• The possibility of documentation for each data block.

• The structural integration of tool–specific information.

While the first two are sensible, integrating tool–specific information into a
node description is not a very good idea. This information tends to bloat
the description significantly, as the tools grow more powerful, and increase
in numbers. Also, the information stored there is only useful for the specific
tool the developer used. Any maintenance personnel or other users will not
be able to make use of it.

LIN, CANopen, and TTP/A distinguish between template descriptions
and instantiations of these to cover properties of a specific incarnation with
configured parameters. Further, LIN and TTP/A support descriptions of
whole clusters. These cluster descriptions make use of the structure of indi-
vidual node descriptions. Essentially, cluster descriptions provide a wrap-
per around multiple node descriptions.

TTP/A currently is moving forward another step by introducing appli-
cation descriptions. Application descriptions model an application in terms
of jobs running on different nodes, and their interaction. These descriptions
allow to automatically generate TTP/A schedules.
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5.8.4 Configuration management

This section discusses the suitability of the presented technologies in terms
of their support for configuration management as introduced in section 4.2.

Planning and building of distributed system is not an issue for UPnP and
Jini. These technologies aim at selling individual nodes to consumers who
will subsequently connect them to a loosely coupled system. Web services
follow a similar approach, only the business model is different. IEEE 1451.2
does not concern itself with planning smart transducers, as such devices are
kept simple enough to be easily deployable. They are connected to their
host processor using a point–to–point connection. The CANopen standards
do not describe any methodology towards cluster planning. For LIN, tools
for planning and simulating clusters are available from different vendors.
The wide availability of such tools was part of the goals behind LIN. The
data exchange among those tools is done using the LDF. For TTP/A, simi-
lar tools exist ranging from manual scheduling to application planning with
automated schedule generation. Tools for simulating and verifying sched-
ules are available.

Automated parameter configuration is partly provided by TTP/A applica-
tion planning and scheduling tools, and by LIN network design tools. IEEE
1451 does not provide any automatic configuration. CANopen devices may
be able to auto–configure a few low–level communication parameters, most
notably the bitrate used. UPnP devices automatically configure their net-
working parameters on connection to a network. Jini services and Web ser-
vices usually do not have any needs for auto–configuration.

Service discovery plays a central role in both UPnP and Jini. Both tech-
nologies employ UDP Multicast for discovery. UPnP does so via the stan-
dardized SSDP. In Jini, discovery of the lookup service is done via a pro-
prietary protocol. Web services do not offer any discovery facilities. The
same applies to LIN, IEEE 1451, CANopen. TTP/A provides the possibility
to baptize new nodes within the system, which requires finding out their
unique ID. A binary search algorithm across the name space is performed.
This can be seen as a discovery protocol. However, it is rather hard to sub-
sequently integrate the new node into the existing cluster without a recon-
figuration of the cluster.

The discovery process only reveals the presence of a component. The
component starts to be useful only if it, or some proxy service, accepts
queries about the component’s capabilities. UPnP devices only provide
coarse query capabilities. Device and service descriptions must be retrieved
in whole. Analysis is left to the retriever. UPnP devices handle queries
themselves, there are no central or proxy servers. In contrast, Jini services
register with a (local) lookup service. The lookup service essentially is a
proxy that will handle queries about other services. The granularity of the
queries is also rather coarse, though finer than with UPnP: Query properties
can either be set to a don’t care state, or they must match exactly. Any finer
matching must be done by the queree. For Web services, technologies like
UDDI were introduced to query services. They all represent proxy services;
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a Web service does not support direct queries in a standardized way. LIN,
IEEE 1451, CANopen and TTP/A do not offer any query services.

5.8.5 Compatibility Checking

Jini relies on Java interfaces to guarantee compatibility among services and
clients. Obviously, this will not be enough to enforce properties beyond
those inherent to the language, e.g. timing constraints cannot be checked.
UPnP devices mostly adhere to standardized profiles. Even though their
interface is declared in the service descriptions, and therefore dynamically
invoking calls to an arbitrary service would be possible, it is seldom use-
ful if the semantics are not known. Mostly, known services are searched
for. On–line compatibility checking might be performed, yet it is not part
of the standard. One of LIN’s goals is to facilitate the construction of sys-
tems from pre–manufactured components. These are accompanied by their
description files. Yet there are no means towards enabling automated or as-
sisted replacement of components by other, similar ones, i.e. the LIN spec-
ification does not talk about compatibility checking. With IEEE 1451 smart
transducers, replacement by successors, or otherwise ”better” versions are
one of the goals. Yet, the standard does not discuss any compatibility check-
ing. It is up to the NCAP to handle e.g. the connection of a sensor of the
wrong type, or of an insufficiently precise sensor. Similarly, CANopen and
TTP/A are not concerned with compatibility checking. TTP/A descriptions
would offer enough detail for such checking, though. For Web services, no
compatibility checking is provided.

5.8.6 Testing

Black–box testing (or any other approach) is not directly supported by any
of the approaches presented. For approaches that feature declarative de-
scriptions, assisting a tester is possible, if the descriptions contain relevant
information, e.g. valid data ranges. Specifically LIN and TTP/A come clos-
est to this.

5.8.7 Real–time capabilities

UPnP, Jini and Web services are not real–time capable, as defined in sec-
tion 2.2. Strict real–time guarantees were not a design goal. LIN, IEEE
1451 smart transducers, CANopen and TTP/A are able to provide real–time
guarantees. IEEE 1451 transducers and CANopen devices are polled. They
guarantee to answer within bounded time. LIN and TTP/A have prede-
fined schedules. A master initiates the communication round sequences
and provides clock synchronization signals. Both are not able to provide
any other service class like SRT or NRT.
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5.8.8 Logging

It is extremely hard to provide central logging facilities capturing all com-
munication in UPnP, Jini and Web service systems. For IEEE 1451 smart
transducers, logging can easily be done at the NCAP. In clusters of LIN or
TTP/A logging is best done at the master node which has significantly more
power and storage available than other nodes. Because the master usually
works as a gateway node to another backbone network, it is also the natural
place where one would expect logging information. Generally, logging is
easy if there is a shared communication bus, such as a field bus. Of course,
this holds for CANopen. Yet, logging is only mentioned explicitly with LIN
and TTP/A.

5.8.9 Simulation and Emulation

A system can either be simulated as a whole, or it can be emulated in parts.
LIN and TTP/A provide system simulation. With LIN, even system emu-
lation and debugging is described. This eases the system integration phase
by allowing to build the system piece by piece. Also, in case an individual
device is not yet available, the system can already be tested and debugged.
All other approaches do not elaborate on system simulation.

5.8.10 Summary

The following table summarizes the presented related work to give a com-
pact overview. The details behind this short summary can be found in the
previous sections.
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Chapter 6

COSMIC

The vision behind COSMIC is that of a networked physical world. In this
world, all devices may interact with each other and their physical environ-
ment. As an example, consider yourself driving home in your car. Right
as you pull up your driveway, your garage door opens, and the light in the
house is turned on. Smart devices, such as the controller for the garage door,
populate this world. They may encapsulate both software and hardware, so
they are able to interact with their environment. Interaction with the envi-
ronment is done via sensors and actuators. Smart devices can also commu-
nicate among each other using COSMIC interaction abstractions discussed
below. Conceptually, smart devices are modeled as sentient components.
The notion of sentient components was introduced in section 2.1.2. Each
device acts autonomously and context–aware in response to aspects of its
environment. When interacting with the environment, the devices’ inter-
action and reaction must conform to real–time constraints, especially when
operating in safety critical environments. Independent subsystems must be
able to take local decisions and interact with other subsystems via network-
ing capabilities, or via the physical environment. Interaction among devices
often must also conform to real–time constraints. Special interaction pat-
terns are necessary to combine timely communication with local autonomy.
An event–based anonymous communication scheme is able to meet the re-
quirements. In case of defects, the smart devices must be easily replaceable.
Cost is also a critical issue. Of course, power consumption must also be
limited, especially when operating on batteries or other limited means of
supply. The smart devices often also must adhere to space constraints, so
they can be integrated seamlessly into the environment.

Typically, applications will group a number of cooperating devices in-
side a wider network universe, which is composed of different physical net-
works with widely varying characteristics. The networking technologies
may range from embedded field buses to high speed backbones. Often, a
hierarchy of communication networks is present, e.g. a field bus network
inside the car from the example above, and a wireless link enabling it to
communicate with the ”infrastructure”, e.g. the garage. Generally, the hier-
archy of networks can be classified into a tighter coupled network within an
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entity (the car), and a possibly loosely coupled network linking the entity
with other entities (the garage). The former is called controller area network
(CAN) in a broad sense, not necessarily based on the CAN field bus [11].
In more abstract terms, a CAN is also called island of control. The latter is
called wide area network (WAN), independent of the actual network technol-
ogy employed. The CAN and the WAN are connected via gateways. This
hierarchical structure enables cooperation of islands of control via the WAN.
Cooperation must be achieved in a timely and reliable manner. This model
is called a WAN–of–CAN structure. It may be composed recursively over
an arbitrary number of levels. Often, islands-of-control are composed of a
number of small and severely constraint devices. Further, a more powerful
node is often part of the system. This node may be connected to different
networks, i.e. it may form the gateway to another network.

6.1 Interaction model

COSMIC uses an event–based interaction model. Hence, events are the main
abstraction of the interaction model. Rather than specifying addresses, a
content–based scheme is used. Producers and consumers of events specify
what type of events are produced, or of interest, respectively. The result is
an anonymous many–to–many communication scheme. Events do not im-
ply any specific model of synchrony. They may be spontaneously generated
and disseminated immediately, triggered by an occurrence in the environ-
ment or the system itself. Asynchronous communication also avoids artifi-
cial control flow dependencies among participants. This leads to autonomy
of the participants.

Autonomy and anonymity are advantageous for dependable systems.
Yet, these properties alone cannot guarantee the timeliness of the required
information under all anticipated load and fault conditions. The underlying
network needs to provide a certain level of predictability. As a WAN–of–
CAN structure may include many physical networks with widely differing
predictability properties, the event model cannot provide a single degree of
predictability for all events in the system. Instead, it must be possible to
explicitly express different quality requirements. This problem is tackled in
COSMIC via the notion of event channels. An event channel encapsulates
the dissemination properties of the underlying network in a high level ab-
straction in terms of application requirements. This is especially important
when interaction is dynamic and spontaneous, e.g. when mobile devices
want to interact with a new or changing environment. Different predictabil-
ity classes are beneficial even on a single network, as predictability comes at
a price, and not all events need the same reliability and timeliness guaran-
tees. The middleware supports a high level of abstraction, yet it should be
appropriate for resource constraint smart devices.
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6.1.1 Events

As mentioned above, events are the main communication abstraction used
in COSMIC. COSMIC components interact by producing and consuming
events, i.e. they share information without transferring the flow of control.
Producers and consumers do not specify source or destination addresses,
instead, a content based scheme is employed, i.e. events are typed infor-
mation carriers. Because analyzing the complete contents of an event, as in
systems like e.g. Siena [13], requires a large amount of resources, a subject–
based scheme is used. This significantly lowers resource requirements and
enables fast filtering of events based on their subjects. Events distinguish
themselves from simple messages by carrying information about the con-
text in which they where generated, and quality attributes defining require-
ments for their dissemination. Thus, event instances are specified as:

event := <subject, attributes, content>

The subject corresponds to the event type and thus is related to the event
contents. Attributes is a list of name/value pairs complementing the event
contents. The attributes capture context information about the event, like
location, or time of generation. Events are time/value entities that even-
tually expire and may become harmful for the system if used after expira-
tion — a phenomenon well known from real–time systems [12]. Therefore,
the event’s validity interval is an important quality attribute. The omission
degree, another quality attribute, defines under which conditions a correct
transmission is guaranteed. The event’s content part carries the actual data
to be shared, e.g. temperature, in degrees centigrade.

Both observations of real–time entities, and programmed changes within
the system are uniformly treated as events. This is supported by the notion
of smart devices, which encapsulate all low–level computations and do not
allow direct access to their internal structures. From an architectural per-
spective, smart devices are only visible as networked components with an
event interface, a view also shared by [84]. On the respective abstraction
level, these smart components are represented as active objects, publishing
and consuming events. A generic architecture called GEAR (generic event
architecture) has been presented in [135]. In this architectural model, objects
interact exclusively via an event layer, which hides both the actual network
and the transformation process of real–world events. Thus, it is possible
to reason in terms of generic events. COSMIC, and the event and event
channel abstractions in particular, provide a specific way to realize such an
architecture [136].

In COSMIC, events are used for another important abstraction. Instead
of communicating raw measurement values, data is provided in events us-
ing a more useful level of abstraction. Considering even simple devices like
e.g. temperature sensors, it is beneficial to transmit not raw data. Raw data
would include e.g. all measurement noise. The data is highly specific to a
certain type of sensor, and possibly even to an individual sensor, if the sen-
sors vary significantly. Therefore, an application using such sensors must
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be tailored to specific sensors, and do all calibration and filtering itself. Re-
placement of such a sensor would greatly be obstructed. Switching from a
PTC to a NTC sensor would even require changes to the application. COS-
MIC devices provide temperature events instead. The data disseminated is
not provided as raw data, but correlated to a corresponding physical unit,
e.g. degrees centigrade for temperature events. COSMIC devices also filter,
calibrate, or otherwise pre–process the data in a suitable manner. This al-
lows the creation of more generic high–level applications. The underlying
smart sensors can easily be replaced as long as the provided data meets the
application’s requirements.

6.1.2 Event Channels

Event channels enforce the temporal and reliability requirements of the
communication. Event channels are unidirectional entities, i.e. a compo-
nent can either publish to an event channel, or subscribe to it, but not both.
Thus, similar to events, event channels are defined as

event channel := <subject, attributes, handlers>

The subject defines the type of events that may be communicated via the
channel. Attributes is a list of (quality) properties defining the channel’s
dissemination properties, e.g. periodicity, deadline, maximum latency, or
reliability. While the attributes of an event describe the properties of a sin-
gle individual occurrence of an event, the attributes of the event channel
abstract the properties of the underlying communication network. There
are two handlers: a regular event notification, and an exception handler.

Event channels allow specifying quality attributes on the application
level. Whenever a publisher makes an announcement for publication, or
when a consumer subscribes for an event notification, an instance of an
event channel is created locally. On publication announcement, the pub-
lisher specifies the quality attributes it is able to deliver. When a consumer
subscribes to an event channel, it may specify context attributes of an event
which are used to filter events locally, e.g. if only events generated at a cer-
tain location are of interest. An advanced filtering scheme working on event
attributes in an efficient manner has been proposed in [74]. Additionally, the
consumer specifies quality properties of the event channel.

COSMIC distinguishes three event channel classes according to their
synchrony properties:

• Hard Real–Time. This synchrony class guarantees event delivery
within the validity interval in the presence of a specified number of
omission faults. A deadline for delivery is derived from the validity
interval.

• Soft Real–Time. Soft real–time event channels derive deadlines for
scheduling from the validity interval. In overload situations, these
deadlines cannot be guaranteed. In such a case, it is possible to detect
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the temporal inconsistency using the validity interval. Thus, aware-
ness can be raised in the application.

• Non Real–Time. Non real–time event channels do not provide any tem-
poral specification and disseminate events in a best effort manner.

The notion of event channels not only allows an application to specify its
dissemination quality attributes on a high level, but also provides the mid-
dleware implementation with the possibility to reserve necessary resources
when a channel is created. The middleware takes care of mapping these
channel properties to lower level protocols which will meet the requested
requirements.

6.2 The COSMIC middleware

Each node runs an instance of the middleware locally. It’s internal architec-
ture is presented in figure 6.1. The respective components are discussed in
the following sections. The COSMIC middleware is subdivided into three
distinct layers. The uppermost layer provides the application with the event
channel abstraction. It takes care of routing and filtering events, and maps
events into appropriate event channel classes. The middle layer is respon-
sible for providing the respective guarantees for these classes. The lowest
layer consists of a hardware driver.

Since COSMIC supports a hierarchical network structure, an artifact con-
necting different networks is required. Nodes connected to multiple net-
works hence function as transparent gateways.
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6.2.1 Event Channel Handler

On each node hosting COSMIC components1, the middleware is repre-
sented by an artifact called event channel handler (ECH). This event channel
handler provides the COSMIC component with a standard API to the event
channel abstraction on all platforms. The ECH is responsible for event rout-
ing and filtering, depending on the application’s requirements. The ECH’s
API is composed of the four calls described below:

announce( subject, attribute list, exception handler );

Before publishing events, the producer must announce them. The
announcement is necessary to set up the respective event channel at
the local event channel handler. This includes the reservation of data
structures, lower level bindings, and the preparation of routing and
filtering. Subject is a unique identifier specifying the type of events
that are going to be published. The attribute list contains the quality
properties that define the event channel, such as latency, omission
degree, and periodicity.

If the channel cannot be set up in a way compatible with the applica-
tion’s requirements stated via the attribute list, i.e. if not enough
resources are available, the call to announce fails.

After successfully calling announce once for each subject to be pub-
lished, the application can subsequently call publish to actually dis-
seminate events.

Later on, when operating, the exception handler will be called in
case of faults (e.g. timing faults with a publish).

publish( event );
Publish commits the the event to the ECH. The ECH enters the
event into the respective outgoing transmission queue, as set up on
announcement.

subscribe( subject, attribute list,
notification handler, exception handler );
Before receiving event notifications, the application must subscribe
to the subject of interest. Respective quality properties are speci-
fied in the attribute list. On subscription, the respective event
channel is set up at the local event channel handler. This also includes
setting up the necessary routes for event delivery from the producers
to the consumer.

Subsequently, whenever an event arrives, the notification-
handler is called by the middleware. In case an event does not ar-
rive on time, or other failures are detected, the exceptionhandler
is called.

1For smart devices, each node typically hosts exactly one COSMIC component.
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Only events from producers providing equal or stricter quality prop-
erties are delivered.

unsubscribe( subject );
If an application is not interested in a specific type of event any more, it
can unsubscribe from the respective subject. This helps clean up
both local resources, and remote resources: routing table entries and
network bandwidth may be released if there are no further subscribers
on a given branch in the network.

It can be seen that this API provides general access to event channels.
Low–level details, such as the selection of the event channel class, are invis-
ible. The middleware will determine the appropriate event channel class
based on the quality attributes specified on announce or subscribe,
respectively. Even subscribing with very lax quality attributes that are
mapped to Non Real–Time, while the publisher produces events using a
Hard Real–Time scheme, the application does not need to consider such
change in semantics on the communication side — the ECH handles every-
thing transparently as long as the requested quality attributes on the con-
suming and on the producing side are compatible.

In case of failures, the application is notified using the specified excep-
tion handlers. This leaves the responsibility of dealing with errors to the
application; exactly the place it belongs. The COSMIC middleware should
not and cannot know how to react to such failures.

6.2.2 Abstract Network Layer

Below the ECH, the abstract network layer (ANL) provides media indepen-
dent abstractions for the different real–time classes.

Conceptually, the ANL incorporates three handlers for the three differ-
ent real–time classes. Their job is to provide the ECH with communication
facilities guaranteeing certain quality:

HRTC Handler: Hard real–time events are disseminated using a TDMA
scheme. All necessary resources are reserved a priori. The HRTC
handler stores a calender according to which events must be dissemi-
nated. Thus, hard guarantees for event delivery can be enforced. The
middleware always delivers events to the consumer at the deadline.
This guarantees constant latency and the smallest jitter possible for
periodically produced events.

SRTC Handler: Soft real–time events are disseminated using dynamic pri-
orities. Their dissemination priority is increased when time is nearing
their deadline. Any events that expired, i.e. that are already older than
their validity interval before being sent, are discarded. Thus, no a pri-
ori reservations are necessary. Events are extracted from the queue for
dissemination based on their priority.
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NRTC Handler: Non real–time events are disseminated in a best effort
manner. Events are processed in a FIFO manner.

As an optimization, the SRTC handler and the NRTC handler may be
combined into a single component while the respective event queues remain
separated mainly due to performance reasons.

6.2.3 Communication Driver

At the lowest level of the COSMIC architecture, a network driver resides. It
provides primitives for handling the actual communication hardware.

6.2.4 Global Time Service

The global time service provides the middleware with a synchronized clock.
A synchronized clock is necessary to support a calender based dissemina-
tion scheme for hard real–time event channels, as well as for determining
the expiration of events disseminated through soft real–time channels.

6.2.5 Gateways

Nodes connected to multiple physical networks can function as gateways
from one network to the other. The gateway has separate instances of the
ANL and driver layer for each network it is connected to. To applications,
gateways are transparent. This is a required since the notion of event chan-
nels is end–to–end, and not concerned with intermediate entities.

6.2.6 The implementation

Currently, a mapping of the previously discussed architectural abstractions
to the CAN bus, and to TCP/IP networks is implemented on a number of
platforms. The supported platforms cover a wide range from cost–effective
small 8 bit microcontrollers, such as the Freescale HC08 family, to PCs run-
ning Linux and RT–Linux. Figure 6.2 classifies well–known middleware
frameworks and COSMIC in terms of usually implemented device poten-
tials2.

For a communications middleware, the supported network systems are
also important. Most middleware frameworks, e.g. Jini, UPnP, and Web Ser-
vices, rely on TCP/IP as the network protocol suite of choice. This enables
them to make use of any kind of network medium that can be provided with
an IP stack. While IP stacks are available for a lot of network media, not
all of these are suitable for widespread use. Useful and widespread media
include Ethernet, 802.11a/b/g, and Token Ring, to name a few. When de-
signing a middleware framework for small embedded components, TCP/IP
usually is not a good choice:

2The figure does not hint any minimum or maximum system requirements. COSMIC is
currently implemented on all platforms written in italics.
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Figure 6.2: Middlewares and their usual range of application

• Its protocol stack is rather large and implementation is unfeasible in
most components. On an 8 bit microcontroller with only a few kilo-
bytes of RAM, a complete TCP/IP stack eats up a substantial part of
the resources. The popular Nut/OS3 for the Atmel AVR family e.g.
requires 12 kBytes of Flash and 49 bytes of RAM for the TCP/IP stack,
excluding the low–level hardware driver4.

• In embedded systems the networking stacks tend to be very minimal-
istic, traditionally. This saves resources for the application and allows
for better predictability. With TCP/IP, predictability is basically im-
possible to achieve. In the automotive and the factory automation do-
mains, the CAN bus is a popular networking subsystem.

The current COSMIC implementation makes use of both the CAN bus
and a TCP/IP network for inter–node communication. Real–time commu-
nication is only implemented on the CAN bus; the TCP/IP implementation
works for Non Real–time channels.

3Nut/OS and the Ethernut platform can be found at http://www.ethernut.de. All pre-
sented numbers are taken from that website, too.

4To run the provided HTTP server, the on–chip 4 kByte RAM is not enough; about
10 kBytes of external RAM are required. Also, the HTTP server requires another 3 kBytes
of ROM. The Ethernet driver requires about 4kBytes of ROM and more than 100 bytes of
RAM

http://www.ethernut.de
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COSMIC Unique Identifiers

COSMIC uses globally unique identifiers for node and subject identifica-
tion. While standard 128 bit UUIDs are widely used, the current COSMIC
implementations use 64 bit identifiers for both historical and technical rea-
sons. A length of 64 bit can conveniently be handled on the CAN bus. To
achieve uniqueness with 64 bit identifiers, the 64 bits are split up as follows
(see figure 6.3): 31 bits of geographical position and 33 bits of time stamp.
The geographical position is further split up into 15 bits of latitude, and 16
bits of longitude. The time stamp is the number of seconds since January,
1st, 2005, 12:00am UTC.

Using 15 bits for latitude and 16 bits for longitude yields areas of at most
1.2km by 1.2km at the equator, assuming the earth is a perfect sphere. As
most of the earth’s surface is covered with water, and little software de-
velopment takes place on the sea, it would be possible to shrink the area
covered by a single latitude/longitude vector further. Essentially, a lookup
table based approach could be used, provided all developers use the same
table. As 70% of the earth’s surface is covered with water, the areas mak-
ing up the lookup table can be made smaller than 700m by 700m. The 33
bits for the time stamp will provide enough address space for the next 272
years. Where generating only a single identifier per second is not enough,
older “unused” identifiers can be used. Unused identifiers are identifiers
that did not get generated while the generating entity — e.g. a corporation
— was occupying a certain spot in the grid.

CAN identifiers

The CAN bus [11] uses message identifiers instead of traditional addresses.
The message identifiers define what the message contains. They can be as-
signed arbitrarily in a CAN system, as long as no identifier is sent by more
than a single device.

The bus arbitration also makes use of the message identifiers: Access to
the bus is controlled in a CSMA/CR fashion. This is achieved by exploit-
ing the wired–AND characteristics of the physical bus, where a logical 0 is
dominant, and a logical 1 is recessive, i.e. a node transmitting a logical 0 will
”overwrite” a logical 1 on the bus. This is used during the arbitration phase.
When a node wants to transmit a message, it waits for the bus to be idle, like
in traditional CSMA schemes. The first part of the transmission is the mes-
sage identifier. During each bit’s transmission, the node monitors the bus.
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If it detects that the bus does not carry the same bit it tries to transmit, the
node just lost the bus arbitration and aborts its transmission. Thus, after the
complete message identifier has been sent, it is clear which node may pro-
ceed to send the rest of the message. No collisions can occur, if no identifier
is sent by more than one node, as stated above. To summarize, the message
identifier with the lowest numerical identifier has the highest priority and
wins access to the bus.

COSMIC exploits this arbitration mechanism. The message identifiers
are subdivided into three sections. There are two kinds of message identi-
fiers: 11 bit standard identifiers and 29 bit extended identifiers. The 29 bit ex-
tended identifiers provide enough space to include all three fields with fea-
sible sizes. The extended identifiers cause some extra overhead. However,
this ”overhead” is made up for by encoding useful information in the iden-
tifiers [70]. Specifically, the identifiers are partitioned into (see figure 6.4;
MSB is sent first):

• a priority field,

• a sender field, and

• a e–tag field.

The priority field is used to distinguish the different real–time classes.
The highest priority is reserved for hard real–time communication. The
HRT channels are scheduled according to a TDMA scheme, which is de-
scribed in more detail in the following section. The NRT channels have a
fixed priority of 255, the lowest possible. Messages belonging to SRT chan-
nels use dynamic priorities in between. The SRT event’s deadline is dynam-
ically mapped to a message priority by the SRTC handler, as described in
section 6.2.2. The priority increases while the event is nearing its deadline.

The sender field is used to keep the identifiers unique. During start–
up, each node is configured. During this configuration process, the node’s
unique identifier (which is a COSMIC unique identifier as described in the
preceding section) is mapped to a short identifier. This short identifier is
subsequently used in the sender field of each message leaving the respective
node. This ensures that all message identifiers remain unique in the system,
even though their priority and e–tag fields may match. As seven bits are
used to encode the sender, a maximum of 128 nodes are possible on a CAN
bus with the current implementation.
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The e–tag field is used to encode the event channel that the message be-
longs to. Similar to the sender field, the e–tag is a shortened event channel’s
subject (which again is a COSMIC unique identifier as described above).
The e–tags are assigned on announcement of publication or subscription to
an event channel. A component called event channel broker (ECB) is respon-
sible for assigning these short nodes. The details about the ECB are not
important for this work; more details can be found in [70]. The encoding of
the event channel within the message identifier provides a means to filter
incoming messages efficiently. On many platforms, this can even be done
by the hardware. Many CAN controllers incorporate filtering facilities for
the message identifiers. By filtering the 14 LSBs based on the event channels
that are locally subscribed to, this can tremendously lower the CPU load.

Hard Real–Time communication on CAN

Figure 6.5 (top part) gives an overview how communication is arranged in
COSMIC in the time domain. This section covers the basic characteristics;
more details are presented in [72] and [69].

As previously mentioned, a TDMA based scheme is used for Hard Real–
time operation. Communication is partitioned into rounds that are re-
peated. For each hard real–time event, a communication slot is reserved a
priori to avoid conflicts [71]. During the non–reserved time (and during the
unused reserved time), soft and non real–time events are communicated.

The reserved time slots are further partitioned (lower part of figure 6.5.
At the beginning, a waiting time is introduced. This waiting time corre-
sponds to the time needed to transmit a single message across the CAN net-
work. Some nodes that do not participate in HRT communication may not
know about the reserved slots, and transmit messages at will. This requires
said waiting time, because messages cannot be preempted on the CAN bus.
The special layout and distribution of the CAN identifiers (see figure 6.4) en-
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sures that any HRT message will win the bus arbitration over any other SRT
or NRT message. After the waiting time, the actual HRT message is trans-
mitted. Depending on the allowable omission degree, it may be repeated
a number of times. Repetitions are omitted if the message was transmitted
successfully. This is also possible because of the distinct features of the CAN
bus. Further, reserved slots are only used when new data is available. Taken
together, these features help keeping the overhead to a minimum. Between
any two reserved slots, a gap has to be inserted to account for clock offsets.
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Chapter 7

The CODES Approach

COSMIC provides suitable abstractions for small smart devices, specifically
for their interaction. Still, the development of such smart devices is a non–
trivial task. The COSMIC middleware provides an easy to use communica-
tion infrastructure. Still, software development for such small devices is an
error–prone task, as described in chapter 3. The problems are obviously not
limited to developing a component’s software. More problems arise when
integrating individual components into a larger system. Traditionally, it is
hard to ensure compatibility of the components in the system. COSMIC
e.g. assumes that all devices subscribing or publishing a specific subject
know how to correctly encode and decode the respective events. Yet, there
is no way of enforcing this. Cross–checks are traditionally done checking
the components’ specifications manually.

In the highly dynamic vision of COSMIC, a system may have to cooper-
ate with other systems dynamically. Consider a robot as a COSMIC system.
This robot is moving through e.g. different factory halls. Over time, these
buildings incrementally may be equipped with indoor localization systems
similar to GPS, e.g. as proposed in [106]. The existing robots should then be
able to dynamically make use of the localization systems, as they become
available. Such dynamic cooperation of systems requires awareness of the
potential cooperation partners, as well as knowledge about how to make
use of those potential partners. Currently, a wide range of research is ex-
pended in this area, e.g. the SAWSDL project as introduced in section 5.1.2.
Many projects provide a means for declaring semantic information, and its
relations in a machine–processable manner, e.g. in the form of ontologies,
such as with OWL [138], [58].

The CODES (COsmic embedded DEvice Specifications) approach tack-
les these problem areas. It has a number of goals that aim at supporting a
smart component’s life cycle from the design phase to disposal. The central
element of the approach is the component’s description. In detail, these are
(see also figure 7.1):

• Support for component design and development. The descriptions form
the component’s documentation. They can be used to generate parts of
the component’s code. Also, they can be used to assist the developer in
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Figure 7.1: Benefits of using CODES

black–box testing the components.

• Support for component integration. The descriptions provide the details
necessary to run compatibility checks across a number of components.
They can be used to generate the scheduling calenders necessary for
hard real–time operation on the CAN bus. Also, other application
specific parameters can be accessed and set on integration. Further,
the description of components can be used to simulate components not
yet available.

• Support for system maintenance. When systems are in need of mainte-
nance, it is crucial to know the exact composition of the system. The
online availability of the component’s description provides the main-
tainer with all necessary information for configuration management.

• Support for dynamic cooperation. Dynamic cooperation of components
requires awareness of possible cooperation partners, and the knowl-
edge what these partners may provide. Awareness is raised via a
discovery and query mechanism. The CODES descriptions provide all
details necessary to communicate with partners. Currently, semantic
information is contained in names, e.g. the subjects or events. In the
long run, these names can function as pointers into ontologies. Thus,
CODES descriptions can be integrated with e.g. semantic web technol-
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ogy to enable autonomous dynamic cooperation of components with-
out any user interaction.

7.1 Requirements for the descriptions

In order to achieve these goals, the requirements from section 2.3 have been
detailed.

The descriptions must be able to function as documentation of the com-
ponents (see section 2.3.8). More specifically, a description must specify a
component as a black–box, i.e. the component’s network interface must be
specified completely (see sections 2.3.7 and 2.3.4). This view is shared by
all presented approaches from the embedded domain in chapter 5. To com-
plete the documentation, general information about the component, such as
its name, serial number, or manufacturer must also be part of the descrip-
tion. This allows the identification of the component.

The descriptions should be in a text–based format, enabling their use
even in the absence of special tools. It is probable that even in the long
run, ASCII or Unicode based text files will be readable (see sections 2.3.2
and 2.3.6), as opposed to some proprietary binary format, such as e.g. the
IEEE 1451 TEDS. Using an arbitrary text format is not sufficient. Consider
a format that would only list the values of parameters necessary for some
component. The index within this sequence of values will determine what
parameter any given value is associated with. Such a format will be useless
without the accompanying document describing the sequence of parame-
ters (see section 2.3.2). Further, it is very prone to errors like mis–ordering
of values, omission of values, or extra values. LIN descriptions partly use
such parameter lists, specifically in the signal definitions, as presented in
figure 5.13. Thus, the format must explicitly list each parameter, and its as-
sociated value. Finally, the parameters should be named in a way that at
least domain experts will be able to deduce their meaning.

The descriptions must be machine–readable and checkable for grammat-
ical correctness and completeness (see sections 2.3.1 and 2.3.2). All technolo-
gies presented in chapter 5 share this requirement. It provides the basis for
successfully using the descriptions in automated processes.

To avoid the creation of a language that is extremely universal, yet hard
to use, and that hinders the creation of efficient tools, the language must be
based on a suitable set of abstractions. All description formats presented
in chapter 5 are naturally tailored to the abstractions and technologies they
strive to support. CODES is no exception to this rule. It is based on COSMIC
abstractions. This results in a description format that defines a component’s
interface at a suitable level, both for the designer and for the users of the
component (see section 2.3.3).

To achieve interchangeability of devices, e.g. when a failed device needs
to be replaced, a detailed description of the component’s capabilities is re-
quired. Compatibility checks then allow to determine, whether a given de-
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vice can be used as replacement. Thus, the descriptions must contain low–
level technical details, such as e.g. the layout of the events’ data structures,
as well as high–level quality attributes (see section 2.3.3).

The description format should be flexible enough to allow for future
extensions (see section 2.3.5). Extended descriptions should be backwards
compatible with older tools and devices. Again, consider the replacement of
a failed device. It should be possible to integrate a device with an extended
description without upgrading the rest of the system.

To enable autonomous dynamic cooperation of devices, the (machine–
readable) descriptions must be available at run–time. This raises awareness
about any available services. In contrast to simple plug–and–play schemes,
dynamic cooperation requires the presence of semantic information that can
be used to find relevant services (see section 2.3.8).

The descriptions must be stored and manageable on small systems.
Static descriptions are obviously best suited in that respect. This is an-
tipodal to the need of integrating possibly dynamic parameters that may
change from time to time. The direct integration of such parameters into
the description is vital for dynamic cooperation, e.g. the update frequency
of the stated indoor localization system is relevant to the maximum speed
the robot may safely drive with.

7.2 Design of the description language

XML was chosen as the basis for the description language. XML supports a
number of the previously given requirements for the description language:

• It is text–based, and thus readable, even without special tools. A text
editor basically suffices.

• It can be seen as a form of documentation, at least for domain experts
with some knowledge of XML. The tags’ names, if chosen carefully,
will be an important hint for the domain expert to the respective tag’s
semantic meaning.

• Well–tested tools and transformation languages exist, e.g. XSLT to
transform the descriptions into HTML documentation, or XSLT–FO
to transform them into PDF. These transformations are also used oth-
erwise, e.g. for code generation (see section 7.3.2) and the query mech-
anisms (see section 7.3.3).

• XML allows a structure that ensures that for each parameter, its name
and its value is given: the parameter’s name is the XML tag’s name,
and the tag’s contents represents the parameter’s value.

• XML files can be checked for grammatical correctness, if an appropri-
ate XML schema document or an appropriate document type defini-
tion exists.
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• An appropriate XML dialect, based on the COSMIC abstractions, can
be defined with an XML schema or a document type definition.

• XML documents are machine–readable and processable. A wealth of
well–tested tools to process XML are available, ranging from parsers
to transformation engines.

• Extensibility can easily be achieved with XML. According to the FXPP,
current software may simply ignore unknown tags. This ensures
backwards–compatibility of revised descriptions with existing tools.

The XML family of technologies offers two possibilities for defining a
grammar for an XML dialect: document type definitions (DTDs) and XML
schema documents. As DTDs lack support for a type system, XML schema
was chosen [100].

A syntax designed from scratch would require the development of own
parsers and processing tools. This would not only generate a lot of work,
but also be error–prone. Even if parsers exist, a number of other drawbacks
still remain. A C–style language e.g. could easily be confused with code.
Section based formats, such as used with CANopen, are unable to support
hierarchical structures. Finally, the readily available transformation tech-
nologies, most notably XSLT, are not easily usable outside XML. Thus, a
number of uses of the CODES descriptions would be much harder to imple-
ment, e.g. the code generation, and the documentation transformations.

On the downside, XML documents tend to be rather large, and a lot
of resources are necessary to process them. This opposes the use of XML
with small devices. Still, XML was deemed feasible on small devices. Small
devices are able to handle static descriptions, if their size is not too large.
Thus, two problems needed to be tackled:

1. The descriptions need to be static, i.e. the device cannot dynamically
change its description. As some of the entries in the descriptions are
not static, a parameterization scheme is required. This scheme is pre-
sented in section 7.2.2.

2. The descriptions need to be shrinked in size. This can easily be
achieved as XML documents compress well. WBXML was tried, but
the compression ratio of about 2:1 was insufficient [100]. GZip is read-
ily available and on average achieves a compression ratio of about 10:1
(see table 7.1). This enables the storage of the descriptions even on
very small devices, as only a few kilo bytes of ROM are necessary.

Like many programming languages, CODES is defined by a context–free
grammar [121], [57]. Yet, there are meta rules not included in the grammar
that make the CODES language context–sensitive.

The CODES language is used to describe COSMIC components. Each
component is described in a separate document. Earlier versions of the lan-
guage were presented in [105] and [76].
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Device XML size GZIPped size
Infrared distance sensor 35.2K 2.7K
Acceleration sensor 38.6K 2.8K

Table 7.1: Device description sizes

To allow the validation of description documents, a XML schema docu-
ment defining the CODES grammar was developed. The following sections
present the details of the description language. The respective parts of the
CODES XML schema are presented in each section. Thus, the descriptions
are presented in plain text along with their formal definition. Details and
elements used in multiple places throughout the descriptions are presented
when they first occur. Elements from the XML schema name space are given
with the commonly used xs prefix.

7.2.1 Contents and structure of the description language

CODES descriptions are based on COSMIC abstractions. Thus, the descrip-
tion of events and event channels form the core of the descriptions docu-
ments. Further, some general information about the component is included
in the documents. This gives meta–information about the components and
allows their identification. These three parts are reflected directly in the
description documents. Finally, a versioning entry is included in the docu-
ments. Thus, the overall structure is:

<xs:element name="CODES">
<xs:complexType>
<xs:sequence>
<xs:element name="DocumentVersion" type="xs:string" />
<xs:element ref="GeneralInformation"/>
<xs:element ref="EventDefinitions"/>
<xs:element ref="EventChannelDefinitions"/>

</xs:sequence>
</xs:complexType>

</xs:element>

It would be possible to combine the definition of an event type and its
associated event channel into a single part. This would eliminate the need
to cross–reference the event channels’ definitions with the respective event
definitions, thus easing the process of validating, whether the description is
correct. The combination of aspects that were deliberately separated on the
conceptual level is not acceptable, however. The description format was de-
signed to resemble the underlying abstractions closely. The added overhead
for checking the cross–references was deemed acceptable.

General Information

To allow the unique identification of a device, information about the de-
vice itself is necessary. This section of information thus contains a globally
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unique identifier for each device. Additionally, the section describes the de-
vice in terms of its name, its type, its manufacturer, and its supported event
channel classes allowing the identification and classification of the device.
The section about the device’s OperationalConnections documents the
device’s communication capabilities. As the nature of these capabilities dif-
fers significantly depending on the actual networking technology, they are
represented as a list of CommunicationParameters. The setup of the ba-
sic communication is done without the knowledge from the descriptions. It
cannot be deduced from the descriptions, since they can only be retrieved
after communication is technically possible, i.e. after the devices can suc-
cessfully exchange network messages. This boot–strap problem is shared
by all self–describing technologies. The basic setup can be achieved through
either a static scheme, such as with IEEE 1451 transducers, where all com-
munication parameters are fixed a priori. On the other end of the scale,
systems like UPnP heavily rely on automatic configuration on various lev-
els, e.g. automatic link configuration of an ethernet network, and automatic
setup of IP communication over ethernet. The COSMIC implementation for
TCP/IP delegates the setup to the TCP/IP stack. The CAN implementation
currently uses a static setup. On CAN, the most important parameter is the
bit rate. Traditionally, the bit rate is fixed a priori by the system designer.
Still, auto–detection techniques have been developed for this, e.g. as pre-
sented in [147]. Thus, COSMIC for CAN could also employ a truly dynamic
setup. Further information, like the employed processor, hardware and soft-
ware version, and a plain text description of the device and its features are
mainly for documentation purposes. The FullInformation element con-
tains a URI to a site that provides at least a copy of the description, and
possibly further information about the device, e.g. a set of pictures, and
some application notes.

The GeneralInformation block is of particular interest during the
integration and maintenance phases of the component life cycle. How-
ever, it also contains information of how to dispose of the device. This
includes hints for dismantling, as well as information about hazardous ma-
terials used in the device, and their handling. For pure software compo-
nents, the RecyclingInformation element holds removal instructions.
In most current systems, disposal information is neglected. None of the
approaches presented in chapter 5 considers the disposal of the respective
components. For software systems, this often results in symptoms described
as bit rot [153] or DLL hell [154] [42].

<xs:element name="GeneralInformation">
<xs:complexType>
<xs:sequence>
<xs:element name="NodeUID" type="CODESID"/>
<xs:element name="DeviceName" type="xs:string"/>
<xs:element name="DeviceType" type="xs:string"/>
<xs:element name="Manufacturer" type="xs:string"/>
<xs:element name="Processor" type="xs:string"/>
<xs:element ref="OperationalConnection"
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maxOccurs="unbounded"/>
<xs:element name="HardwareVersion" type="xs:string"/>
<xs:element name="SystemSoftwareVersion"

type="xs:string"/>
<xs:element name="Description" type="xs:string"

minOccurs="0"/>
<xs:element name="FullInformation" type="xs:anyURI"/>
<xs:element ref="SupportedChannelTypes"/>
<xs:element ref="RecyclingInformation"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="RecyclingInformation">
<xs:complexType>
<xs:sequence>
<xs:element name="Hint" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="HazardousMaterial" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="Dismantling" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="OperationalConnection">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element ref="CommunicationParameters"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Normally, each element listed in a sequence must appear exactly once.
The addition of minOccurs="0" marks an element as optional; the addi-
tion of maxOccurs="x" allows to specify an arbitrary number x (larger
than 0) or appearances. If an indefinite number of appearances is allowed,
x is given as unbounded. Both attributes can be combined for an element.

<xs:element name="SupportedChannelTypes">
<xs:complexType>
<xs:element name="EventChannelType" type="channeltype"

maxOccurs="3"/>
</xs:complexType>

</xs:element>

<xs:simpleType name="channeltype">
<xs:restriction base="xs:string">
<xs:enumeration value="HRT"/>
<xs:enumeration value="SRT"/>
<xs:enumeration value="NRT"/>

</xs:restriction>
</xs:simpleType>
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Nodes and events are distinguished based on their unique IDs. These
IDs must be globally unique for unique kinds of events, and for each device.
Currently, the implementation uses 64 bit identifiers. As longer identifiers
may be desirable for future implementations, e.g. standardized and well–
known 128 bit UUIDs, it should be possible to move from one to the other.
As XML Schema allows the definition of user defined types, the identifiers’
type can easily be adjusted. The currently used 64 bit identifiers must be
given in hexadecimal notation:

<xs:simpleType name="CODESID">
<xs:restriction base="xs:string">
<xs:pattern value="0x[0-9A-Fa-f]{16}"/>

</xs:restriction>
</xs:simpleType>

As mentioned above, the list of CommunicationParameters is a list
of name–value–pairs. For each parameter, its name, the associated value
and the value’s unit is given. Like the attribute lists presented later on,
the communication parameters’ units are represented in a special, machine–
readable manner.

<xs:element name="CommunicationParameters">
<xs:complexType>
<xs:sequence>
<xs:element ref="CommunicationParameter"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="CommunicationParameter">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Value" type="xs:string" />
<xs:element ref="Dimension" minOccurs="0"/>
<xs:element name="Description" type="xs:string"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>

Event Definition

The EventDefinitions part contains a list of all events that the device
exchanges, both incoming and outgoing.

<xs:element name="EventDefinitions">
<xs:complexType>
<xs:sequence>
<xs:element ref="Event" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
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Each event is described according to COSMIC’s model as discussed in
section 6.1.1. The event’s subject is given both as a string and a unique
ID. The plain text subject carries a hint towards the event’s semantics. The
unique ID is the identifier used by the COSMIC middleware, as discussed
in section 6.2.6. Across the world, there may be multiple UIDs for the same
subject. Each UID, on the other hand, uniquely identifies a certain subject.
The Description element complements the subject by more detailed in-
formation for the user. The structure of the list of attributes and the event’s
data structure (its contents) is discussed below. The attributes necessary for
each event are presented in section 6.1.1.

As introduced before, COSMIC devices act autonomously. They con-
sume and produce events. For some applications, e.g. for control loops, it
is necessary to have components that exhibit a certain behavioral pattern
that cannot be expressed by COSMIC primitives. Consider a regulation
component consuming some measurement as input, and producing out-
put that is in turn used by an actuation component. The MayTrigger and
WillTrigger elements can be used to model a flow path for such control
loops. MayTrigger contains subject UIDs that name the types of events
that may be created as a result of the appearance of the current event. Ac-
cordingly, WillTrigger lists the types of events that will be created as a
result of the appearance of the current event.

<xs:element name="Event">
<xs:complexType>
<xs:sequence>
<xs:element name="Subject" type="xs:string" />
<xs:element name="SubjectUID" type="CODESID" />
<xs:element name="Description" type="xs:string"

minOccurs="0" />
<xs:element ref="Attributes" />
<xs:element ref="DataStructure" />
<xs:element name="MayTrigger" type="SUIDList"

minOccurs="0" />
<xs:element name="WillTrigger" type="SUIDList"

minOccurs="0" />
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:complexType name="SUIDList">
<xs:sequence>
<xs:element name="SubjectUID" type="CODESID"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

The attributes associated with an event are grouped together in a list:

<xs:element name="Attributes">
<xs:complexType>
<xs:sequence>
<xs:element ref="Attribute" maxOccurs="unbounded"/>
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</xs:sequence>
</xs:complexType>

</xs:element>

There are two possibilities to specify attributes:

1. specify a generic <Attribute> element

2. specify an element for each kind of attribute, e.g. <Expiration-
Time>.

The former keeps both the description and the schema readable, but com-
pletely looses the possibility to check the description for missing attributes,
e.g. an event’s expiration time, by simply validating it against the CODES
schema. In this case, the need for an extra tool to check the descriptions
arises. This tool would need to have an implicit knowledge about needed
event attributes, or it would need this knowledge explicitly written down
somewhere — both of which is not desirable as it splits up the needed in-
formation into two parts: the tool and the schema. The latter way largely
retains the possibility to check for all needed attributes by validating against
the CODES schema, as all needed information is explicitly stated. Unfortu-
nately, it also enlarges the CODES schema considerably. It therefore be-
comes more unreadable and more difficult to maintain.

Attributes need to be defined for several entities in CODES: Events, data
fields, and event channels. To allow extensibility and ease of implementa-
tion, attributes are encoded directly as generic name–value–tuples. In most
cases, the values have a unit associated with them, which is also part of the
attribute’s description.

The unit is represented in a machine–readable way to enable dynamic in-
teraction. An attribute’s definition is complemented by a clear–text descrip-
tion of its meaning. Finally, a tag marking the attribute as either functional
or non–functional is used to further classify the attribute:

<xs:element name="Attribute">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element ref="Dimension" minOccurs="0"/>
<xs:element name="Value" type="xs:string" minOccurs="0"/>
<xs:element name="Description" type="xs:string"

minOccurs="0"/>
<xs:element name="Functional" type="emptytag"

minOccurs="0"/>
<xs:element name="Nonfunctional" type="emptytag"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:simpleType name="emptytag">
<xs:restriction base="xs:string">
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<xs:length value="0">
</xs:restriction>

</xs:simpleType>

The physical units are represented in a way similar to IEEE 1451 TEDS.
The unit itself is represented in terms of the base units from the système
international d’unités (SI) [150], complemented by the pseudo–units radians
and steradians1 for angular values, as well as bits for information. The latter
allows to encode e.g. the speed of communication. While this is not a tradi-
tional item encountered in real–world system models, it is often needed in
digital systems. For each SI base unit, its exponent is encoded:

<unit>=<baseunit1 >exponent <baseunit2 >exponent . . .

For logarithmic values, the logarithm’s base must be specified. Some enti-
ties may be dimension–less technically, as they are of the kind unit

unit
. In this

case, the optional element IsDimensionless must be set to true. For
practical use, the magnitude, a scaling factor, and possibly a constant offset
are necessary, yielding:

<value> ·scaling · 10magnitude[logbase] <unit>

+offset · scaling · 10magnitude[logbase] <unit>

<xs:element name="Dimension">
<xs:complexType>
<xs:sequence>
<xs:element ref="SIUnit"/>
<xs:element name="Magnitude" type="xs:double"

minOccurs="0"/>
<xs:element name="Offset" type="xs:double"

minOccurs="0"/>
<xs:element name="Scaling" type="xs:double"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="SIUnit">
<xs:complexType>
<xs:sequence>
<xs:element name="Radians" type="xs:double"

minOccurs="0"/>
<xs:element name="Steradians" type="xs:double"

minOccurs="0"/>
<xs:element name="Bits" type="xs:double"

minOccurs="0"/>
<xs:element name="Meters" type="xs:double"

minOccurs="0"/>
<xs:element name="Kilograms" type="xs:double"

minOccurs="0"/>

1Steradians are e.g. used in radar technology [125].
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<xs:element name="Seconds" type="xs:double"
minOccurs="0"/>

<xs:element name="Amperes" type="xs:double"
minOccurs="0"/>

<xs:element name="Kelvins" type="xs:double"
minOccurs="0"/>

<xs:element name="Moles" type="xs:double"
minOccurs="0"/>

<xs:element name="Candelas" type="xs:double"
minOccurs="0"/>

<xs:element name="LogarithmicBase" type="xs:double"
minOccurs="0"/>

<xs:element name="IsDimensionless" type="xs:boolean"
minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

The following three examples illustrate the flexibility and expressiveness
of this construction. This encoding technique is not only used for attributes,
but also for the individual data fields of an event’s contents, as described
below.

Consider a temperature sensor publishing its data in degrees Centi-
grade, which would be encoded as:

<Dimension>
<SIUnit>
<Kelvins>1</Kelvins>

</SIUnit>
<Offset>273.15</Offset>

</Dimension>

The second example is a distance in inch:

<Dimension>
<SIUnit>
<Meters>1</Meters>

</SIUnit>
<Magnitude>-2</Magnitude>
<Scaling>2.54</Scaling>

</Dimension>

Finally, an acceleration sensor producing milli–G is encoded as:

<Dimension>
<SIUnit>
<Meters>1</Meters>
<Seconds>-2</Seconds>

</SIUnit>
<Magnitude>-3</Magnitude>

</Dimension>
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open closed tilted

Figure 7.2: A window sensor that can determine the state of the window.

The final part of the event definition is concerned with the event’s con-
tents. Since in COSMIC environments communication bandwidth mostly
comes at rather high cost, messages used for operational communication
must be compact. Thus, binary data structures are communicated. This
requires a detailed, non ambiguous definition of the data structures.

For each event, the data structure is described as a list of consecutive
data fields. Each data field has a name carrying a hint towards the field’s
semantics. A plain–text description complements this information for the
user. The field’s data type, as well as the employed byte order (if the field
is larger than one byte) is specified. Thus, any communicated value can be
decoded.

To correctly interpret the decoded values, more information about their
meaning must be given. Depending on the type of entity represented by
the field, different information is necessary. There are two types of entities:
continuous and discrete entities. The first type corresponds to most mea-
surements of real–world entities, e.g. temperature or voltage measured by
an A/D converter (ADC). Discrete entities on the other hand convey some
form of ”digital” data. Discrete entities can be of two sub–types: One sub–
type groups together entities where the individual values do not exhibit any
relations among each other. As an example for this type of entity, consider a
mode switching facility. A data field of an event is used to switch the receiv-
ing node into either normal operations mode, or a special debug mode. The
second sub–type groups together those entities where the individual val-
ues exhibit relations among themselves. As an example, consider a window
sensor. The window can either be open, closed, or tilted (see figure 7.2). The
window sensor will produce an event with a single data field that contains
a representation of the current window state, i.e. whether it is open, closed,
or tilted. Note that it is physically not possible for the window to change
directly from the open state to the tilted state. A state machine can be used
to model the relations among the individual values of such an entity.

In CODES descriptions, the corresponding physical unit is given for con-
tinuous entities. The same structures as discussed above with attributes’
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units are used.
Discrete entities with no relations among the individual values are repre-

sented by Enum fields. The structures for Enum fields are introduced below
the schema part representing the data fields and available data types.

Discrete entities with relations among the individual values are repre-
sented by StateMachine fields. Their structures are introduced below the
Enum fields.

Finally, for each field, the list of attributes contains information about the
valid data ranges, and the field’s resolution and precision.

<xs:element name="DataStructure">
<xs:complexType>
<xs:sequence>
<xs:element ref="Field" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Field">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Description" type="xs:string"

minOccurs="0"/>
<xs:element name="DataType" type="COSMICDataTypes"/>
<xs:element name="ByteOrder" minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="BigEndian" />
<xs:enumeration value="LittleEndian" />

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element ref="Dimension" minOccurs="0"/>
<xs:element ref="Enum" minOccurs="0"/>
<xs:element ref="StateMachine" minOccurs="0"/>
<xs:element ref="Attributes" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

For the description of a field’s data encoding, the list of data types is
defined:

<xs:simpleType name="COSMICDataTypes">
<xs:restriction base="xs:string">
<xs:enumeration value="u_int_8"/>
<xs:enumeration value="u_int_16"/>
<xs:enumeration value="u_int_32"/>
<xs:enumeration value="u_int_64"/>
<xs:enumeration value="int_8"/>
<xs:enumeration value="int_16"/>
<xs:enumeration value="int_32"/>
<xs:enumeration value="int_64"/>
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<xs:enumeration value="ieee_754_32"/>
<xs:enumeration value="ieee_754_64"/>

</xs:restriction>
</xs:simpleType>

The large number of integer types, both in signed and unsigned vari-
ants, compared to floating point types is due to COSMIC’s focus on small
devices. These devices cannot handle floating point formats efficiently, and
thus they are avoided whenever possible. Integers, however are available
in all common widths to support a compact layout of the data structure. As
a trade–off towards keeping the number of types down and ease of han-
dling of the available types, the possibility to define fields of arbitrary bit
width was dropped. Thus by keeping the smallest unit of information to a
byte, this avoids confusion about bit numbering within a byte. Since most
events are typically composed of only a few data fields, the resulting over-
head was deemed feasible. In some cases, the use of floating point numbers
may be justified. Therefore, two standard floating point formats have been
introduced.

In many modern programming languages, the valid range for a given
variable can be encoded in the type, e.g. in C++2 or Pascal–derived lan-
guages. For the CODES descriptions, the data type specified for a data field
is only of interest for the encoding of the field within the event. The valid
data ranges are specified in the attributes of the event. This was chosen for
better readability, and less processing overhead compared to the introduc-
tion of a more flexible type scheme based on XML schema data types.

Note that there is no native data type for handling strings. There is
usually no need to communicate using strings in systems as targeted by
COSMIC. The usage of strings would be contrary to the usage of compact,
binary–encoded messages. If the need for strings should arise, a fixed–
length buffer of u int 8 fields could be reserved, similar to handling strings
in C.

Discrete field types

Enum data fields, as mentioned above, can be handy for implementing tech-
nical artifacts, such as simple mode switch commands for a COSMIC device.
Such a command could e.g. enable a debugging mode. While this example
command would not be necessary for the operation of a system running
flawlessly, it is often necessary in practice to allow the tracing of an error.
Since such commands are part of the device’s interface, they should also be
part of the device’s description. The description of an enum field can either
be a list of value–description–pairs listing all valid values individually, or
it can be a range specifying the lower and upper bounds of the valid data
range, complemented by a description of the field.

2For an example on how to achieve this in C++, see [126], chapter 11.4
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<xs:element name="Enum">
<xs:complexType>
<xs:sequence>
<xs:element name="Item" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Value" type="xs:integer" />
<xs:element name="Description" type="xs:string"

minOccurs="0" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Range" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="LowerBound" type="xs:integer" />
<xs:element name="UpperBound" type="xs:integer" />
<xs:element name="Description" type="xs:string"

minOccurs="0" />
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

The individual valid values of an enum field do not have any relation
among themselves. If such relations exist, it is better to specify such a field
as a state machine. The main application of state machine fields are dis-
crete sensors, however. Consider the window example from above, again.
Whenever the state of the window sensor changes, an event is generated.
The event contains the new state of the window sensor. Thus, if the re-
ceiver of the event gets the event, it not only knows what the current state
is, but from the memory of the previous state and the description, it can
also deduce what transition has been activated. More importantly, aware-
ness of errors and omissions is raised. If the receiver does not find a valid
transition from the previous state to the current state, it knows that it either
missed an event, or that the producer is erroneous. By sending the current
state instead of the activated transition, it is ensured that the system will
re–sync itself again after an event omission, independent of the location of
the omission. Technically, a state machine field is described by a list of all
known states. Each state is defined by its name, its internal representation
(a number), and a description explaining the state’s purpose. All valid tran-
sitions are described in a separate list. Each transition also has a name. The
originating and destination states are obviously part of the transition’s def-
inition. Additionally, a condition that must be met for the transition to be
activated can be given. This condition is only informative; there is currently
no formal way to assert that the condition was met when a transition was
activated. Also, the transition’s definition is complemented by a clear–text
description.
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<xs:element name="StateMachine">
<xs:complexType>
<xs:sequence>
<xs:element ref="State" maxOccurs="unbounded"/>
<xs:element ref="Transition" maxOccurs="unbounded"/>
<xs:element name="InitialState" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="State">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Representation" type="xs:integer"/>
<xs:element name="Description" type="xs:string"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="Transition">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="FromState" type="xs:integer"/>
<xs:element name="ToState" type="xs:integer"/>
<xs:element name="Condition" type="xs:string"

minOccurs="0"/>
<xs:element name="Description" type="xs:string"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>

Note that the rule that all states named in transitions must actually be
declared cannot be expressed using XML schema. This is a nice example
where context–free grammars alone are not enough.

Event Channel Definition

The EventChannelDefinitions section of the descriptions associates
the previously defined events with their event channel properties. Thus
each entry in the list of event channels consists of the subject ID linking the
entry to the corresponding event definition, the type of event channel used,
the direction as seen locally, i.e. whether the device produces or consumes
this type of events, and a list of dissemination properties. The event channel
type is one of the three channel classes hard real–time, soft real–time, and
non real–time, as introduced in section 6.1.2. The dissemination properties
of interest are listed in the same section.

<xs:element name="EventChannelDefinitions">
<xs:complexType>
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<xs:sequence>
<xs:element ref="EventChannel" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="EventChannel">
<xs:complexType>
<xs:sequence>
<xs:element name="SubjectUID" type="CODESID"/>
<xs:element name="EventChannelType" type="channeltype"/>
<xs:element name="Direction" type="direction"/>
<xs:element ref="Attributes" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:simpleType name="channeltype">
<xs:restriction base="xs:string">
<xs:enumeration value="HRT"/>
<xs:enumeration value="SRT"/>
<xs:enumeration value="NRT"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="direction">
<xs:restriction base="xs:string">
<xs:enumeration value="consuming"/>
<xs:enumeration value="producing"/>

</xs:restriction>
</xs:simpleType>

7.2.2 Parameterization

A number of parameters cannot be fixed at design time when the descrip-
tion of a component is created. Specifically, this includes:

• The node’s UID. If more than one node of a specific kind is produced,
each must have its own unique ID. It would be inefficient to manu-
ally change the description for each new device that is being manufac-
tured.

• Some event attributes. An event’s expiration time, and its criticality
are application dependent and therefore cannot be specified before the
integration phase.

• Event channel attributes. The period, with which an event is dissemi-
nated is also not available before the integration phase.

As parameters throughout the description must be variable, a generic
method for marking parameters in the otherwise static description must
be introduced. The solution is to specify <parameterized> instead of a
specific value in the description, e.g. to have a parameterized node id, one
would specify:
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<NodeUID>
<parameterized/>

</NodeUID>

Such ”incomplete” descriptions will not validate against the presented
schema. However, once these descriptions are completed with the missing
information, they will validate. How this integration can be achieved is
presented during the following discussion.

The corresponding parameter definition file contains pairs of path ex-
pressions to the parameter in the device description, and their actual value,
e.g.:

<Parameter>
<Path>/CODES/GeneralInformation/NodeUID</Path>
<Value>0xc4d70e32024b776d</Value>

</Parameter>

The path expressions are XPath expressions (see section 2.4.3). This al-
lows to easily specify access to the correct parameter. The parameter file,
and more importantly the correct path expression can automatically be gen-
erated by a description editor (For this work, a description editor called
CODESCreator has been developed. It is presented in section 7.3.1). For
parameters embedded deeply, this path expression can grow rather compli-
cated, and having it automatically generated avoids many errors. Consider
e.g. the expiration time of an event. As each device may specify an arbi-
trary number of events, the path is not as straight forward as in the example
above. Fortunately, XPath 2.0 provides enough expressiveness to tackle the
task without complications. The following describes the path to the expira-
tion time attribute of a specific event:

/CODES/EventDefinitions/Event[SubjectUID=’0xc4d70e32024b77b9’]/
Attributes/Attribute[Name=’Expiration time’]/Value

The availability of an XPath expression addressing the correct element,
and its configured value, allows to create a (XSLT based) tool that replaces
the <parameterized> markings in the description with their actual val-
ues. Having such a complete description without any external dependen-
cies available is important for e.g. validation, the query service, and com-
patibility checks across a number of nodes.

Just like the description file, the parameter file is stored within the device
itself, and it can be retrieved in the same fashion. Additionally, it must be
possible to store updated parameter files on the device.

Since COSMIC targets small systems, some devices are not powerful
enough to process these XML pieces. Thus, a suitable adjustment to the pa-
rameterization scheme is proposed: Instead of specifying the parameter’s
value in the parameter file, an address, type and encoding information for
parameter storage are given. The address is a 16 bit address relative to a
parameter storage area in the device. A 16 bit address provides plenty of
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space. This mechanism is only needed for small devices incapable of pro-
cessing XML. Mostly, this concerns 8 bit devices, which mostly only have
a 16 bit address space, anyway. Even for 16 bit devices, 64 kilobytes of pa-
rameter storage will be more than enough; it would almost suffice for the
complete description. 8 bit addresses, on the other hand, could easily be-
come too restricting. Assuming an average parameter size of 6 bytes, only
42 parameters could be stored. The parameter’s type information describes
the parameter value’s data type in terms of COSMIC data types. Finally,
for values larger than 8 bits in size, the encoding is given. Taken the above
example, the parameter file would contain the following entries:

<Parameter>
<Path>/CODES/GeneralInformation/NodeUID</Path>
<Address>0xf000</Address>
<DataType>u_int_64</DataType>
<Encoding>BigEndian</Encoding>

</Parameter>

These parameter files are static, and they can be stored in the device
without the need of changing them. A tool will then be able to retrieve
and set the corresponding parameter values via a dedicated interface on the
device.

This parameter access interface can e.g. be handled using three dedi-
cated non real–time event channels. The parameter request events would carry
four data fields:

• An identification of the target device.

• The address at which the targeted parameter starts.

• The size of the parameter in bytes.

• A request tag for tracking multiple requests.

The target device would then answer on the data reply channel with events
carrying two fields:

• The corresponding request tag.

• The requested data.

Finally, the set parameter data events carry the same information as the pa-
rameter request events. Additionally, they carry the new parameter data.

Thus, to build a complete description of a small device, three steps need
to be taken:

1. Retrieve the static description and the parameter file.

2. Retrieve each parameter listed in the parameter file.

3. Combine the static description and the parameters into a single docu-
ment that contains a current snapshot of the complete device configu-
ration.
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Figure 7.3: CODES Creator

7.3 The CODES Tool–Chain

The CODES tool–chain complements the CODES descriptions to support
the life cycle of COSMIC components as outlined at the beginning of this
chapter and section 2.1.1. CODESCreator is an editor for CODES descrip-
tions. Thus, the design phase of a component is supported. The implemen-
tation phase is represented by a set of XSLT transformations generating parts
of the component’s code. The Query Service is beneficial during the integra-
tion, usage, and maintenance phases. For a given system, the Query Service
is the central instance where all descriptions — including all parameters —
are readily available. COSMICMonitor is a general purpose monitoring and
logging tool which is mainly useful during integration and maintenance.
The LogPlayer is able to replay previously recorded logs, e.g. for debugging
purposes.

7.3.1 CODESCreator

CODESCreator is an editor for CODES descriptions, i.e. it is part of the com-
ponent design phase. It requires the .NET 2.0 framework to run. Instead of
having to write the specifications in a text editor, the component designer is
provided with CODESCreator (see figure 7.3) that ensures syntactical cor-
rectness and (technical) completeness of the produced specification. Techni-
cal completeness means that all elements required by the schema are present
in the description document.

Besides the simple and straight forward editing facilities for the section
on general information about the component, CODESCreator manages an
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Figure 7.4: Event Definition

automatically increased version number of the specification file. For events
and event channels, more sophisticated functionality is available. Event def-
initions and Event Channel definitions are automatically kept in a consis-
tent state. More specifically, event definitions can be created and removed.
Event Channels cannot be created or removed manually; this is done auto-
matically.

Defining events (see figure 7.4) is supported by providing the user with
functionality for specifying individual data fields (see figure 7.5), rearrang-
ing them within the data structure, and specifying event related attributes
(see figure 7.6).

The same dialog is used for data field related attributes and event chan-
nel attributes.

Attributes that are required for data fields, events, and event channels
can be pre–defined in configuration files using the same XML fragments
that are part of the description at the respective position. These configura-
tion files are read on startup. Whenever a new data field, event, or event
channel is created, the pre–defined attributes are automatically included in
the description in their respective place. For data fields, the following at-
tributes are currently required:

• The lower bound of the valid data range.

• The upper bound of the valid data range.

• The resolution of the data.

• The precision of the data.

Similarly, for events the following attributes are required:
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Figure 7.5: Field Definition

Figure 7.6: Attribute Definition

• The expiration time of the event. If the event expires, it may potentially
have harmful effects on the system, as described in section 6.1.1.

• The periodicity of the event.

Finally, for event channels, currently only the dissemination period is re-
quired.

Similarly, wherever physical dimensions are needed, the dialog in fig-
ure 7.7 is used. It allows the user to either select a dimension from a pre-
defined list, or to specify all parameters directly. Using pre–defined entries
saves the user from tedious work and avoids typos. Entries to this list can
be added. They are saved to an XML file that is read on application startup,
exactly like the files with the default attributes. The XML file contains a list
of XML fragments adhering to the respective part in the CODES schema.
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Figure 7.7: Dialog for physical dimensions

Figure 7.8: Event Channel Definition

Event Channels and their properties, along with their associated at-
tributes are editable (see figure 7.8). CODESCreator automatically synchro-
nizes events and their corresponding event channels, i.e. whenever an event
is created, CODESCreator automatically creates the corresponding event
channel. The same behavior is implemented in case of event deletion.

Additionally, CODESCreator is able to conduct consistency checks on
the current description. The consistency checks are described in sec-
tion 7.4.1.

7.3.2 Code Generation

As part of the implementation phase, code skeletons for the component in
development can be generated from its CODES description [75]. The type
of code generated from the descriptions is mainly house–keeping code. It is
not the goal to produce complete applications or sophisticated algorithmic
code as tools like Matlab do.

Code generation is done using XSLT transformations (see chapter 2.4.4).
XSLT transformations are ideally suited for this job. They allow the pro-
grammer to focus on the task at hand. The example presented below shows
that such a transformation can be written in the form of a template of the
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target language. This is a major advantage compared to writing custom
conversion tools in traditional programming languages like C, C++ or Java
where the programmer has to deal with rather low–level concepts, such as
the APIs of XML parsers. Also, modifying such tools is harder than chang-
ing the target templates.

The following example is part of the prototype implementation. Since C
is used for most projects in our group, it has been chosen as the target lan-
guage for the prototype implementation, and hence, this example. Also, C is
the most common programming language for microcontrollers. Specifically,
the example shows how the structs representing the events are created.
Each field is annotated by a comment documenting the physical dimension
associated with that value:

<xsl:template match="//Event">
struct <xsl:value-of select="replace(string(Subject),’\s+’,’_’)"
/>_event {

<xsl:for-each select="DataStructure/Field">
/* <xsl:value-of select="Description"/> */
<xsl:value-of select="DataType"/><xsl:text> </xsl:text>
<xsl:value-of select="replace(string(Name),’\s+’,’_’)"/>;
// <xsl:call-template name="physicaldimension">
<xsl:with-param name="varname"

select="replace(string(Name),’\s+’,’_’)"/>
</xsl:call-template>

</xsl:for-each>
};
</xsl:template>

The XSLT processor matches this template to any Event elements in
a CODES description document. The resulting struct will be called the
event’s subject, appended by event. Since C does not allow identifiers
to include spaces, a regular expression is used to replace any spaces in
the subject with underscores. Next, the template iterates over all fields in
the event’s data structure and generates the corresponding field declara-
tions. Notably, it is possible to combine pattern matching (as shown here
in the form of the top–layer template matching all Event elements), and
imperative programming style (as shown with the for-each loop cover-
ing all data fields of the event) in XSLT. This demonstrates how different
paradigms can beneficially be integrated into a powerful language, allow-
ing the developer to select the paradigm best suited for the occasion. The
comment with the data field’s unit shows how even sub–routine like calling
is possible via the call-template facility. The corresponding template
generating the unit’s string representation is shown below:

<xsl:template name="physicaldimension">
<xsl:param name="varname" required="yes"/>
(<xsl:value-of select="$varname"/>
<xsl:if test="exists(Dimension/Offset)">
+ <xsl:value-of select="Dimension/Offset"/></xsl:if>)

<xsl:if test="exists(Dimension/Scaling)">

* <xsl:value-of select="Dimension/Scaling"/> </xsl:if>
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<xsl:if test="exists(Dimension/Magnitude)">

* 10ˆ<xsl:value-of select="Dimension/Magnitude"/> *</xsl:if>
<xsl:call-template name="SIUnit"/>
<xsl:if test="exists(Dimension/SIUnit/IsDimensionless)">
/ (<xsl:call-template name="SIUnit"/></xsl:if>)

</xsl:template>

<xsl:template name="SIUnit">
<xsl:if test="exists(Dimension/SIUnit/LogarithmicBase)">
log_{xsl:value-of select="Dimension/SIUnit/LogarithmicBase"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Radians)">
Radiansˆ<xsl:value-of select="Dimension/SIUnit/Radians"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Steradians)">
Steradiansˆ<xsl:value-of select="Dimension/SIUnit/Steradians"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Meters)">
Metersˆ<xsl:value-of select="Dimension/SIUnit/Meters"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Kilograms)">
Kilogramsˆ<xsl:value-of select="Dimension/SIUnit/Kilograms"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Seconds)">
Secondsˆ<xsl:value-of select="Dimension/SIUnit/Seconds"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Amperes)">
Amperesˆ<xsl:value-of select="Dimension/SIUnit/Amperes"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Kelvins)">
Kelvinsˆ<xsl:value-of select="Dimension/SIUnit/Kelvins"/>
</xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Moles)">
Molesˆ<xsl:value-of select="Dimension/SIUnit/Moles"/></xsl:if>

<xsl:if test="exists(Dimension/SIUnit/Candelas)">
Candelasˆ<xsl:value-of select="Dimension/SIUnit/Candelas"/>
</xsl:if>

</xsl:template>

To conclude the example, consider the following (shortened) tempera-
ture event:

<Event>
<Subject>Temperature</Subject>
<SubjectUID>0x1234567890ABCDEF</SubjectUID>
<Description>Sample temperature event. Contains three fields.

</Description>
<DataStructure>
<Field>
<Name>outsidetemp</Name>
<Description>Outdoor temperature</Description>
<DataType>u_int_8</DataType>
<Dimension>
<SIUnit><Kelvins>1.0</Kelvins></SIUnit>
<Magnitude>0.0</Magnitude>
<Offset>273.15</Offset>
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<Scaling>1.0</Scaling>
</Dimension>
<Attributes> ... </Attributes>

</Field>
<Field>
<Name>outsidetemp_err</Name>
<Description>Outdoor temperature error</Description>
<DataType>u_int_8</DataType>
<Dimension>
<SIUnit><Kelvins>1.0</Kelvins>
<IsDimensionLess>true</IsDimensionLess></SIUnit>

<Magnitude>0.0</Magnitude>
<Offset>273.15</Offset>
<Scaling>1.0</Scaling>

</Dimension>
<Attributes> ... </Attributes>

</Field>
<Field>
<Name>outsidetemp_log</Name>
<Description>Outdoor temperature, logarithmic

</Description>
<DataType>u_int_16</DataType>
<ByteOrder>BigEndian</ByteOrder>
<Dimension>
<SIUnit><Kelvins>1.0</Kelvins>
<LogarithmicBase>2</LogarithmicBase></SIUnit>

<Scaling>10</Scaling>
</Dimension>
<Attributes> ... </Attributes>

</Field>
</DataStructure>
...

</Event>

The above XSLT transformation will produce the following struct
from this description:

struct Temperature_event {
/* Outdoor temperature */
u_int_8 outsidetemp; // (outsidetemp + 273.15) * 1.0 * 10ˆ0 *

Kelvinsˆ1.0
/* Outdoor temperature error */
u_int_8 outsidetemp_err; // (outsidetemp + 273.15) *

1.0 * 10ˆ0 * Kelvinsˆ1.0 /
(Kelvinsˆ1.0)

/* Outdoor temperature, logarithmic */
u_int_16 outsidetemp_log; // (outsidetemp) * 10 *

log_2 Kelvinsˆ1.0
};

Similarly, callback functions, event handlers and tasks handling the com-
munication are part of the prototype implementation. There is one callback
function per event being produced by a component. The callback functions
are functions that the developer needs to complete by filling the respective
event’s contents. For each callback function, a task invoking the callback
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function is created. This task also handles the casting towards the lower–
level COSMIC API, specifically for the HC08 in the prototype implemen-
tation. For events being consumed, event handler functions are generated
that also need to be complemented by the developer. The generated code
relieves the developer from doing these low–level housekeeping duties re-
peatedly. If these parts where programmed manually, it would be very easy
to make mistakes, some of which could stay hidden for a long time.

7.3.3 Query Service

In situations of dynamic cooperation, awareness of the available services
must be raised. Consider a mobile robot entering a factory building. The
robot needs to know, whether the building offers a localization service with
a certain precision and update rate. This information can e.g. be used by the
robot to adapt the speed with which it moves inside the building. In other
words, a fine–grained method of discovering services is necessary.

To limit network usage, any advertising of services is kept to a mini-
mum and usually only contains a reference to a more sophisticated service.
This service then allows to either retrieve the service descriptions as such, or
it provides more fine–grained mechanisms for processing them at the dis-
covery service itself. The former requires all requesting devices to possess
enough processing power to analyze the descriptions, whereas the latter
only requires the node running the discovery service to do so. Processing of
the description is necessary, as the description needs to be analyzed to de-
termine, whether the corresponding service matches a user’s requirements.
Independent of where the descriptions are processed, they, or the results of
the analysis are only accessed or transmitted on request.

If service discovery would use COSMIC’s publish/subscribe communi-
cation scheme, there would have to be two event channels, one for sending
the requests and another one carrying the results of the requests. Communi-
cation on both channels would be correlated in a request/reply style, which
is rather uncommon in event–based models [134]. Both channel identifiers
would have to be standardized. This shared knowledge would eliminate the
need for an initial basic discovery phase that is needed otherwise. The robot
entering the building from the example above would then request the infor-
mation needed whenever appropriate. It would then wait for an answer on
the result channel. Whenever more than one device is requesting service
information, each device must be able to correctly identify the information
targeted at itself, and it must be able to filter out any other information.
Due to the anonymous nature of COSMIC’s communication scheme, a spe-
cial identifier relating an event on the result channel to a specific recipient
or request would have to be included in each event on the result channel.
This requires a device to process all events on the result channel and filter
out those events that it actually needs, leading to an unwanted high load
on each device, especially during phases of high activity. Thus, a scalability
problem arises on all devices listening on the result channel.
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The solution discussed below is different from the previously presented
alternative. It deliberately does not use COSMIC communication features.
Finally, as the technical realization of the discovery mechanisms is not the
primary topic of this work, the solution presented has the advantage of be-
ing composed of common and tested components that tremendously eased
its implementation. The main service discovery is handled by a web ser-
vice, called the Query Service. Before the Query Service can be accessed, its
address must be known. This is handled using the Simple Service Discovery
Protocol (SSDP) [53]. SSDP is based on Multicast, limiting its scope to nearby
network segments in terms of Multicast packet routing. As Multicast pack-
ets are either limited to the local sub network, or are limited to institutional
boundaries, e.g. departments or companies, the reach of Multicast pack-
ets mostly corresponds to the physical surroundings and is thus suitable in
scoping the discovery mechanisms.

As discussed above, the actual service discovery can either be done lo-
cally, after retrieving any service descriptions available, or it can be done at
a central service. In order to allow less powerful devices to take advantage
of the discovery mechanisms, the latter mechanism was chosen. In order to
reflect its capabilities and to distinguish it from the SSDP, the central service
was called Query Service. It provides an interface for querying the CODES
descriptions in COSMIC systems. Conceptually, only a single operation —
to execute a transformation on the descriptions — is necessary. Such a cen-
tral service requires the use of a suitable query language that is used to
process the descriptions. The query language must be able to take full ad-
vantage of the descriptions. It should also be relatively easy to use. Instead
of reinventing such a language, XSLT transformations where chosen. XSLT
has several advantages:

• It is a common technology, and therefore rather easy to use for many
users.

• Parsers and processors are readily available and well–tested.

• Both the description and the query language are from the standard-
ized XML family of technologies.

In comparison to XQuery [89], the designated information retrieval lan-
guage for XML, XSLT has the advantage of being in a more stable state in
terms of standardization and tool support. Further, XSLT is also useful for
other purposes than information retrieval, e.g. for code generation. Thus,
queries are actually XSLT transformations that are executed on the CODES
descriptions. This allows specifying queries with a granularity down to the
most basic elements of the descriptions. The Query Service’s interface is
composed of the following operations:

• Retrieve a list of all available descriptions. This operation is mainly nec-
essary to allow the querying party to retrieve the input needed for the
next operation. The result is a list of names of descriptions. In the pro-
totype implementation, these names are actually the file names of the
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descriptions. The operation does not require any input. It returns an
XML structure listing all descriptions.

• Perform a transformation of a single description. This operation requires
two input parameters: the name of the description to be used in the
transformation, and the transformation itself as a string. The operation
returns the result of the transformation.

• Perform a transformation on all descriptions. This operation takes the
transformation to be executed as the only input parameter. Again,
the operation returns the result of the transformation. For practical
reasons, the operation exists in two variations in the prototype imple-
mentation. The main variant combines all descriptions into a (tempo-
rary internal) system representation, and executes the transformation
on the whole system. The second variant executes the transformation
on each description, one at a time. The advantage of this variant is
that in case of a single unprocessable description, the others are still
processed ok. Using the other variant, the whole process fails, and no
usable result is returned.

The Query Service needs access to the CODES descriptions. It must
therefore retrieve all descriptions, and the corresponding parameter infor-
mation. The parameter information is then integrated into the descriptions,
leaving the description document as the single and complete source of in-
formation about the available components.

As the Query Service is a Web service and Web services are only executed
on demand, a scheme that collects the CODES descriptions independent of
the Query Service has been devised: In current setups, it is running on all
gateway nodes that connect a CAN bus to the TCP/IP network. Upon node
initialization, the gateway software retrieves the descriptions of all attached
nodes and stores them to a description repository. The Query Service then
has access to these descriptions.

7.3.4 COSMICMonitor

Logging is not at the heart of COSMIC. Yet, in practice, it plays an impor-
tant role when developing and debugging systems. In distributed systems,
logging can be a hard task [132]. It seldom is possible to perform logging
of all communication of a distributed system on one central node. Direct
communication among two components addressing each other cannot eas-
ily be logged on a third machine. Often, invasive logging techniques are
necessary. Of course, this will influence the performance of the system, and
it may even influence the behavior of a system if e.g. timing is affected too
much.

COSMIC’s communication scheme allows non–invasive logging. The
logging node is simply another consumer in the system. It subscribes to all
events of interest. The events will then be delivered, no matter where they
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Figure 7.9: Generic COSMIC monitoring and logging application

where generated, or where they are consumed. Thus logging conceptually
does not introduce any overhead. Depending on the implementation, min-
imal overhead may be necessary, when using COSMIC over TCP/IP, e.g.
an extra connection must be maintained. For broadcast media, such as the
CAN bus, logging can actually be done without any additional overhead.

Because logging uses COSMIC’s normal communication features, it is
completely transparent for the system. Developers need not worry about
including support for logging.

The logger application must know about all events that it should log.
There is no special ”catch–all” functionality in the COSMIC middleware.
Hence, at least all subjects used within the system must be known to the log-
ger. This is difficult to achieve without any further support. With only COS-
MIC, the logger would require a list of subjects to log. This list would have
to be maintained manually, a cumbersome and error–prone task. If knowl-
edge about available subjects would be inherently present in the system, it
could be beneficially put to use with the logger application. The CODES
descriptions discussed in this chapter hold the necessary information. The
on–line Query Service makes them available, and thus conveniently allows
to log any events exchanged in the system.

COSMICMonitor is such a generic monitoring and logging application
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based on COSMIC and CODES. It searches for any reachable Query Ser-
vices. All known Query Services are consulted for their attached devices.
The result, including details about the components, is displayed. Further,
a search is performed for all subjects that any of the connected COSMIC
components offer. These are also displayed. The user can then select an ar-
bitrary subject an subscribe to it. This will display a visualization of all data
fields in the subject’s data structure (see right part of figure 7.9). COSMIC-
Monitor also allows the logging of all subscribed events to a file. The log
file is an XML file that contains the definition of all logged event types. This
definition is a shortened version of the definition contained in the CODES
descriptions. It does contain all necessary information to decompose and
recompose an event’s binary structure into/from single fields. Further, the
log contains all subscribed events, each annotated with a timestamp. All
events are also logged XML fragments, with the event’s data in plain text:

<EventLog>
<StartTime>13.09.2006 14:44:32</StartTime>
<EventDefinition>
<Subject>Temperatur</Subject>
<SubjectUID>0xc4d70e320293a276</SubjectUID>
<Description />
<DataStructure>
<Field>
<Name>Temp</Name>
<Description />
<DataType>u_int8_t</DataType>

</Field>
</DataStructure>

</EventDefinition>
<Event>
<SubjectUID>0xc4d70e320293a276</SubjectUID>
<Data>
<Field>
<Name>Temp</Name>
<Value>22</Value>

</Field>
</Data>
<TimeStamp>2300432</TimeStamp>

</Event>
</EventLog>

7.3.5 LogPlayer

The COSMIC Log Player allows to replay pre–recorded logs. This can be
very useful when debugging a system. Of course, the logs can manually
be modified. It is also possible to create arbitrary events to simulate future
devices. A more comfortable player/simulator should be implemented in
the future.

A number of features would be desirable to complement the COSMIC
Log Player towards a valuable debugging tool:
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Figure 7.10: COSMIC Log Player

• Varying replay speed. This feature may be beneficial when visualizing
the system for debugging purposes. It should not be used when real
components are also involved, e.g. while emulating part of a system,
as timing related problems will occur.

• Selection of start and stop points within a loaded log. Often, logging is
started before anything of interest is happening, and logging contin-
ues until after the period of interest is over. Selecting more appropriate
start and end points for replay is desirable. Sometimes, even timeline–
based cutting features known from video processing tools would be
helpful.

• Deactivation of events. It should be possible to deactivate any of the
logged event types during replay. This can be helpful when testing a
new version of a component.

• Automatic generation of events according to a defined schedule. These
events can be encoded using the event’s descriptions, which is already
used for log replay. The schedule according to which these events are
disseminated can either be user–defined, or it can be derived from the
corresponding event channel definitions. This can be very beneficial
when a new device is under development. It can then already be simu-
lated once its description exists. There is no need for a ”real” prototype
at this stage.

7.4 Compatibility and consistency checking with
CODES descriptions

As pointed out in section 7.2, some rules that apply to CODES descriptions
cannot be validated by a syntax check. A number of consistency checks is



7.4. COMPATIBILITY CHECKING 141

therefore done to ensure the internal consistency of each description. These
checks are presented in the next section.

Further, when integrating multiple components into a system, the com-
patibility among these components must be ensured. CODES descriptions
allow checking a number of properties to ease the integration effort. This is
presented in section 7.4.2.

7.4.1 Consistency checks for validating an individual
CODES description document

CODES descriptions that adhere to the rules presented in this section are
considered to be valid descriptions. Still, such descriptions may not sensi-
bly describe devices, just like a program that compiles does not necessar-
ily do sensible things. Nevertheless having automated checks ensuring the
consistency of descriptions with these rules is important.

1. SupportedChannelTypes must contain all employed channel
types. The SupportedChannelTypes must obviously list all types
that the device is actually using, otherwise the device cannot provide
its service with the described quality.

SupportedChannelTypes ⊇ UsedTypes :

∀ch ∈ EventChannels : ch.Type ∈ UsedTypes.

2. All SubjectUIDs and the NodeUID must be unique. Using an ap-
propriate scheme for assignment of UIDs, this can be guaranteed by
design. Still, a quick check can easily be done. It is important, as de-
scriptions can be manually created and edited.

∀c1, c2 ∈ EventChannels :

c1 6= c2 ⇒ c1.SubjectUID 6= c2.SubjectUID 6= NodeUID

3. All Events must have a Channel associated, and vice-versa. As all
events are disseminated using event channels, there must be a chan-
nel definition for each event definition. Obviously, this applies to the
other way round, too.

∀e ∈ Events : ∃ch ∈ EventChannels :

e.SubjectUID = ch.SubjectUID

∀ch ∈ EventChannels : ∃e ∈ Events :

ch.SubjectUID = e.SubjectUID
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4. Each event must define all default attributes. The default attributes
are:

• The expiration time defines how long the event is valid, and thus
useful for the system. Under no circumstances, an event is deliv-
ered after its expiration time. This attribute’s physical dimension
must be seconds, which is also checked.

• The periodicity defines whether the event is generated or expected
periodically or sporadically. Its value must either be sporadic
or periodic. In case of sporadic events, an additional attribute
trigger must be specified. This attribute defines under what
conditions the event will be generated. The value is currently
given as a plain text description.

EventDefaults = {ExpirationT ime, Periodicity}

∀e ∈ Events : ∀a ∈ EventDefaults : a ∈ e.Attributes

TemporalAttributes = {ExpirationT ime}

∀e ∈ Events : ∀a ∈ e.Attributes :

a ∈ TemporalAttributes ⇒ a.Dimension.unit = seconds

5. Each data field must define all default attributes. The default data field
attributes are:

• Range Low and Range High define the valid data range. In case of
event production, the values disseminated will never leave these
bounds. In case of event consumption, incoming data is expected
to always be within these bounds. The behavior when consuming
data outside this range is undefined. Components should pro-
vide protection against invalid input, though.

• Resolution specifies the resolution with which values are gener-
ated or expected.

• Precision defines how precise the data is, or needs to be in case of
consumption.

FieldDefaults = {RangeLow, RangeHigh,Resolution, Precision}

∀e ∈ Events : ∀f ∈ e.F ields : ∀a ∈ FieldDefaults : a ∈ f.Attributes

6. Each field’s default attribute must have the same dimension associated
as the field’s contents.

FieldDefaults = {RangeLow, RangeHigh,Resolution, Precision}

∀e ∈ Events : ∀f ∈ e.F ields : ∀a ∈ f.Attributes :

a ∈ FieldDefaults ⇒ f.Dimension = a.Dimension
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7. Each hard real–time event channel must define all default attributes.
The default attributes are:

• Period defines the period with which periodic events are pro-
duced or expected, respectively. For aperiodic events, this at-
tribute specifies how often a reserved slot needs to be provided.
This value is derived from the event’s expiration time. The pe-
riod’s physical dimension must be given as seconds.

• Omission degree specifies the allowable probability that an event
cannot be delivered on time to all consumers.

HRTDefaults = {Period, OmissionDegree}

∀ec ∈ EventChannels : ec.ChannelType = HRT :

∀a ∈ HRTDefaults : a ∈ ec.Attributes

7.4.2 Compatibility Tests for multiple CODES description
documents

To ease the integration process of components into larger systems, a number
of compatibility checks can be performed based on CODES descriptions.

1. All NodeUIDs must be unique. Again, this is guaranteed by the design
of the assignment strategy.

∀n1, n2 ∈ Nodes :

n1 6= n2 ⇒ n1.NodeUID 6= n2.NodeUID

2. When constructing a system, one of the most important properties is
completeness. For COSMIC systems in particular, this means complete-
ness in terms of (necessary) event production. All types of events that
are consumed in the system must also be produced somewhere.

The system is composed of n components, each with its own CODES
c. The set of CODES is:

C = {ci} , i = 1, ..., n

The system-wide set of event channels (EC stands for Event Channels)
that are consuming on at least one node is:

c.ECconsuming = {c.ECi : c.EC.direction = consuming}

i = 1, ..., |c.EC|

The corresponding set of Subject UIDs:
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c.SubjectUIDsconsuming =
{
c.ECconsuming

i .SubjectUID
}

i = 1, ...,
∣∣∣c.ECconsuming

∣∣∣
The set of consumed Subject UIDs:

Consumed =
{
ci.SubjectUIDsconsuming

}
i = 1, ..., n

Correspondingly, the set of produced Subject UIDs:

Produced =
{
ci.SubjectUIDsproducing

}
i = 1, ..., n

The system can only work, if Produced ⊇ Consumed.

3. All components must agree on an event’s data structure for any match-
ing SubjectUIDs, i.e. all components must share the same knowledge
about the respective event types. This includes matching data struc-
tures, and matching data types and byte order for each field.

∀c1, c2 ∈ C : ∀e1 ∈ c1.Events,∀e2 ∈ c2.Events :

e1.SubjectUID = e2.SubjectUID ⇒

e1.DataStructure = e2.DataStructure

4. The expiration time of all produced events must be at least as long
as on the consumer. In other words, the consumer specifies what a
producer must deliver minimally.

∀c1, c2 ∈ C : ∀e1 ∈ c1.Events,∀e2 ∈ c2.Events :

e1.Direction = producing ∧ e2.Direction = consuming ⇒

e1.ExpirationT ime ≥ e2.ExpirationT ime

5. All components must agree on the periodicity of each individual event
type.

∀c1, c2 ∈ C : ∀e1 ∈ c1.Events,∀e2 ∈ c2.Events :

e1.SubjectUID = e2.SubjectUID ⇒

e1.P eriodicity = e2.P eriodicity
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6. The dissemination period for all periodic events must match the con-
sumption period of each event type. If the middleware implemen-
tation supports temporal buffering, the dissemination periods do not
need to match. The dissemination period on the producer must be
shorter than on the consumer, though. The middleware local to the
consumer can then buffer the events, and deliver them when the con-
sumer expects. This also leads to some events being discarded over
time. It must be ensured that this will not influence the system. Due
to these complications, the current implementation requires the dis-
semination periods to match.

∀c1, c2 ∈ C : ∀e1 ∈ c1.Events,∀e2 ∈ c2.Events :

e1.SubjectUID = e2.SubjectUID ∧ e1.P eriodicity = periodic∧

e1.Direction = producing ∧ e2.Direction = consuming ⇒

e1.P eriod = (≤)e2.P eriod

7. For each event type, each data field must have compatible attributes,
i.e. the attributes mentioned in the preceding section must be com-
patible on all communication partners. In particular, the following
properties must be met:

• The data range must match for all partners.

• The resolution on the producer must be better than on the con-
sumer.

• The precision on the producer must be better than the consumer
expects.

∀c1, c2 ∈ C : ∀e1 ∈ c1.Events,∀e2 ∈ c2.Events :

e1.SubjectUID = e2.SubjectUID∧

e1.Direction = producing ∧ e2.Direction = consuming ⇒

f1,i ∈ e1.F ields, f2,i ∈ e2.F ields, i = 1, ..., |e1.F ields| :

f1,i.Range = f2,i.Range∧

f1,i.Resolution ≤ f2,i.Resolution∧

f1,i.P recision ≤ f2,i.P recision
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7.5 Generating CAN network schedules from
CODES descriptions

COSMIC’s communication scheme in the time domain is presented in sec-
tion 6.2.6.

When creating schedules for HRT capable systems, the waiting time at
the start of a reserved slot, and the minimum gap between two reserved
slots are determined by the parameters of the CAN bus setup. Measure-
ments are presented in [73] and [69].

The length of a reserved slot is determined by two factors: the CAN
bus setup, i.e. the bit rate, and by the allowable omission degree, which
translates to a certain number of possible retransmissions.

The length of the communication round, and the respective start times
of the reserved slots are derived from the periods of the HRT events.

A trivial approach towards schedule generation would be to set the
length of the communication round to the least common multiple of all spec-
ified periods. The individual reservations can then be scheduled according
to the event’s periods starting at the beginning. Of course, this will only
work, if enough slots can be fitted in the round.

Optimization is desirable, and may even be necessary, as the cycle length
may otherwise explode. To the least, this poses technical difficulties on
small nodes.

An integrated solution for writing these schedules to the respective tar-
get nodes is necessary to complement the existing configuration manage-
ment facilities. A favorable solution would use the parametrization mecha-
nism to modify the necessary parameters, i.e. the schedules would be rep-
resented as event channel parameters in the device description.

7.6 Assisting black–box testing

Based on the CODES descriptions, a number of black–box tests for indi-
vidual components can be derived. As most COSMIC components interact
with the physical environment, completely automated tests currently can-
not be performed. This would require a proper description of the physical
interaction, and corresponding tools — both hard– and software. However,
it is possible to assist the tester considerably during the following tasks:

• Checking sporadic events for their generation, In case of events that
should be generated depending on an occurrence in the physical
world. The testing tool will display the event’s trigger attribute.
Once the tester stimulates the component accordingly, the generation
of the respective event can be checked.

• Checking produced events for compliance with their specified at-
tributes, specifically data range, resolution, and precision. For data
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measurements, checking the data range requires changing the physi-
cal environment to produce the respective measurements, e.g. heating
a temperature sensor to the upper bound of the specified range. The
resulting events can then be checked to correspond to the specified
data ranges. Testing a device beyond its specified bounds is required
to check whether the produced events will keep to the specified range.
Such tests may potentially harm the device. Depending on the nature
of the device, destructive testing may not be an option.

The resolution of the values in the generated events can only be mon-
itored for violations of the specification. Finding no violation during
the tests cannot be seen as a guarantee that the device will never vio-
late the specification.

Testing the precision requires a test setup with known and sufficient
precision to carry out the tests. Again, the sensors are stimulated, and
the corresponding output is checked.

• Checking consumed events for compliance with their specified data
range. Correct operation is often critical at the limits of the specified
data range. Consequently, the component can be fed with events con-
taining such values, and the resulting behavior (as given in the respec-
tive event’s description) can be checked.

In terms of resolution and precision, it can only be checked whether
the component works as specified when fed with conforming events.
As the behavior is undefined when the consumed events do not con-
form to the specification, no universally useful conclusions can be
drawn from such tests.

• Checking timing behavior for produced events. Specifically periodic
events can be monitored to occur exactly as specified. For sporadic
events, the timing specification can only be checked if there is the pos-
sibility to trigger the event automatically.

• Checking the production of events listed in any WillTrigger list.
This can be done by producing the events having a WillTrigger
list, and waiting for these events to be produced.

While it can easily be argued that these checks can be deduced automat-
ically from CODES descriptions, the development of a fully grown, flexible
testing framework is not part of this thesis.

7.7 Building the basis for dynamic cooperation

Truly autonomous dynamic cooperation of components requires that the
involved components can communicate, that they are aware of each other,
and that they know how to make use of each others functionality. In COS-
MIC scenarios, the technical details of the communication are covered by
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the COSMIC middleware. Awareness of components is raised by the dis-
covery and query service facilities introduced with the CODES approach.
The knowledge, which other components are currently useful to a compo-
nent, and how these can be used, must be derived from these components’
descriptions.

The CODES descriptions, as presented in this thesis, provide a wealth of
detailed information about information that a component is able to share.
The semantic behind this information is currently encoded using unique
identifiers and names for subjects and data fields. The meaning of these
names must currently be known a priori.

Semantic inference through ontologies can form the basis for a scheme
for semantic matchmaking [92], [2]. Requiring a single common ontology
for all components is too restricting, as it would require a central authority
to maintain said ontology. Also, either all components need to carry the
complete ontology, or access to the central instance must be available. The
former will sooner or later lead to inconsistencies, as the common ontology
is updated and embedded in new components, while older components still
use the old version. Access to a central entity does not fit a distributed
system view. This is analogous to having the device descriptions stored on
the device itself instead of keeping them on a central server.

[102] presents a scheme that allows the autonomous integration of multi-
ple partial ontologies, together with a local ontology, into a single consistent
view.

This leads to the idea that each component carries its own ontology. The
names used in the CODES descriptions are complemented by references to
the respective concepts within the local ontology. Both the CODES descrip-
tion, and the ontology are available for other components, either directly
or via the query service. Thus, the use of semantic inference will become
possible.

7.8 Personal experience

As an example, a simple temperature sensor component was developed.
First, it was developed using nothing but the COSMIC middleware API. In
the second run, it was developed using the CODES approach. The compo-
nent is based on the Tiny platform, utilizing an HC908AZ60A micro con-
troller. It has a simple KTY–10 PTC sensor attached to it. The voltage across
this sensor must be measured, linearized and corrected. Measurement is
done using the micro controller’s internal 8 bit A/D converter. Lineariza-
tion and correction is performed using a simple lookup table for ease of
implementation. The temperature is measured periodically, and broadcast
using COSMIC events. The events contain the measured temperature in
degrees Centigrade. Overall, this task is of the simplest application class.
The details of how the A/D converter needs to be set up and used, the cre-
ation of the lookup table, and the conversion into degrees Centigrade were



7.8. PERSONAL EXPERIENCE 149

done manually. Usage of the A/D converter is assisted by the Tiny HAL.
The creation of the lookup table was realized using a Perl script (which had
to be written by hand). The conversion function from A/D converter val-
ues to values in degrees Centigrade was directly mapped and included in
the lookup table. The availability of a beneficial HAL is of course depen-
dent on the platform used. In this case, the HAL is part of the tool chain
developed for this work, yet it does not resemble a central entity in the de-
velopment process as described in this work. The simulation of the tem-
perature sensor, and the processing of the measurement values is the tradi-
tional domain of tools like Matlab. What these tools lack, is the integration
with a specific hardware and software platform. In contrast, the CODES ap-
proach provides automatic integration with the COSMIC middleware. The
code generated is mainly concerned with the definition of the required data
structure, callback functions, and task skeletons. The time necessary to de-
vise the necessary information as described here was about four hours. The
time needed for creation of the event’s data structure, the relevant casts,
and measurement and publication tasks took more than an hour. Debug-
ging the hand–written C code, and writing a small PC application display-
ing the measured temperature took another three hours. Debugging and
writing the displaying application was an incremental process, so the time–
span cannot be subdivided. In other words, about half the time necessary
for developing such a component was eaten up by writing and debugging
exactly the code that the CODES tool chain creates automatically from the
component description. Writing the component’s description using CODES
Creator takes about half an hour. The creation of the code skeletons is a mat-
ter of seconds. CODES Monitor provides a generic display feature, i.e. there
is no need to write an extra display application, which is otherwise needed
for debugging purposes. The first part, the details of the A/D converter,
and the necessary lookup table needs to be done in both cases. For the
house–keeping work, a significant reduction in time necessary to produce
a component is visible. Further there are all the extra benefits of CODES
available, as described in this chapter. Once the component is produced,
it needs to be thoroughly tested before it can be released. Again, CODES
is able to help significantly by providing the correct information about the
device–under–test at any point in time, as the device itself carries all the
information. A supportive black–box testing environment can be based on
CODES, as described in section 7.6.
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Chapter 8

Conclusion

The main problems described specifically in section 3.2 are well–known:
insufficient documentation, misunderstandings due to imprecise specifica-
tion, and unwary behavior of developers, combined with the ever present
resource constraints on small embedded systems. To overcome these prob-
lems, the CODES approach supports the component developer via a de-
scription language and a tool chain. The description language meets the re-
quirements discussed in section 2.3: It constitutes a formal language that is
easy to process, yet readable at least for domain experts. The level of detail
present in the descriptions is beyond a simple interface specification. Being
based on XML, the language also provides the possibility to be extended
in a backward compatible way. The language covers all COSMIC abstrac-
tions, thus it can be considered to be complete. Future investigation will
show which other facets of completeness can be met. In combination with the
tool–chain, the description mechanism is capable of supporting the com-
plete usage spectrum described in section 2.3.8. Specifically, the tool chain
ensures that many common development errors are avoided, such as the
wrong declaration of an event data structure, or the casting from the event
data structure to the generic message structure used at the API level. This is
achieved via automatic creation of relevant portions of a component’s code.

For the system development process, the integration of components into
larger systems is supported by providing compatibility checks, and the pos-
sibility to create network schedules for the dissemination of hard real–time
events.

In conclusion, it can be stated that the development of COSMIC com-
ponents has been eased and streamlined. All higher level benefits, such as
integration support, and the query service are completely new to the COS-
MIC environment. Also, having the CODES description readily available as
documentation ensures that the designer and the developer of the compo-
nent will not completely forget to document it properly.

Small 8 bit and 16 bit components benefit mostly from the development
and integration support offered by the CODES tool chain. Component de-
velopment is raised to a higher, more appropriate and comfortable level.
Many common programming errors are avoided by generating parts of the
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component’s code. The self–describing features are helpful in maintenance
situations. Of course, this not only applies to 8 bit components, but to com-
ponents of all varieties. 32 bit components further benefit from the query
facilities offered. They are powerful enough to process XML and e.g. are
able to dynamically interpret and use incoming events with previously un-
known structures. Given enough memory, they would also be able to in-
corporate the proposed semantic web technology to enable true dynamic
interaction in the long run.

The CODES descriptions link each data field to a specific meaning. Over-
laid usage, such as e.g. possible with the LIN signal definition, is not pos-
sible. The example given in section 5.6 illustrates in–band error signaling.
Such a combined definition is not possible with CODES. The particular ex-
ample would be modeled using special error events in COSMIC.

Generating the complete application code from CODES descriptions is
not possible. To achieve this, the CODES language would have to be en-
hanced greatly to become a universal modeling language similar to UML.
Specifically, elements to sufficiently describe the idiosyncrasies of hardware
would have to be included. A bloated language would be the result. In
contrast, CODES and COSMIC aim at hiding said idiosyncrasies at a com-
ponent’s outside interface. Reintroducing them in the modeling language
would at least be awkward.

8.1 Future work

The work presented in this thesis provides a starting point for further re-
search. Various directions of research promise to beneficial. Specifically, the
following areas should be covered:

The long–term goal of dynamic cooperation of components deserves de-
votion. As outlined in section 7.7, the integration of semantic web technol-
ogy appears to provide a promising starting point for this research.

Another interesting research topic is the recursive composition of de-
scriptions. COSMIC components can be composed recursively. The same
should apply to their descriptions. This requires methods to combine the
sub–components’ descriptions into a single document in a consistent man-
ner. It is intuitively clear that a new GeneralInformation section must be de-
rived or generated. The EventDefinitions and EventChannelDefinitions can
be combined in principle. However, care must be taken for events that
one sub–component generates, and another one consumes. It is not clear
whether these events and their respective event channel definitions should
appear in the enclosing system’s description. While it can be argued that
such events are of no importance to the outside world since they are only
used internally in most cases, there is no guarantee that this is always the
case.

It is important to gain more experience using the approach, since it di-
rectly aims at supporting the component life cycle. The real–world usage of
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CODES will prove the approach’s advantages, and it will also uncover any
unknown weaknesses. Real–world evaluation will also allow to determine
whether the current set of default attributes for events, data fields and event
channels is suitable. If any attributes are missing, it should be rather easy to
find them through experience.

To achieve sufficient real–world experience, it is important to refine and
extend the existing tool–chain in order to enhance the benefits for the users.
The prototype implementations developed during this work, specifically
the CODESCreator, the COSMICMonitor, and the LogPlayer will benefit
from refinement. While they currently provide basic functionality, they lack
a comfortable, snappy look and feel expected by users nowadays. Addi-
tional beneficial functionality for each application is briefly outlined in the
respective sections. Code and schedule generation should also be revised.
The currently existing solutions are of a prototypic nature, and should be
revised before they can be promptly used in every situation. An important
extension to the current tool–chain is a configuration management facility
that enables users to take full advantage of the parameterization facilities of
the CODES approach. Only a powerful configuration management applica-
tion will allow a user to painlessly configure individual nodes to his needs
when composing a system. A second important addition to the tool–chain
is support for black–box testing, as described in section 7.6.

Once enough experience is gained, the concept, specifically the descrip-
tion language can be advanced to support the newly gained insights. In
particular, further automation in the areas of compatibility checking and
code generation are of interest.

Currently, the CODES approach is limited to the COSMIC world. Gen-
eralizing CODES to support a broader spectrum of underlying technologies
will provide an understanding how more universal description schemes
should be constructed.
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Abbreviations

ADC Analog to Digital Converter
ANL Abstract Network Layer
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ASK Amplitude Shit Keying
AUTOSAR Automotive Open System Architecture
BCD Binary Coded Decimal
CAN Controller Area Network
CCD Cluster Configuration Description
CLC component life cycle
CODES COSMIC embedded device specification
COM Component Object Model
CORBA Common Object Request Broker Architecture
CORTEX Cooperating real–time sentient objects: architecture and ex-

perimental evaluation
COSMIC Cooperating smart devices
CPU Central Processing Unit
CSMA/CR Carrier Sense Mulriple Access with Collission Resolution
DCF Device Configuration File
DHCP Dynamic Host Configuration Protocol
DNS Domain Name Service
DOM Document Object Model
DSL Domain–specific language
DTD Document Type Definition
DVD Digital Versatile Disc
DVR Digital Video Recorder
ECB Event Channel Broker
ECH Event Channel Handler
EDS Electronic Data Sheet
EEPROM Electrically erasable programmable read only memory
FSK Frequency Shift Keying
FXPP Flexible XML Processing Profile
GEAR Generic Event Architecture
GENA Generic Event Notification Architecture
GPS Global Positioning System
HAL Hardware Abstraction Layer
HRT Hard real–time
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HRTC Hard real–time channel
HTML Hypertext markup language
HTTP Hypertext Transport Protocol
IDE Integrated Development Environment
IDL interface definition language
IEEE Institute of Electrical and Electronics Engineers
IFS Interface File System
IP Internet Protocol
IVR Interactive voice response
LAN Local Area Network
LDF LIN Description File
LIN Local Interconnect
LSB Least Significant Bit
MDA Model–driven architecture
MEMS Micro electro–mechanical system
MIME Multipurpose Internet Mail Extensions
MOF Meta Object Facility
NATO North Atlantic Treaty Organisation
NCAP Network Capable Application Processor
NCF Node Capability File
NDA Non–disclosure agreement
NIC Network Interface Controller
NRT Non real–time
NRTC Non real–time channel
NTC Negative Temperature Coefficient
OMG Object Management Group
OO object orientation
OUI Organizationally Unique Identifier
OWL Web Ontology Language
PC Personal Computer
PDA Personal Digital Assistant
PDF Portable Document Format
PDO Process Data object
PIM Platform Independent Model
PSM Platform Specific Model
PTC Positive Temperature Coefficient
RAM Random Access Memory
ROM Read Only Memory
RFC Request For Comments
RMI Remote Method Invocation
RODL Round Descriptor List
ROSE Round Sequence
RTP Real–time Transport Protocol
SAWSDL Semantic Annotations for WSDL
SDO Service Data Object
SGML Structured General Markup Language
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SI Système international d’unités
SOAP Simple Object Access Protocol
SOM System Object model
SQL Structured Query Language
SRT Soft real–time
SRTC Soft real–time channel
SSDP Simple Service Discovery Protocol
STD Smart Transducer Description
STIM Smart Transducer Interface Module
TCP Transmission Control Protocol
TDMA Time division multiple access
TEDS Transducer Electronic Data Sheet
TQFP Thin Quad Flat Pack
TTP Time–Triggered Protocol
TV Television
UART Universal asynchronous receiver/transmitter
UDDI Universal Description Discovery & Integration
UDN Unique Device Name
UDP User Datagram Protocol
UHF Ultra high frequency
UID Unique Identifier
UML Unified Modeling Language
UNSPSC United Nations Standard Products and Services Code
UPnP Universal Plug and Play
URI Uniform Resource Indicator
URL Uniform Resource Locater
UUID Universally Unique Identifier
VCR Video Cassette Recorder
VM Virtual Machine
W3C World Wide Web Consortium
WAN Wide Area Network
WBXML Wap binary XML
WSDL Web Service Description Language
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema Definition
XSL Extensible Stylesheet Language
XSLT XSL Transformations
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